The Filesystem Hierarchy Standard Comes to Guix Containers

GNU Guix is different from most other GNU/Linux distributions and perhaps nowhere is that more obvious than the organization of the filesystem: Guix does not conform to the Filesystem Hierarchy Standard (FHS). In practical terms, this means there is no global /lib containing libraries, /bin containing binaries,¹ and so on. This is very much at the core of how Guix works and some of the convenient features, like per-user installation of programs (different versions, for instance) and a declarative system configuration where the system is determined from a configuration file.

However, this also leads to a difference in how many pieces of software expect their world to look like, relying on finding a library in /lib or an external tool in /bin. When these are hard coded and not overcome with appropriate build options, we patch code to refer to absolute paths in the store, like /gnu/store/hrgqa7m498wfavq4awai3xz86ifkjxdr-grep-3.6/bin/grep, to keep everything consistently contained within the store.

It all works great and is thanks to the hard work of everyone that has contributed to Guix. But what if we need a more FHS-like environment for developing, testing, or running a piece of software?

To that end, we've recently added (available in Guix 1.4.0) a new option for guix shell (previously called guix environment): --emulate-fhs (or -F). This option is used in conjunction with the --container (or -C) option which creates an isolated, you guessed it, container. The new --emulate-fhs option will set up an environment in the container that follows FHS expectations, so that libraries are visible in /lib in the container, as an example.

Here is a very simple example:

$ guix shell --container --emulate-fhs coreutils -- ls /bin | head
[
b2sum
base32
base64
basename
basenc
cat
catchsegv
chcon
chgrp

and

$ guix shell --container --emulate-fhs coreutils -- ls /lib | head
Mcrt1.o
Scrt1.o
audit
crt1.o
crti.o
crtn.o
gconv
gcrt1.o
ld-2.33.so
ld-linux-x86-64.so.2

Contrast that with /bin on a Guix system:

$ ls /bin -l

total 4
lrwxrwxrwx 1 root root  61 Dec 12 09:57 sh -> \
    /gnu/store/d99ykvj3axzzidygsmdmzxah4lvxd6hw-bash-5.1.8/bin/sh*

and /lib

$ ls /lib
ls: cannot access '/lib': No such file or directory

Or, if you like to see it more in motion, here's a gif (courtesy of Ludovic Courtès): An animated gif showing the above 'guix shell' output.

Additionally, for the more technically-minded, the glibc used in this container will read from a global cache in /etc/ld.so.cache contrary to the behavior in Guix otherwise. This can help ensure that libraries are found when querying the ld cache or using the output of ldconfig -p, for example.

There are several uses that spring to mind for such a container in Guix. For developers, or those aspiring to hack on a project, this is a helpful tool when needing to emulate a different (non-Guix) environment. For example, one could use this to more easily follow build instructions meant for a general distribution, say when a Guix package is not (yet) available or easy to write immediately.

Another usage is to be able to use tools that don't really fit into Guix's model, like ones that use pre-built binaries. There are many reasons why this is not ideal and Guix strives to replace or supplement such tools, but practically speaking they can be hard to avoid entirely. The FHS container helps bridge this gap, providing an isolated and reproducible environment as needed.

Users not interested in development will also find the FHS container useful. For example, there may be software that is free and conforms to the Free System Distribution Guidelines (FSDG) Guix follows, yet is not feasible to be packaged by our standards. JavaScript and particularly Electron applications are not yet packaged for Guix due to the difficulties of a properly source-based and bootstrapable approach in this ecosystem.

As a more interesting example for this last point, let's dive right into a big one: the popular VSCodium editor. This is a freely licensed build of Microsoft's VS Code editor. This is based on Electron and pre-built AppImages are available. Downloading and making the AppImage executable (with a chmod +x), we can run it in a container with

guix shell --container --network --emulate-fhs \
    --development ungoogled-chromium gcc:lib \
    --preserve='^DISPLAY$' --preserve='^XAUTHORITY$' --expose=$XAUTHORITY \
    --preserve='^DBUS_' --expose=/var/run/dbus \
    --expose=/sys/dev --expose=/sys/devices --expose=/dev/dri \
    -- ./VSCodium-1.74.0.22342.glibc2.17-x86_64.AppImage --appimage-extract-and-run

The second line is a handy cheat to get lots of libraries often needed for graphical applications (development inputs of the package ungoogled-chromium) though it can be overkill if the AppImage does actually bundle everything (they don't!). The next line is for display on the host's X server, the one after for DBus communication, and lastly exposing some of the host hardware for rendering. This last part may be different on different hardware. That should do it, at least to see basic functionality of VSCodium. Note that we can't run an AppImage without the --appimage-extract-and-run option as it will want to use FUSE to mount the image which is not possible from the container.²

