Next: , Previous: , Up: Utilitários   [Contents][Index]


10.11 Invocando guix publish

The purpose of guix publish is to enable users to easily share their store with others, who can then use it as a substitute server (see Substitutos).

When guix publish runs, it spawns an HTTP server which allows anyone with network access to obtain substitutes from it. This means that any machine running Guix can also act as if it were a build farm, since the HTTP interface is compatible with Cuirass, the software behind the ci.guix.gnu.org build farm.

For security, each substitute is signed, allowing recipients to check their authenticity and integrity (see Substitutos). Because guix publish uses the signing key of the system, which is only readable by the system administrator, it must be started as root; the --user option makes it drop root privileges early on.

The signing key pair must be generated before guix publish is launched, using guix archive --generate-key (see Invocando guix archive).

When the --advertise option is passed, the server advertises its availability on the local network using multicast DNS (mDNS) and DNS service discovery (DNS-SD), currently via Guile-Avahi (see Using Avahi in Guile Scheme Programs).

The general syntax is:

guix publish options

Running guix publish without any additional arguments will spawn an HTTP server on port 8080:

guix publish

guix publish can also be started following the systemd “socket activation” protocol (see make-systemd-constructor in The GNU Shepherd Manual).

Once a publishing server has been authorized, the daemon may download substitutes from it. See Getting Substitutes from Other Servers.

By default, guix publish compresses archives on the fly as it serves them. This “on-the-fly” mode is convenient in that it requires no setup and is immediately available. However, when serving lots of clients, we recommend using the --cache option, which enables caching of the archives before they are sent to clients—see below for details. The guix weather command provides a handy way to check what a server provides (see Invocando guix weather).

As a bonus, guix publish also serves as a content-addressed mirror for source files referenced in origin records (see origin Reference). For instance, assuming guix publish is running on example.org, the following URL returns the raw hello-2.10.tar.gz file with the given SHA256 hash (represented in nix-base32 format, see Invocando guix hash):

http://example.org/file/hello-2.10.tar.gz/sha256/0ssi1…ndq1i

Obviously, these URLs only work for files that are in the store; in other cases, they return 404 (“Not Found”).

Build logs are available from /log URLs like:

http://example.org/log/gwspk…-guile-2.2.3

When guix-daemon is configured to save compressed build logs, as is the case by default (see Invocando guix-daemon), /log URLs return the compressed log as-is, with an appropriate Content-Type and/or Content-Encoding header. We recommend running guix-daemon with --log-compression=gzip since Web browsers can automatically decompress it, which is not the case with Bzip2 compression.

The following options are available:

--port=porta
-p porta

Ouve requisições HTTP na porta.

--listen=host

Listen on the network interface for host. The default is to accept connections from any interface.

--user=user
-u usuário

Change privileges to user as soon as possible—i.e., once the server socket is open and the signing key has been read.

--compression[=method[:level]]
-C [method[:level]]

Compress data using the given method and level. method is one of lzip, zstd, and gzip; when method is omitted, gzip is used.

When level is zero, disable compression. The range 1 to 9 corresponds to different compression levels: 1 is the fastest, and 9 is the best (CPU-intensive). The default is 3.

Usually, lzip compresses noticeably better than gzip for a small increase in CPU usage; see benchmarks on the lzip Web page. However, lzip achieves low decompression throughput (on the order of 50 MiB/s on modern hardware), which can be a bottleneck for someone who downloads over a fast network connection.

The compression ratio of zstd is between that of lzip and that of gzip; its main advantage is a high decompression speed.

Unless --cache is used, compression occurs on the fly and the compressed streams are not cached. Thus, to reduce load on the machine that runs guix publish, it may be a good idea to choose a low compression level, to run guix publish behind a caching proxy, or to use --cache. Using --cache has the advantage that it allows guix publish to add Content-Length HTTP header to its responses.

