Next: , Previous: , Up: Programming Interface   [Contents][Index]


8.5 Build Systems

Each package definition specifies a build system and arguments for that build system (see Defining Packages). This build-system field represents the build procedure of the package, as well as implicit dependencies of that build procedure.

Build systems are <build-system> objects. The interface to create and manipulate them is provided by the (guix build-system) module, and actual build systems are exported by specific modules.

Under the hood, build systems first compile package objects to bags. A bag is like a package, but with less ornamentation—in other words, a bag is a lower-level representation of a package, which includes all the inputs of that package, including some that were implicitly added by the build system. This intermediate representation is then compiled to a derivation (see Derivations). The package-with-c-toolchain is an example of a way to change the implicit inputs that a package’s build system pulls in (see package-with-c-toolchain).

Build systems accept an optional list of arguments. In package definitions, these are passed via the arguments field (see Defining Packages). They are typically keyword arguments (see keyword arguments in Guile in GNU Guile Reference Manual). The value of these arguments is usually evaluated in the build stratum—i.e., by a Guile process launched by the daemon (see Derivations).

The main build system is gnu-build-system, which implements the standard build procedure for GNU and many other packages. It is provided by the (guix build-system gnu) module.

Variable: gnu-build-system

gnu-build-system represents the GNU Build System, and variants thereof (see configuration and makefile conventions in GNU Coding Standards).

In a nutshell, packages using it are configured, built, and installed with the usual ./configure && make && make check && make install command sequence. In practice, a few additional steps are often needed. All these steps are split up in separate phases. See Build Phases, for more info on build phases and ways to customize them.

In addition, this build system ensures that the “standard” environment for GNU packages is available. This includes tools such as GCC, libc, Coreutils, Bash, Make, Diffutils, grep, and sed (see the (guix build-system gnu) module for a complete list). We call these the implicit inputs of a package, because package definitions do not have to mention them.

This build system supports a number of keyword arguments, which can be passed via the arguments field of a package. Here are some of the main parameters:

#:phases

This argument specifies build-side code that evaluates to an alist of build phases. See Build Phases, for more information.

#:configure-flags

This is a list of flags (strings) passed to the configure script. See Defining Packages, for an example.

#:make-flags

This list of strings contains flags passed as arguments to make invocations in the build, check, and install phases.

#:out-of-source?

This Boolean, #f by default, indicates whether to run builds in a build directory separate from the source tree.

When it is true, the configure phase creates a separate build directory, changes to that directory, and runs the configure script from there. This is useful for packages that require it, such as glibc.

#:tests?

This Boolean, #t by default, indicates whether the check phase should run the package’s test suite.

#:test-target

This string, "check" by default, gives the name of the makefile target used by the check phase.

#:parallel-build?
#:parallel-tests?

These Boolean values specify whether to build, respectively run the test suite, in parallel, with the -j flag of make. When they are true, make is passed -jn, where n is the number specified as the --cores option of guix-daemon or that of the guix client command (see --cores).

#:validate-runpath?

This Boolean, #t by default, determines whether to “validate” the RUNPATH of ELF binaries (.so shared libraries as well as executables) previously installed by the install phase. See the validate-runpath phase, for details.

#:substitutable?

This Boolean, #t by default, tells whether the package outputs should be substitutable—i.e., whether users should be able to obtain substitutes for them instead of building locally (see Substitutes).

#:allowed-references
#:disallowed-references

When true, these arguments must be a list of dependencies that must not appear among the references of the build results. If, upon build completion, some of these references are retained, the build process fails.

This is useful to ensure that a package does not erroneously keep a reference to some of it build-time inputs, in cases where doing so would, for example, unnecessarily increase its size (see Invoking guix size).

Most other build systems support these keyword arguments.

Other <build-system> objects are defined to support other conventions and tools used by free software packages. They inherit most of gnu-build-system, and differ mainly in the set of inputs implicitly added to the build process, and in the list of phases executed. Some of these build systems are listed below.

Variable: agda-build-system

This variable is exported by (guix build-system agda). It implements a build procedure for Agda libraries.

It adds agda to the set of inputs. A different Agda can be specified with the #:agda key.

The #:plan key is a list of cons cells (regexp . parameters), where regexp is a regexp that should match the .agda files to build, and parameters is an optional list of parameters that will be passed to agda when type-checking it.

