Next: operating-system
Reference, Up: System Configuration [Contents][Index]
The operating system is configured by providing an
operating-system
declaration in a file that can then be passed to
the guix system
command (see Invoking guix system
). A
simple setup, with the default system services, the default Linux-Libre
kernel, initial RAM disk, and boot loader looks like this:
;; This is an operating system configuration template ;; for a "bare bones" setup, with no X11 display server. (use-modules (gnu)) (use-service-modules networking ssh) (use-package-modules screen ssh) (operating-system (host-name "komputilo") (timezone "Europe/Berlin") (locale "en_US.utf8") ;; Boot in "legacy" BIOS mode, assuming /dev/sdX is the ;; target hard disk, and "my-root" is the label of the target ;; root file system. (bootloader (bootloader-configuration (bootloader grub-bootloader) (targets '("/dev/sdX")))) ;; It's fitting to support the equally bare bones ‘-nographic’ ;; QEMU option, which also nicely sidesteps forcing QWERTY. (kernel-arguments (list "console=ttyS0,115200")) (file-systems (cons (file-system (device (file-system-label "my-root")) (mount-point "/") (type "ext4")) %base-file-systems)) ;; This is where user accounts are specified. The "root" ;; account is implicit, and is initially created with the ;; empty password. (users (cons (user-account (name "alice") (comment "Bob's sister") (group "users") ;; Adding the account to the "wheel" group ;; makes it a sudoer. Adding it to "audio" ;; and "video" allows the user to play sound ;; and access the webcam. (supplementary-groups '("wheel" "audio" "video"))) %base-user-accounts)) ;; Globally-installed packages. (packages (cons screen %base-packages)) ;; Add services to the baseline: a DHCP client and ;; an SSH server. (services (append (list (service dhcp-client-service-type) (service openssh-service-type (openssh-configuration (openssh openssh-sans-x) (port-number 2222)))) %base-services)))
This example should be self-describing. Some of the fields defined
above, such as host-name
and bootloader
, are mandatory.
Others, such as packages
and services
, can be omitted, in
which case they get a default value.
Below we discuss the effect of some of the most important fields
(see operating-system
Reference, for details about all the available
fields), and how to instantiate the operating system using
guix system
.
The bootloader
field describes the method that will be used to boot
your system. Machines based on Intel processors can boot in “legacy” BIOS
mode, as in the example above. However, more recent machines rely instead on
the Unified Extensible Firmware Interface (UEFI) to boot. In that case,
the bootloader
field should contain something along these lines:
(bootloader-configuration
(bootloader grub-efi-bootloader)
(targets '("/boot/efi")))
See Bootloader Configuration, for more information on the available configuration options.
The packages
field lists packages that will be globally visible
on the system, for all user accounts—i.e., in every user’s PATH
environment variable—in addition to the per-user profiles
(see Invoking guix package
). The %base-packages
variable
provides all the tools one would expect for basic user and administrator
tasks—including the GNU Core Utilities, the GNU Networking Utilities,
the mg
lightweight text editor, find
, grep
,
etc. The example above adds GNU Screen to those,
taken from the (gnu packages screen)
module (see Package Modules). The
(list package output)
syntax can be used to add a specific output
of a package:
(use-modules (gnu packages)) (use-modules (gnu packages dns)) (operating-system ;; ... (packages (cons (list isc-bind "utils") %base-packages)))
Referring to packages by variable name, like isc-bind
above, has
the advantage of being unambiguous; it also allows typos and such to be
diagnosed right away as “unbound variables”. The downside is that one
needs to know which module defines which package, and to augment the
use-package-modules
line accordingly. To avoid that, one can use
the specification->package
procedure of the (gnu packages)
module, which returns the best package for a given name or name and
version:
(use-modules (gnu packages)) (operating-system ;; ... (packages (append (map specification->package '("tcpdump" "htop" "gnupg@2.0")) %base-packages)))
The services
field lists system services to be made
available when the system starts (see Services).
The operating-system
declaration above specifies that, in
addition to the basic services, we want the OpenSSH secure shell
daemon listening on port 2222 (see openssh-service-type
). Under the hood,
openssh-service-type
arranges so that sshd
is started with the
right command-line options, possibly with supporting configuration files
generated as needed (see Defining Services).