This option can be repeated, in which case every substitute gets compressed using all the selected methods, and all of them are advertised. This is useful when users may not support all the compression methods: they can select the one they support.

--cache=directory
-c directory

Cache archives and meta-data (.narinfo URLs) to directory and only serve archives that are in cache.

When this option is omitted, archives and meta-data are created on-the-fly. This can reduce the available bandwidth, especially when compression is enabled, since this may become CPU-bound. Another drawback of the default mode is that the length of archives is not known in advance, so guix publish does not add a Content-Length HTTP header to its responses, which in turn prevents clients from knowing the amount of data being downloaded.

Conversely, when --cache is used, the first request for a store item (via a .narinfo URL) triggers a background process to bake the archive—computing its .narinfo and compressing the archive, if needed. Once the archive is cached in directory, subsequent requests succeed and are served directly from the cache, which guarantees that clients get the best possible bandwidth.

That first .narinfo request nonetheless returns 200, provided the requested store item is “small enough”, below the cache bypass threshold—see --cache-bypass-threshold below. That way, clients do not have to wait until the archive is baked. For larger store items, the first .narinfo request returns 404, meaning that clients have to wait until the archive is baked.

The “baking” process is performed by worker threads. By default, one thread per CPU core is created, but this can be customized. See --workers below.

When --ttl is used, cached entries are automatically deleted when they have expired.

--workers=N

When --cache is used, request the allocation of N worker threads to “bake” archives.

--ttl=ttl

Produce Cache-Control HTTP headers that advertise a time-to-live (TTL) of ttl. ttl must denote a duration: 5d means 5 days, 1m means 1 month, and so on.

This allows the user’s Guix to keep substitute information in cache for ttl. However, note that guix publish does not itself guarantee that the store items it provides will indeed remain available for as long as ttl.

Additionally, when --cache is used, cached entries that have not been accessed for ttl and that no longer have a corresponding item in the store, may be deleted.

--negative-ttl=ttl

Similarly produce Cache-Control HTTP headers to advertise the time-to-live (TTL) of negative lookups—missing store items, for which the HTTP 404 code is returned. By default, no negative TTL is advertised.

This parameter can help adjust server load and substitute latency by instructing cooperating clients to be more or less patient when a store item is missing.

--cache-bypass-threshold=size

When used in conjunction with --cache, store items smaller than size are immediately available, even when they are not yet in cache. size is a size in bytes, or it can be suffixed by M for megabytes and so on. The default is 10M.

“Cache bypass” allows you to reduce the publication delay for clients at the expense of possibly additional I/O and CPU use on the server side: depending on the client access patterns, those store items can end up being baked several times until a copy is available in cache.

Increasing the threshold may be useful for sites that have few users, or to guarantee that users get substitutes even for store items that are not popular.

--nar-path=path

Use path as the prefix for the URLs of “nar” files (see normalized archives).

By default, nars are served at a URL such as /nar/gzip/…-coreutils-8.25. This option allows you to change the /nar part to path.

--public-key=file
--private-key=file

Use the specific files as the public/private key pair used to sign the store items being published.

The files must correspond to the same key pair (the private key is used for signing and the public key is merely advertised in the signature metadata). They must contain keys in the canonical s-expression format as produced by guix archive --generate-key (see Invocando guix archive). By default, /etc/guix/signing-key.pub and /etc/guix/signing-key.sec are used.

--repl[=port]
-r [porta]

Spawn a Guile REPL server (see REPL Servers in GNU Guile Reference Manual) on port (37146 by default). This is used primarily for debugging a running guix publish server.

Enabling guix publish on Guix System is a one-liner: just instantiate a guix-publish-service-type service in the services field of the operating-system declaration (see guix-publish-service-type).

If you are instead running Guix on a “foreign distro”, follow these instructions:


Next: Invocando guix challenge, Previous: Invocando guix graph, Up: Utilitários   [Contents][Index]