When the library uses Haskell to generate a file containing all imports, the convenience #:gnu-and-haskell? can be set to #t to add ghc and the standard inputs of gnu-build-system to the input list. You will still need to manually add a phase or tweak the 'build phase, as in the definition of agda-stdlib.

Variable: ant-build-system

This variable is exported by (guix build-system ant). It implements the build procedure for Java packages that can be built with Ant build tool.

It adds both ant and the Java Development Kit (JDK) as provided by the icedtea package to the set of inputs. Different packages can be specified with the #:ant and #:jdk parameters, respectively.

When the original package does not provide a suitable Ant build file, the parameter #:jar-name can be used to generate a minimal Ant build file build.xml with tasks to build the specified jar archive. In this case the parameter #:source-dir can be used to specify the source sub-directory, defaulting to “src”.

The #:main-class parameter can be used with the minimal ant buildfile to specify the main class of the resulting jar. This makes the jar file executable. The #:test-include parameter can be used to specify the list of junit tests to run. It defaults to (list "**/*Test.java"). The #:test-exclude can be used to disable some tests. It defaults to (list "**/Abstract*.java"), because abstract classes cannot be run as tests.

The parameter #:build-target can be used to specify the Ant task that should be run during the build phase. By default the “jar” task will be run.

Variable: android-ndk-build-system

This variable is exported by (guix build-system android-ndk). It implements a build procedure for Android NDK (native development kit) packages using a Guix-specific build process.

The build system assumes that packages install their public interface (header) files to the subdirectory include of the out output and their libraries to the subdirectory lib the out output.

It’s also assumed that the union of all the dependencies of a package has no conflicting files.

For the time being, cross-compilation is not supported - so right now the libraries and header files are assumed to be host tools.

Variable: asdf-build-system/source
Variable: asdf-build-system/sbcl
Variable: asdf-build-system/ecl

These variables, exported by (guix build-system asdf), implement build procedures for Common Lisp packages using “ASDF”. ASDF is a system definition facility for Common Lisp programs and libraries.

The asdf-build-system/source system installs the packages in source form, and can be loaded using any common lisp implementation, via ASDF. The others, such as asdf-build-system/sbcl, install binary systems in the format which a particular implementation understands. These build systems can also be used to produce executable programs, or lisp images which contain a set of packages pre-loaded.

The build system uses naming conventions. For binary packages, the package name should be prefixed with the lisp implementation, such as sbcl- for asdf-build-system/sbcl.

Additionally, the corresponding source package should be labeled using the same convention as Python packages (see Python Modules), using the cl- prefix.

In order to create executable programs and images, the build-side procedures build-program and build-image can be used. They should be called in a build phase after the create-asdf-configuration phase, so that the system which was just built can be used within the resulting image. build-program requires a list of Common Lisp expressions to be passed as the #:entry-program argument.

By default, all the .asd files present in the sources are read to find system definitions. The #:asd-files parameter can be used to specify the list of .asd files to read. Furthermore, if the package defines a system for its tests in a separate file, it will be loaded before the tests are run if it is specified by the #:test-asd-file parameter. If it is not set, the files <system>-tests.asd, <system>-test.asd, tests.asd, and test.asd will be tried if they exist.

If for some reason the package must be named in a different way than the naming conventions suggest, or if several systems must be compiled, the #:asd-systems parameter can be used to specify the list of system names.

Variable: cargo-build-system

This variable is exported by (guix build-system cargo). It supports builds of packages using Cargo, the build tool of the Rust programming language.

It adds rustc and cargo to the set of inputs. A different Rust package can be specified with the #:rust parameter.

Regular cargo dependencies should be added to the package definition similarly to other packages; those needed only at build time to native-inputs, others to inputs. If you need to add source-only crates then you should add them to via the #:cargo-inputs parameter as a list of name and spec pairs, where the spec can be a package or a source definition. Note that the spec must evaluate to a path to a gzipped tarball which includes a Cargo.toml file at its root, or it will be ignored. Similarly, cargo dev-dependencies should be added to the package definition via the #:cargo-development-inputs parameter.

