Próximo: Escrevendo manifestos, Anterior: Definindo pacotes, Acima: Interface de programação [Conteúdo][Índice]
One of the nice things with Guix is that, given a package definition, you can easily derive variants of that package—for a different upstream version, with different dependencies, different compilation options, and so on. Some of these custom packages can be defined straight from the command line (veja Opções de transformação de pacote). This section describes how to define package variants in code. This can be useful in “manifests” (veja Escrevendo manifestos) and in your own package collection (veja Criando um canal), among others!
As discussed earlier, packages are first-class objects in the Scheme
language. The (guix packages)
module provides the package
construct to define new package objects (veja package
Reference). The
easiest way to define a package variant is using the inherit
keyword
together with package
. This allows you to inherit from a package
definition while overriding the fields you want.
For example, given the hello
variable, which contains a definition
for the current version of GNU Hello, here’s how you would define a
variant for version 2.2 (released in 2006, it’s vintage!):
(use-modules (gnu packages base)) ;for 'hello' (define hello-2.2 (package (inherit hello) (version "2.2") (source (origin (method url-fetch) (uri (string-append "mirror://gnu/hello/hello-" version ".tar.gz")) (sha256 (base32 "0lappv4slgb5spyqbh6yl5r013zv72yqg2pcl30mginf3wdqd8k9"))))))
The example above corresponds to what the --with-version or
--with-source package transformations option do. Essentially
hello-2.2
preserves all the fields of hello
, except
version
and source
, which it overrides. Note that the
original hello
variable is still there, in the (gnu packages
base)
module, unchanged. When you define a custom package like this, you
are really adding a new package definition; the original one remains
available.
You can just as well define variants with a different set of dependencies
than the original package. For example, the default gdb
package
depends on guile
, but since that is an optional dependency, you can
define a variant that removes that dependency like so:
(use-modules (gnu packages gdb)) ;for 'gdb' (define gdb-sans-guile (package (inherit gdb) (inputs (modify-inputs (package-inputs gdb) (delete "guile")))))
The modify-inputs
form above removes the "guile"
package from
the inputs
field of gdb
. The modify-inputs
macro is a
helper that can prove useful anytime you want to remove, add, or replace
package inputs.
Modify the given package inputs, as returned by package-inputs
& co.,
according to the given clauses. Each clause must have one of the following
forms:
(delete name…)
Delete from the inputs packages with the given names (strings).
(prepend package…)
Add packages to the front of the input list.
(append package…)
Add packages to the end of the input list.
(replace name replacement)
Replace the package called name with replacement.
The example below removes the GMP and ACL inputs of Coreutils and adds libcap to the front of the input list:
(modify-inputs (package-inputs coreutils)
(delete "gmp" "acl")
(prepend libcap))
The example below replaces the guile
package from the inputs of
guile-redis
with guile-2.2
:
(modify-inputs (package-inputs guile-redis)
(replace "guile" guile-2.2))
The last type of clause is append
, to add inputs at the back of the
list.
In some cases, you may find it useful to write functions (“procedures”, in
Scheme parlance) that return a package based on some parameters. For
example, consider the luasocket
library for the Lua programming
language. We want to create luasocket
packages for major versions of
Lua. One way to do that is to define a procedure that takes a Lua package
and returns a luasocket
package that depends on it:
(define (make-lua-socket name lua) ;; Return a luasocket package built with LUA. (package (name name) (version "3.0") ;; several fields omitted (inputs (list lua)) (synopsis "Socket library for Lua"))) (define-public lua5.1-socket (make-lua-socket "lua5.1-socket" lua-5.1)) (define-public lua5.2-socket (make-lua-socket "lua5.2-socket" lua-5.2))
Here we have defined packages lua5.1-socket
and lua5.2-socket
by calling make-lua-socket
with different arguments.
Veja Procedures em GNU Guile Reference Manual, for more info on
procedures. Having top-level public definitions for these two packages
means that they can be referred to from the command line (veja Módulos de pacote).
These are pretty simple package variants. As a convenience, the (guix
transformations)
module provides a high-level interface that directly maps
to the more sophisticated package transformation options (veja Opções de transformação de pacote):
Return a procedure that, when passed an object to build (package, derivation, etc.), applies the transformations specified by opts and returns the resulting objects. opts must be a list of symbol/string pairs such as:
((with-branch . "guile-gcrypt=master")
(without-tests . "libgcrypt"))
Each symbol names a transformation and the corresponding string is an argument to that transformation.
For instance, a manifest equivalent to this command:
guix build guix \ --with-branch=guile-gcrypt=master \ --with-debug-info=zlib
... would look like this:
(use-modules (guix transformations)) (define transform ;; The package transformation procedure. (options->transformation '((with-branch . "guile-gcrypt=master") (with-debug-info . "zlib")))) (packages->manifest (list (transform (specification->package "guix"))))
The options->transformation
procedure is convenient, but it’s perhaps
also not as flexible as you may like. How is it implemented? The astute
reader probably noticed that most package transformation options go beyond
the superficial changes shown in the first examples of this section: they
involve input rewriting, whereby the dependency graph of a package is
rewritten by replacing specific inputs by others.
Dependency graph rewriting, for the purposes of swapping packages in the
graph, is what the package-input-rewriting
procedure in (guix
packages)
implements.
Return a procedure that, when passed a package, replaces its direct and indirect dependencies, including implicit inputs when deep? is true, according to replacements. replacements is a list of package pairs; the first element of each pair is the package to replace, and the second one is the replacement.
Optionally, rewrite-name is a one-argument procedure that takes the name of a package and returns its new name after rewrite.
Consider this example:
(define libressl-instead-of-openssl ;; This is a procedure to replace OPENSSL by LIBRESSL, ;; recursively. (package-input-rewriting `((,openssl . ,libressl)))) (define git-with-libressl (libressl-instead-of-openssl git))
Here we first define a rewriting procedure that replaces openssl with libressl. Then we use it to define a variant of the git package that uses libressl instead of openssl. This is exactly what the --with-input command-line option does (veja --with-input).
The following variant of package-input-rewriting
can match packages
to be replaced by name rather than by identity.
Return a procedure that, given a package, applies the given replacements to all the package graph, including implicit inputs unless deep? is false.
replacements is a list of spec/procedures pair; each spec is a package
specification such as "gcc"
or "guile@2"
, and each procedure
takes a matching package and returns a replacement for that package.
Matching packages that have the hidden?
property set are not
replaced.
The example above could be rewritten this way:
(define libressl-instead-of-openssl
;; Replace all the packages called "openssl" with LibreSSL.
(package-input-rewriting/spec `(("openssl" . ,(const libressl)))))
The key difference here is that, this time, packages are matched by spec and
not by identity. In other words, any package in the graph that is called
openssl
will be replaced.
A more generic procedure to rewrite a package dependency graph is
package-mapping
: it supports arbitrary changes to nodes in the graph.
Return a procedure that, given a package, applies proc to all the packages depended on and returns the resulting package. The procedure stops recursion when cut? returns true for a given package. When deep? is true, proc is applied to implicit inputs as well.
Tips: Understanding what a variant really looks like can be difficult as one starts combining the tools shown above. There are several ways to inspect a package before attempting to build it that can prove handy:
- You can inspect the package interactively at the REPL, for instance to view its inputs, the code of its build phases, or its configure flags (veja Using Guix Interactively).
- When rewriting dependencies,
guix graph
can often help visualize the changes that are made (veja Invocandoguix graph
).
Próximo: Escrevendo manifestos, Anterior: Definindo pacotes, Acima: Interface de programação [Conteúdo][Índice]