Occasionally, instead of using the base services as is, you will want to
customize them. To do this, use modify-services
(see modify-services
) to modify the list.
For example, suppose you want to modify
guix-daemon
and Mingetty (the console log-in) in the
%base-services
list (see %base-services
). To do that, you can write the following in
your operating system declaration:
(define %my-services ;; My very own list of services. (modify-services %base-services (guix-service-type config => (guix-configuration (inherit config) ;; Fetch substitutes from example.org. (substitute-urls (list "https://example.org/guix" "https://ci.guix.gnu.org")))) (mingetty-service-type config => (mingetty-configuration (inherit config) ;; Automatically log in as "guest". (auto-login "guest"))))) (operating-system ;; … (services %my-services))
This changes the configuration—i.e., the service parameters—of the
guix-service-type
instance, and that of all the
mingetty-service-type
instances in the %base-services
list
(see see the cookbook for how to
auto-login one user to a specific TTY in GNU Guix Cookbook)).
Observe how this is accomplished: first, we arrange for the original
configuration to be bound to the identifier config
in the
body, and then we write the body so that it evaluates to the
desired configuration. In particular, notice how we use inherit
to create a new configuration which has the same values as the old
configuration, but with a few modifications.
The configuration for a typical “desktop” usage, with an encrypted root partition, a swap file on the root partition, the X11 display server, GNOME and Xfce (users can choose which of these desktop environments to use at the log-in screen by pressing F1), network management, power management, and more, would look like this:
;; This is an operating system configuration template ;; for a "desktop" setup with GNOME and Xfce where the ;; root partition is encrypted with LUKS, and a swap file. (use-modules (gnu) (gnu system nss) (guix utils)) (use-service-modules desktop sddm xorg) (use-package-modules certs gnome) (operating-system (host-name "antelope") (timezone "Europe/Paris") (locale "en_US.utf8") ;; Choose US English keyboard layout. The "altgr-intl" ;; variant provides dead keys for accented characters. (keyboard-layout (keyboard-layout "us" "altgr-intl")) ;; Use the UEFI variant of GRUB with the EFI System ;; Partition mounted on /boot/efi. (bootloader (bootloader-configuration (bootloader grub-efi-bootloader) (targets '("/boot/efi")) (keyboard-layout keyboard-layout))) ;; Specify a mapped device for the encrypted root partition. ;; The UUID is that returned by 'cryptsetup luksUUID'. (mapped-devices (list (mapped-device (source (uuid "12345678-1234-1234-1234-123456789abc")) (target "my-root") (type luks-device-mapping)))) (file-systems (append (list (file-system (device (file-system-label "my-root")) (mount-point "/") (type "ext4") (dependencies mapped-devices)) (file-system (device (uuid "1234-ABCD" 'fat)) (mount-point "/boot/efi") (type "vfat"))) %base-file-systems)) ;; Specify a swap file for the system, which resides on the ;; root file system. (swap-devices (list (swap-space (target "/swapfile")))) ;; Create user `bob' with `alice' as its initial password. (users (cons (user-account (name "bob") (comment "Alice's brother") (password (crypt "alice" "$6$abc")) (group "students") (supplementary-groups '("wheel" "netdev" "audio" "video"))) %base-user-accounts)) ;; Add the `students' group (groups (cons* (user-group (name "students")) %base-groups)) ;; This is where we specify system-wide packages. (packages (append (list ;; for HTTPS access nss-certs ;; for user mounts gvfs) %base-packages)) ;; Add GNOME and Xfce---we can choose at the log-in screen ;; by clicking the gear. Use the "desktop" services, which ;; include the X11 log-in service, networking with ;; NetworkManager, and more. (services (if (target-x86-64?) (append (list (service gnome-desktop-service-type) (service xfce-desktop-service-type) (set-xorg-configuration (xorg-configuration (keyboard-layout keyboard-layout)))) %desktop-services) ;; FIXME: Since GDM depends on Rust (gdm -> gnome-shell -> gjs ;; -> mozjs -> rust) and Rust is currently unavailable on ;; non-x86_64 platforms, we use SDDM and Mate here instead of ;; GNOME and GDM. (append (list (service mate-desktop-service-type) (service xfce-desktop-service-type) (set-xorg-configuration (xorg-configuration (keyboard-layout keyboard-layout)) sddm-service-type)) %desktop-services))) ;; Allow resolution of '.local' host names with mDNS. (name-service-switch %mdns-host-lookup-nss))
A graphical system with a choice of lightweight window managers instead of full-blown desktop environments would look like this:
;; This is an operating system configuration template ;; for a "desktop" setup without full-blown desktop ;; environments. (use-modules (gnu) (gnu system nss)) (use-service-modules desktop) (use-package-modules bootloaders certs emacs emacs-xyz ratpoison suckless wm xorg) (operating-system (host-name "antelope") (timezone "Europe/Paris") (locale "en_US.utf8") ;; Use the UEFI variant of GRUB with the EFI System ;; Partition mounted on /boot/efi. (bootloader (bootloader-configuration (bootloader grub-efi-bootloader) (targets '("/boot/efi")))) ;; Assume the target root file system is labelled "my-root", ;; and the EFI System Partition has UUID 1234-ABCD. (file-systems (append (list (file-system (device (file-system-label "my-root")) (mount-point "/") (type "ext4")) (file-system (device (uuid "1234-ABCD" 'fat)) (mount-point "/boot/efi") (type "vfat"))) %base-file-systems)) (users (cons (user-account (name "alice") (comment "Bob's sister") (group "users") (supplementary-groups '("wheel" "netdev" "audio" "video"))) %base-user-accounts)) ;; Add a bunch of window managers; we can choose one at ;; the log-in screen with F1. (packages (append (list ;; window managers ratpoison i3-wm i3status dmenu emacs emacs-exwm emacs-desktop-environment ;; terminal emulator xterm ;; for HTTPS access nss-certs) %base-packages)) ;; Use the "desktop" services, which include the X11 ;; log-in service, networking with NetworkManager, and more. (services %desktop-services) ;; Allow resolution of '.local' host names with mDNS. (name-service-switch %mdns-host-lookup-nss))
This example refers to the /boot/efi file system by its UUID,
1234-ABCD
. Replace this UUID with the right UUID on your system,
as returned by the blkid
command.
See Desktop Services, for the exact list of services provided by
%desktop-services
. See X.509 Certificates, for background
information about the nss-certs
package that is used here.
Again, %desktop-services
is just a list of service objects. If
you want to remove services from there, you can do so using the
procedures for list filtering (see SRFI-1 Filtering and
Partitioning in GNU Guile Reference Manual). For instance, the
following expression returns a list that contains all the services in
%desktop-services
minus the Avahi service:
(remove (lambda (service)
(eq? (service-kind service) avahi-service-type))
%desktop-services)
Alternatively, the modify-services
macro can be used:
Assuming the operating-system
declaration
is stored in the my-system-config.scm
file, the guix system reconfigure my-system-config.scm
command
instantiates that configuration, and makes it the default GRUB boot
entry (see Invoking guix system
).
Note: We recommend that you keep this my-system-config.scm file safe and under version control to easily track changes to your configuration.
The normal way to change the system configuration is by updating this
file and re-running guix system reconfigure
. One should never
have to touch files in /etc or to run commands that modify the
system state such as useradd
or grub-install
. In
fact, you must avoid that since that would not only void your warranty
but also prevent you from rolling back to previous versions of your
system, should you ever need to.
Speaking of roll-back, each time you run guix system
reconfigure
, a new generation of the system is created—without
modifying or deleting previous generations. Old system generations get
an entry in the bootloader boot menu, allowing you to boot them in case
something went wrong with the latest generation. Reassuring, no? The
guix system list-generations
command lists the system
generations available on disk. It is also possible to roll back the
system via the commands guix system roll-back
and
guix system switch-generation
.
Although the guix system reconfigure
command will not modify
previous generations, you must take care when the current generation is not
the latest (e.g., after invoking guix system roll-back
), since
the operation might overwrite a later generation (see Invoking guix system
).
At the Scheme level, the bulk of an operating-system
declaration
is instantiated with the following monadic procedure (see The Store Monad):
Return a derivation that builds os, an operating-system
object (see Derivations).
The output of the derivation is a single directory that refers to all the packages, configuration files, and other supporting files needed to instantiate os.
This procedure is provided by the (gnu system)
module. Along
with (gnu services)
(see Services), this module contains the
guts of Guix System. Make sure to visit it!
Next: operating-system
Reference, Up: System Configuration [Contents][Index]