In its configure phase, this build system will make any source inputs specified in the #:cargo-inputs and #:cargo-development-inputs parameters available to cargo. It will also remove an included Cargo.lock file to be recreated by cargo during the build phase. The package phase will run cargo package to create a source crate for future use. The install phase installs the binaries defined by the crate. Unless install-source? #f is defined it will also install a source crate repository of itself and unpacked sources, to ease in future hacking on rust packages.

Variable: chicken-build-system

This variable is exported by (guix build-system chicken). It builds CHICKEN Scheme modules, also called “eggs” or “extensions”. CHICKEN generates C source code, which then gets compiled by a C compiler, in this case GCC.

This build system adds chicken to the package inputs, as well as the packages of gnu-build-system.

The build system can’t (yet) deduce the egg’s name automatically, so just like with go-build-system and its #:import-path, you should define #:egg-name in the package’s arguments field.

For example, if you are packaging the srfi-1 egg:

(arguments '(#:egg-name "srfi-1"))

Egg dependencies must be defined in propagated-inputs, not inputs because CHICKEN doesn’t embed absolute references in compiled eggs. Test dependencies should go to native-inputs, as usual.

Variable: copy-build-system

This variable is exported by (guix build-system copy). It supports builds of simple packages that don’t require much compiling, mostly just moving files around.

It adds much of the gnu-build-system packages to the set of inputs. Because of this, the copy-build-system does not require all the boilerplate code often needed for the trivial-build-system.

To further simplify the file installation process, an #:install-plan argument is exposed to let the packager specify which files go where. The install plan is a list of (source target [filters]). filters are optional.

  • When source matches a file or directory without trailing slash, install it to target.
    • If target has a trailing slash, install source basename beneath target.
    • Otherwise install source as target.
  • When source is a directory with a trailing slash, or when filters are used, the trailing slash of target is implied with the same meaning as above.
    • Without filters, install the full source content to target.
    • With filters among #:include, #:include-regexp, #:exclude, #:exclude-regexp, only select files are installed depending on the filters. Each filters is specified by a list of strings.
      • With #:include, install all the files which the path suffix matches at least one of the elements in the given list.
      • With #:include-regexp, install all the files which the subpaths match at least one of the regular expressions in the given list.
      • The #:exclude and #:exclude-regexp filters are the complement of their inclusion counterpart. Without #:include flags, install all files but those matching the exclusion filters. If both inclusions and exclusions are specified, the exclusions are done on top of the inclusions.
    • When a package has multiple outputs, the #:output argument can be used to specify which output label the files should be installed to.

    In all cases, the paths relative to source are preserved within target.

Examples:

  • ("foo/bar" "share/my-app/"): Install bar to share/my-app/bar.
  • ("foo/bar" "share/my-app/baz"): Install bar to share/my-app/baz.
  • ("foo/" "share/my-app"): Install the content of foo inside share/my-app, e.g., install foo/sub/file to share/my-app/sub/file.
  • ("foo/" "share/my-app" #:include ("sub/file")): Install only foo/sub/file to share/my-app/sub/file.
  • ("foo/sub" "share/my-app" #:include ("file")): Install foo/sub/file to share/my-app/file.
  • ("foo/doc" "share/my-app/doc" #:output "doc"): Install "foo/doc" to "share/my-app/doc" within the "doc" output.
Variable: vim-build-system

This variable is exported by (guix build-system vim). It is an extension of the copy-build-system, installing Vim and Neovim plugins into locations where these two text editors know to find their plugins, using their packpaths.

Packages which are prefixed with vim- will be installed in Vim’s packpath, while those prefixed with neovim- will be installed in Neovim’s packpath. If there is a doc directory with the plugin then helptags will be generated automatically.

There are a couple of keywords added with the vim-build-system:

  • With plugin-name it is possible to set the name of the plugin. While by default this is set to the name and version of the package, it is often more helpful to set this to name which the upstream author calls their plugin. This is the name used for :packadd from inside Vim.
  • With install-plan it is possible to augment the built-in install-plan of the vim-build-system. This is particularly helpful if you have files which should be installed in other locations. For more information about using the install-plan, see the copy-build-system (see copy-build-system).
  • With #:vim it is possible to add this package to Vim’s packpath, in addition to if it is added automatically because of the vim- prefix in the package’s name.
  • With #:neovim it is possible to add this package to Neovim’s packpath, in addition to if it is added automatically because of the neovim- prefix in the package’s name.
  • With #:mode it is possible to adjust the path which the plugin is installed into. By default the plugin is installed into start and other options are available, including opt. Adding a plugin into opt will mean you will need to run, for example, :packadd foo to load the foo plugin from inside of Vim.
Variable: clojure-build-system

This variable is exported by (guix build-system clojure). It implements a simple build procedure for Clojure packages using plain old compile in Clojure. Cross-compilation is not supported yet.