The FHS container is also useful to be able to run the exact same binary as anyone else, as you might want to for privacy reasons with the Tor Browser. While there is a long-standing set of patches to build the Tor Browser from source, with a container we can run the official build directly. After downloading, checking the signature, and unpacking, we can launch the Tor Browser from the root of the unpacked directory with:

guix shell --container --network --emulate-fhs \
    --preserve='^DISPLAY$' --preserve='^XAUTHORITY$' --expose=$XAUTHORITY \
    alsa-lib bash coreutils dbus-glib file gcc:lib \
    grep gtk+ libcxx pciutils sed \
    -- ./start-tor-browser.desktop -v

Here we've used a more minimal set of package inputs, rather than the ungoogled-chromium trick above. Usually this is found through some trial and error, looking at log output, maybe tracing, and sometimes from documentation. Though documentation of needed packages often has some assumptions on what is already available on typical systems. (Thanks to Jim Newsome for pointing out this example on the guix-devel mailing list.)

Another example is to get the latest nightly builds of Rust, via rustup.

$ mkdir ~/temphome

$ guix shell --network --container --emulate-fhs \
    bash coreutils curl grep nss-certs gcc:lib gcc-toolchain \
    pkg-config glib cairo atk pango@1.48.10 gdk-pixbuf gtk+ git \
    --share=$HOME/temphome=$HOME

~/temphome [env]$ curl --proto '=https' --tlsv1.2 -sSf <https://sh.rustup.rs> | sh

First we created a ~/temphome directory to use as $HOME in the container and then included a bunch of libraries in the container for the next example.

This will proceed without problem and we'll see

info: downloading installer

Welcome to Rust!

This will download and install the official compiler for the Rust
programming language, and its package manager, Cargo.

...

Rust is installed now. Great!

To get started you may need to restart your current shell.
This would reload your PATH environment variable to include
Cargo's bin directory ($HOME/.cargo/bin).

To configure your current shell, run:
source "$HOME/.cargo/env"

After updating the shells environment as instructed, we can see it all worked

~/temphome [env]$ rustc --version
rustc 1.65.0 (897e37553 2022-11-02)

as Guix's current Rust is at 1.61.0 and we didn't even include Rust in the container, of course.

Finally, we can build a Rust project of desktop widgets, ElKowars wacky widgets (eww), following their directions. Ultimately this uses just the standard cargo build --release and builds after downloading all the needed libraries.

~/temphome/eww [env]$ git clone https://github.com/elkowar/eww
...
~/temphome/eww [env]$ cd eww

~/temphome/eww [env]$ cargo build --release
info: syncing channel updates for 'nightly-2022-08-27-x86_64-unknown-linux-gnu'
info: latest update on 2022-08-27, rust version 1.65.0-nightly (c07a8b4e0 2022-08-26)
...

Finished release [optimized] target(s) in 2m 06s

With this being a fresh container, you will need to make some directories that normally exist, like ~/.config and ~/.cache in this case. For basic display support, it is enough to add --preserve='^DISPLAY$' --preserve='^XAUTHORITY$' --expose=$XAUTHORITY to the container launch options and run the first example widget in the documentation.

As we can see, with containers more generally we have to provide the right inputs and options as the environment is completely specified at creation. Once you want to run something that needs hardware from the host or to access host files, the container becomes increasingly porous for more functionality. This is certainly a trade-off, but one which we have agency with a container we wouldn't get otherwise.

The FHS option provides another option to make a container in Guix to produce other environments, even those with a vastly different philosophy of the root filesystem! This is one more tool in the Guix toolbox for controlled and reproducible environments that also let's us do some things we couldn't (easily) do otherwise.

Notes

¹ Other than a symlink for sh from the bash package, for compatibility reasons.

² Actually, one can use flatpak-spawn from flatpak-xdg-utils to launch something on the host and get the AppImage to mount itself. However, it is not visible from the same container. Or, we can use a normal mounting process outside of the container to inspect the contents, but AppImages will have an offset. We can use the FHS container option to get this offset and then mount in one line with mount VSCodium-1.74.0.22342.glibc2.17-x86_64.AppImage <mountpoint> -o offset=$(guix shell --container --emulate-fhs zlib -- ./VSCodium-1.74.0.22342.glibc2.17-x86_64.AppImage --appimage-offset)

About GNU Guix

GNU Guix is a transactional package manager and an advanced distribution of the GNU system that respects user freedom. Guix can be used on top of any system running the Hurd or the Linux kernel, or it can be used as a standalone operating system distribution for i686, x86_64, ARMv7, AArch64, and POWER9 machines.

In addition to standard package management features, Guix supports transactional upgrades and roll-backs, unprivileged package management, per-user profiles, and garbage collection. When used as a standalone GNU/Linux distribution, Guix offers a declarative, stateless approach to operating system configuration management. Guix is highly customizable and hackable through Guile programming interfaces and extensions to the Scheme language.

除非另有说明,否则本网站上的博客文章的版权归其各自作者所有,并根据以下条款发布 CC-BY-SA 4.0 许可证和 GNU 自由文档许可证(版本 1.3 或更高版本,没有不变部分,没有封面文字,无封底文字)。