Próximo: , Anterior: , Acima: Interface de programação   [Conteúdo][Índice]

8.6 Build Phases

Almost all package build systems implement a notion build phases: a sequence of actions that the build system executes, when you build the package, leading to the installed byproducts in the store. A notable exception is the “bare-bones” trivial-build-system (veja Sistemas de compilação).

As discussed in the previous section, those build systems provide a standard list of phases. For gnu-build-system, the main build phases are the following:


Define search path environment variables for all the input packages, including PATH (veja Search Paths).


Unpack the source tarball, and change the current directory to the extracted source tree. If the source is actually a directory, copy it to the build tree, and enter that directory.


Patch shebangs encountered in source files so they refer to the right store file names. For instance, this changes #!/bin/sh to #!/gnu/store/…-bash-4.3/bin/sh.


Run the configure script with a number of default options, such as --prefix=/gnu/store/…, as well as the options specified by the #:configure-flags argument.


Run make with the list of flags specified with #:make-flags. If the #:parallel-build? argument is true (the default), build with make -j.


Run make check, or some other target specified with #:test-target, unless #:tests? #f is passed. If the #:parallel-tests? argument is true (the default), run make check -j.


Run make install with the flags listed in #:make-flags.


Patch shebangs on the installed executable files.


Strip debugging symbols from ELF files (unless #:strip-binaries? is false), copying them to the debug output when available (veja Instalando arquivos de depuração).


Validate the RUNPATH of ELF binaries, unless #:validate-runpath? is false (veja Sistemas de compilação).

This validation step consists in making sure that all the shared libraries needed by an ELF binary, which are listed as DT_NEEDED entries in its PT_DYNAMIC segment, appear in the DT_RUNPATH entry of that binary. In other words, it ensures that running or using those binaries will not result in a “file not found” error at run time. Veja -rpath em The GNU Linker, for more information on RUNPATH.

Other build systems have similar phases, with some variations. For example, cmake-build-system has same-named phases but its configure phases runs cmake instead of ./configure. Others, such as python-build-system, have a wholly different list of standard phases. All this code runs on the build side: it is evaluated when you actually build the package, in a dedicated build process spawned by the build daemon (veja Invocando guix-daemon).

Build phases are represented as association lists or “alists” (veja Association Lists em GNU Guile Reference Manual) where each key is a symbol for the name of the phase and the associated value is a procedure that accepts an arbitrary number of arguments. By convention, those procedures receive information about the build in the form of keyword parameters, which they can use or ignore.

For example, here is how (guix build gnu-build-system) defines %standard-phases, the variable holding its alist of build phases21:

;; The build phases of 'gnu-build-system'.

(define* (unpack #:key source #:allow-other-keys)
  ;; Extract the source tarball.
  (invoke "tar" "xvf" source))

(define* (configure #:key outputs #:allow-other-keys)
  ;; Run the 'configure' script.  Install to output "out".
  (let ((out (assoc-ref outputs "out")))
    (invoke "./configure"
            (string-append "--prefix=" out))))

(define* (build #:allow-other-keys)
  ;; Compile.
  (invoke "make"))

(define* (check #:key (test-target "check") (tests? #true)
  ;; Run the test suite.
  (if tests?
      (invoke "make" test-target)
      (display "test suite not run\n")))

(define* (install #:allow-other-keys)
  ;; Install files to the prefix 'configure' specified.
  (invoke "make" "install"))

(define %standard-phases
  ;; The list of standard phases (quite a few are omitted
  ;; for brevity).  Each element is a symbol/procedure pair.
  (list (cons 'unpack unpack)
        (cons 'configure configure)
        (cons 'build build)
        (cons 'check check)
        (cons 'install install)))

This shows how %standard-phases is defined as a list of symbol/procedure pairs (veja Pairs em GNU Guile Reference Manual). The first pair associates the unpack procedure with the unpack symbol—a name; the second pair defines the configure phase similarly, and so on. When building a package that uses gnu-build-system with its default list of phases, those phases are executed sequentially. You can see the name of each phase started and completed in the build log of packages that you build.

Let’s now look at the procedures themselves. Each one is defined with define*: #:key lists keyword parameters the procedure accepts, possibly with a default value, and #:allow-other-keys specifies that other keyword parameters are ignored (veja Optional Arguments em GNU Guile Reference Manual).

The unpack procedure honors the source parameter, which the build system uses to pass the file name of the source tarball (or version control checkout), and it ignores other parameters. The configure phase only cares about the outputs parameter, an alist mapping package output names to their store file name (veja Pacotes com múltiplas saídas). It extracts the file name of for out, the default output, and passes it to ./configure as the installation prefix, meaning that make install will eventually copy all the files in that directory (veja configuration and makefile conventions em GNU Coding Standards). build and install ignore all their arguments. check honors the test-target argument, which specifies the name of the Makefile target to run tests; it prints a message and skips tests when tests? is false.

The list of phases used for a particular package can be changed with the #:phases parameter of the build system. Changing the set of build phases boils down to building a new alist of phases based on the %standard-phases alist described above. This can be done with standard alist procedures such as alist-delete (veja SRFI-1 Association Lists em GNU Guile Reference Manual); however, it is more convenient to do so with modify-phases (veja modify-phases).

Here is an example of a package definition that removes the configure phase of %standard-phases and inserts a new phase before the build phase, called set-prefix-in-makefile:

(define-public example
    (name "example")
    ;; other fields omitted
    (build-system gnu-build-system)
      #~(modify-phases %standard-phases
          (delete 'configure)
          (add-before 'build 'set-prefix-in-makefile
            (lambda* (#:key inputs #:allow-other-keys)
              ;; Modify the makefile so that its
              ;; 'PREFIX' variable points to #$output and
              ;; 'XMLLINT' points to the correct path.
              (substitute* "Makefile"
                (("PREFIX =.*")
                 (string-append "PREFIX = " #$output "\n"))
                (("XMLLINT =.*")
                 (string-append "XMLLINT = "
                                (search-input-file inputs "/bin/xmllint")

The new phase that is inserted is written as an anonymous procedure, introduced with lambda*; it looks for the xmllint executable under a /bin directory among the package’s inputs (veja package Reference). It also honors the outputs parameter we have seen before. Veja Build Utilities, for more about the helpers used by this phase, and for more examples of modify-phases.

Tip: You can inspect the code associated with a package’s #:phases argument interactively, at the REPL (veja Using Guix Interactively).

Keep in mind that build phases are code evaluated at the time the package is actually built. This explains why the whole modify-phases expression above is quoted (it comes after the ' or apostrophe): it is staged for later execution. Veja Expressões-G, for an explanation of code staging and the code strata involved.

Notas de Rodapé


We present a simplified view of those build phases, but do take a look at (guix build gnu-build-system) to see all the details!

Próximo: Build Utilities, Anterior: Sistemas de compilação, Acima: Interface de programação   [Conteúdo][Índice]