It adds clojure, icedtea and zip to the set of inputs. Different packages can be specified with the #:clojure, #:jdk and #:zip parameters, respectively.

A list of source directories, test directories and jar names can be specified with the #:source-dirs, #:test-dirs and #:jar-names parameters, respectively. Compile directory and main class can be specified with the #:compile-dir and #:main-class parameters, respectively. Other parameters are documented below.

This build system is an extension of ant-build-system, but with the following phases changed:

build

This phase calls compile in Clojure to compile source files and runs jar to create jars from both source files and compiled files according to the include list and exclude list specified in #:aot-include and #:aot-exclude, respectively. The exclude list has priority over the include list. These lists consist of symbols representing Clojure libraries or the special keyword #:all representing all Clojure libraries found under the source directories. The parameter #:omit-source? decides if source should be included into the jars.

check

This phase runs tests according to the include list and exclude list specified in #:test-include and #:test-exclude, respectively. Their meanings are analogous to that of #:aot-include and #:aot-exclude, except that the special keyword #:all now stands for all Clojure libraries found under the test directories. The parameter #:tests? decides if tests should be run.

install

This phase installs all jars built previously.

Apart from the above, this build system also contains an additional phase:

install-doc

This phase installs all top-level files with base name matching %doc-regex. A different regex can be specified with the #:doc-regex parameter. All files (recursively) inside the documentation directories specified in #:doc-dirs are installed as well.

Variable: cmake-build-system

This variable is exported by (guix build-system cmake). It implements the build procedure for packages using the CMake build tool.

It automatically adds the cmake package to the set of inputs. Which package is used can be specified with the #:cmake parameter.

The #:configure-flags parameter is taken as a list of flags passed to the cmake command. The #:build-type parameter specifies in abstract terms the flags passed to the compiler; it defaults to "RelWithDebInfo" (short for “release mode with debugging information”), which roughly means that code is compiled with -O2 -g, as is the case for Autoconf-based packages by default.

Variable: composer-build-system

This variable is exported by (guix build-system composer). It implements the build procedure for packages using Composer, the PHP package manager.

It automatically adds the php package to the set of inputs. Which package is used can be specified with the #:php parameter.

The #:test-target parameter is used to control which script is run for the tests. By default, the test script is run if it exists. If the script does not exist, the build system will run phpunit from the source directory, assuming there is a phpunit.xml file.

Variable: dune-build-system

This variable is exported by (guix build-system dune). It supports builds of packages using Dune, a build tool for the OCaml programming language. It is implemented as an extension of the ocaml-build-system which is described below. As such, the #:ocaml and #:findlib parameters can be passed to this build system.

It automatically adds the dune package to the set of inputs. Which package is used can be specified with the #:dune parameter.

There is no configure phase because dune packages typically don’t need to be configured. The #:build-flags parameter is taken as a list of flags passed to the dune command during the build.

The #:jbuild? parameter can be passed to use the jbuild command instead of the more recent dune command while building a package. Its default value is #f.

The #:package parameter can be passed to specify a package name, which is useful when a package contains multiple packages and you want to build only one of them. This is equivalent to passing the -p argument to dune.

Variable: elm-build-system

This variable is exported by (guix build-system elm). It implements a build procedure for Elm packages similar to ‘elm install’.

The build system adds an Elm compiler package to the set of inputs. The default compiler package (currently elm-sans-reactor) can be overridden using the #:elm argument. Additionally, Elm packages needed by the build system itself are added as implicit inputs if they are not already present: to suppress this behavior, use the #:implicit-elm-package-inputs? argument, which is primarily useful for bootstrapping.

The "dependencies" and "test-dependencies" in an Elm package’s elm.json file correspond to propagated-inputs and inputs, respectively.

Elm requires a particular structure for package names: see Elm Packages for more details, including utilities provided by (guix build-system elm).

There are currently a few noteworthy limitations to elm-build-system:

  • The build system is focused on packages in the Elm sense of the word: Elm projects which declare { "type": "package" } in their elm.json files. Using elm-build-system to build Elm applications (which declare { "type": "application" }) is possible, but requires ad-hoc modifications to the build phases. For examples, see the definitions of the elm-todomvc example application and the elm package itself (because the front-end for the ‘elm reactor’ command is an Elm application).
  • Elm supports multiple versions of a package coexisting simultaneously under ELM_HOME, but this does not yet work well with elm-build-system. This limitation primarily affects Elm applications, because they specify exact versions for their dependencies, whereas Elm packages specify supported version ranges. As a workaround, the example applications mentioned above use the patch-application-dependencies procedure provided by (guix build elm-build-system) to rewrite their elm.json files to refer to the package versions actually present in the build environment. Alternatively, Guix package transformations (see Defining Package Variants) could be used to rewrite an application’s entire dependency graph.
  • We are not yet able to run tests for Elm projects because neither elm-test-rs nor the Node.js-based elm-test runner has been packaged for Guix yet.
Variable: go-build-system

This variable is exported by (guix build-system go). It implements a build procedure for Go packages using the standard Go build mechanisms.

The user is expected to provide a value for the key #:import-path and, in some cases, #:unpack-path. The import path corresponds to the file system path expected by the package’s build scripts and any referring packages, and provides a unique way to refer to a Go package. It is typically based on a combination of the package source code’s remote URI and file system hierarchy structure. In some cases, you will need to unpack the package’s source code to a different directory structure than the one indicated by the import path, and #:unpack-path should be used in such cases.

Packages that provide Go libraries should install their source code into the built output. The key #:install-source?, which defaults to #t, controls whether or not the source code is installed. It can be set to #f for packages that only provide executable files.

Packages can be cross-built, and if a specific architecture or operating system is desired then the keywords #:goarch and #:goos can be used to force the package to be built for that architecture and operating system. The combinations known to Go can be found in their documentation.

The key #:go can be used to specify the Go compiler package with which to build the package.

The phase check provides a wrapper for go test which builds a test binary (or multiple binaries), vets the code and then runs the test binary. Build, test and test binary flags can be provided as #:test-flags parameter, default is '(). See go help test and go help testflag for more details.

The key #:embed-files, default is '(), provides a list of future embedded files or regexps matching files. They will be copied to build directory after unpack phase. See https://pkg.go.dev/embed for more details.

Variable: glib-or-gtk-build-system

This variable is exported by (guix build-system glib-or-gtk). It is intended for use with packages making use of GLib or GTK+.

This build system adds the following two phases to the ones defined by gnu-build-system:

glib-or-gtk-wrap

The phase glib-or-gtk-wrap ensures that programs in bin/ are able to find GLib “schemas” and GTK+ modules. This is achieved by wrapping the programs in launch scripts that appropriately set the XDG_DATA_DIRS and GTK_PATH environment variables.

It is possible to exclude specific package outputs from that wrapping process by listing their names in the #:glib-or-gtk-wrap-excluded-outputs parameter. This is useful when an output is known not to contain any GLib or GTK+ binaries, and where wrapping would gratuitously add a dependency of that output on GLib and GTK+.

glib-or-gtk-compile-schemas

The phase glib-or-gtk-compile-schemas makes sure that all GSettings schemas of GLib are compiled. Compilation is performed by the glib-compile-schemas program. It is provided by the package glib:bin which is automatically imported by the build system. The glib package providing glib-compile-schemas can be specified with the #:glib parameter.

Both phases are executed after the install phase.

Variable: guile-build-system

This build system is for Guile packages that consist exclusively of Scheme code and that are so lean that they don’t even have a makefile, let alone a configure script. It compiles Scheme code using guild compile (see Compilation in GNU Guile Reference Manual) and installs the .scm and .go files in the right place. It also installs documentation.

This build system supports cross-compilation by using the --target option of ‘guild compile’.

Packages built with guile-build-system must provide a Guile package in their native-inputs field.

Variable: julia-build-system

This variable is exported by (guix build-system julia). It implements the build procedure used by julia packages, which essentially is similar to running ‘julia -e 'using Pkg; Pkg.add(package)'’ in an environment where JULIA_LOAD_PATH contains the paths to all Julia package inputs. Tests are run by calling /test/runtests.jl.

The Julia package name and uuid is read from the file Project.toml. These values can be overridden by passing the argument #:julia-package-name (which must be correctly capitalized) or #:julia-package-uuid.

Julia packages usually manage their binary dependencies via JLLWrappers.jl, a Julia package that creates a module (named after the wrapped library followed by _jll.jl.

To add the binary path _jll.jl packages, you need to patch the files under src/wrappers/, replacing the call to the macro JLLWrappers.@generate_wrapper_header, adding as a second argument containing the store path the binary.

As an example, in the MbedTLS Julia package, we add a build phase (see Build Phases) to insert the absolute file name of the wrapped MbedTLS package:

(add-after 'unpack 'override-binary-path
  (lambda* (#:key inputs #:allow-other-keys)
    (for-each (lambda (wrapper)
                (substitute* wrapper
                  (("generate_wrapper_header.*")
                   (string-append
                    "generate_wrapper_header(\"MbedTLS\", \""
                    (assoc-ref inputs "mbedtls") "\")\n"))))
              ;; There's a Julia file for each platform, override them all.
              (find-files "src/wrappers/" "\\.jl$"))))

Some older packages that aren’t using Project.toml yet, will require this file to be created, too. It is internally done if the arguments #:julia-package-name and #:julia-package-uuid are provided.

Variable: maven-build-system

This variable is exported by (guix build-system maven). It implements a build procedure for Maven packages. Maven is a dependency and lifecycle management tool for Java. A user of Maven specifies dependencies and plugins in a pom.xml file that Maven reads. When Maven does not have one of the dependencies or plugins in its repository, it will download them and use them to build the package.

The maven build system ensures that maven will not try to download any dependency by running in offline mode. Maven will fail if a dependency is missing. Before running Maven, the pom.xml (and subprojects) are modified to specify the version of dependencies and plugins that match the versions available in the guix build environment. Dependencies and plugins must be installed in the fake maven repository at lib/m2, and are symlinked into a proper repository before maven is run. Maven is instructed to use that repository for the build and installs built artifacts there. Changed files are copied to the lib/m2 directory of the package output.

You can specify a pom.xml file with the #:pom-file argument, or let the build system use the default pom.xml file in the sources.

In case you need to specify a dependency’s version manually, you can use the #:local-packages argument. It takes an association list where the key is the groupId of the package and its value is an association list where the key is the artifactId of the package and its value is the version you want to override in the pom.xml.

Some packages use dependencies or plugins that are not useful at runtime nor at build time in Guix. You can alter the pom.xml file to remove them using the #:exclude argument. Its value is an association list where the key is the groupId of the plugin or dependency you want to remove, and the value is a list of artifactId you want to remove.

You can override the default jdk and maven packages with the corresponding argument, #:jdk and #:maven.

The #:maven-plugins argument is a list of maven plugins used during the build, with the same format as the inputs fields of the package declaration. Its default value is (default-maven-plugins) which is also exported.

Variable: minetest-mod-build-system

This variable is exported by (guix build-system minetest). It implements a build procedure for Minetest mods, which consists of copying Lua code, images and other resources to the location Minetest searches for mods. The build system also minimises PNG images and verifies that Minetest can load the mod without errors.

Variable: minify-build-system

This variable is exported by (guix build-system minify). It implements a minification procedure for simple JavaScript packages.

It adds uglify-js to the set of inputs and uses it to compress all JavaScript files in the src directory. A different minifier package can be specified with the #:uglify-js parameter, but it is expected that the package writes the minified code to the standard output.

When the input JavaScript files are not all located in the src directory, the parameter #:javascript-files can be used to specify a list of file names to feed to the minifier.

Variable: mozilla-build-system

This variable is exported by (guix build-system mozilla). It sets the --target and --host configuration flags to what software developed by Mozilla expects – due to historical reasons, Mozilla software expects --host to be the system that is cross-compiled from and --target to be the system that is cross-compiled to, contrary to the standard Autotools conventions.

Variable: ocaml-build-system

This variable is exported by (guix build-system ocaml). It implements a build procedure for OCaml packages, which consists of choosing the correct set of commands to run for each package. OCaml packages can expect many different commands to be run. This build system will try some of them.

When the package has a setup.ml file present at the top-level, it will run ocaml setup.ml -configure, ocaml setup.ml -build and ocaml setup.ml -install. The build system will assume that this file was generated by OASIS and will take care of setting the prefix and enabling tests if they are not disabled. You can pass configure and build flags with the #:configure-flags and #:build-flags. The #:test-flags key can be passed to change the set of flags used to enable tests. The #:use-make? key can be used to bypass this system in the build and install phases.

When the package has a configure file, it is assumed that it is a hand-made configure script that requires a different argument format than in the gnu-build-system. You can add more flags with the #:configure-flags key.

When the package has a Makefile file (or #:use-make? is #t), it will be used and more flags can be passed to the build and install phases with the #:make-flags key.

Finally, some packages do not have these files and use a somewhat standard location for its build system. In that case, the build system will run ocaml pkg/pkg.ml or ocaml pkg/build.ml and take care of providing the path to the required findlib module. Additional flags can be passed via the #:build-flags key. Install is taken care of by opam-installer. In this case, the opam package must be added to the native-inputs field of the package definition.

Note that most OCaml packages assume they will be installed in the same directory as OCaml, which is not what we want in guix. In particular, they will install .so files in their module’s directory, which is usually fine because it is in the OCaml compiler directory. In guix though, these libraries cannot be found and we use CAML_LD_LIBRARY_PATH. This variable points to lib/ocaml/site-lib/stubslibs and this is where .so libraries should be installed.

Variable: python-build-system

This variable is exported by (guix build-system python). It implements the more or less standard build procedure used by Python packages, which consists in running python setup.py build and then python setup.py install --prefix=/gnu/store/….

For packages that install stand-alone Python programs under bin/, it takes care of wrapping these programs so that their GUIX_PYTHONPATH environment variable points to all the Python libraries they depend on.

Which Python package is used to perform the build can be specified with the #:python parameter. This is a useful way to force a package to be built for a specific version of the Python interpreter, which might be necessary if the package is only compatible with a single interpreter version.

By default guix calls setup.py under control of setuptools, much like pip does. Some packages are not compatible with setuptools (and pip), thus you can disable this by setting the #:use-setuptools? parameter to #f.

If a "python" output is available, the package is installed into it instead of the default "out" output. This is useful for packages that include a Python package as only a part of the software, and thus want to combine the phases of python-build-system with another build system. Python bindings are a common usecase.

Variable: pyproject-build-system

This is a variable exported by guix build-system pyproject. It is based on python-build-system, and adds support for pyproject.toml and PEP 517. It also supports a variety of build backends and test frameworks.

The API is slightly different from python-build-system:

  • #:use-setuptools? and #:test-target is removed.
  • #:build-backend is added. It defaults to #false and will try to guess the appropriate backend based on pyproject.toml.
  • #:test-backend is added. It defaults to #false and will guess an appropriate test backend based on what is available in package inputs.
  • #:test-flags is added. The default is '(). These flags are passed as arguments to the test command. Note that flags for verbose output is always enabled on supported backends.

It is considered “experimental” in that the implementation details are not set in stone yet, however users are encouraged to try it for new Python projects (even those using setup.py). The API is subject to change, but any breaking changes in the Guix channel will be dealt with.

Eventually this build system will be deprecated and merged back into python-build-system, probably some time in 2024.

Variable: perl-build-system

This variable is exported by (guix build-system perl). It implements the standard build procedure for Perl packages, which either consists in running perl Build.PL --prefix=/gnu/store/…, followed by Build and Build install; or in running perl Makefile.PL PREFIX=/gnu/store/…, followed by make and make install, depending on which of Build.PL or Makefile.PL is present in the package distribution. Preference is given to the former if both Build.PL and Makefile.PL exist in the package distribution. This preference can be reversed by specifying #t for the #:make-maker? parameter.

The initial perl Makefile.PL or perl Build.PL invocation passes flags specified by the #:make-maker-flags or #:module-build-flags parameter, respectively.

Which Perl package is used can be specified with #:perl.

Variable: renpy-build-system

This variable is exported by (guix build-system renpy). It implements the more or less standard build procedure used by Ren’py games, which consists of loading #:game once, thereby creating bytecode for it.

It further creates a wrapper script in bin/ and a desktop entry in share/applications, both of which can be used to launch the game.

Which Ren’py package is used can be specified with #:renpy. Games can also be installed in outputs other than “out” by using #:output.

Variable: qt-build-system

This variable is exported by (guix build-system qt). It is intended for use with applications using Qt or KDE.

This build system adds the following two phases to the ones defined by cmake-build-system:

check-setup

The phase check-setup prepares the environment for running the checks as commonly used by Qt test programs. For now this only sets some environment variables: QT_QPA_PLATFORM=offscreen, DBUS_FATAL_WARNINGS=0 and CTEST_OUTPUT_ON_FAILURE=1.

This phase is added before the check phase. It’s a separate phase to ease adjusting if necessary.

qt-wrap

The phase qt-wrap searches for Qt5 plugin paths, QML paths and some XDG in the inputs and output. In case some path is found, all programs in the output’s bin/, sbin/, libexec/ and lib/libexec/ directories are wrapped in scripts defining the necessary environment variables.

It is possible to exclude specific package outputs from that wrapping process by listing their names in the #:qt-wrap-excluded-outputs parameter. This is useful when an output is known not to contain any Qt binaries, and where wrapping would gratuitously add a dependency of that output on Qt, KDE, or such.

This phase is added after the install phase.

Variable: r-build-system

This variable is exported by (guix build-system r). It implements the build procedure used by R packages, which essentially is little more than running ‘R CMD INSTALL --library=/gnu/store/…’ in an environment where R_LIBS_SITE contains the paths to all R package inputs. Tests are run after installation using the R function tools::testInstalledPackage.

Variable: rakudo-build-system

This variable is exported by (guix build-system rakudo). It implements the build procedure used by Rakudo for Perl6 packages. It installs the package to /gnu/store/…/NAME-VERSION/share/perl6 and installs the binaries, library files and the resources, as well as wrap the files under the bin/ directory. Tests can be skipped by passing #f to the tests? parameter.

Which rakudo package is used can be specified with rakudo. Which perl6-tap-harness package used for the tests can be specified with #:prove6 or removed by passing #f to the with-prove6? parameter. Which perl6-zef package used for tests and installing can be specified with #:zef or removed by passing #f to the with-zef? parameter.

Variable: rebar-build-system

This variable is exported by (guix build-system rebar). It implements a build procedure around rebar3, a build system for programs written in the Erlang language.

It adds both rebar3 and the erlang to the set of inputs. Different packages can be specified with the #:rebar and #:erlang parameters, respectively.

This build system is based on gnu-build-system, but with the following phases changed:

unpack

This phase, after unpacking the source like the gnu-build-system does, checks for a file contents.tar.gz at the top-level of the source. If this file exists, it will be unpacked, too. This eases handling of package hosted at https://hex.pm/, the Erlang and Elixir package repository.

bootstrap
configure

There are no bootstrap and configure phase because erlang packages typically don’t need to be configured.

build

This phase runs rebar3 compile with the flags listed in #:rebar-flags.

check

Unless #:tests? #f is passed, this phase runs rebar3 eunit, or some other target specified with #:test-target, with the flags listed in #:rebar-flags,

install

This installs the files created in the default profile, or some other profile specified with #:install-profile.

Variable: texlive-build-system

This variable is exported by (guix build-system texlive). It is used to build TeX packages in batch mode with a specified engine. The build system sets the TEXINPUTS variable to find all TeX source files in the inputs.

By default it tries to run luatex on all .ins files, and if it fails to find any, on all .dtx files. A different engine and format can be specified with, respectively, the #:tex-engine and #:tex-format arguments. Different build targets can be specified with the #:build-targets argument, which expects a list of file names.

It also generates font metrics (i.e., .tfm files) out of Metafont files whenever possible. Likewise, it can also create TeX formats (i.e., .fmt files) listed in the #:create-formats argument, and generate a symbolic link from bin/ directory to any script located in texmf-dist/scripts/, provided its file name is listed in #:link-scripts argument.

The build system adds texlive-bin from (gnu packages tex) to the native inputs. It can be overridden with the #:texlive-bin argument.

The package texlive-latex-bin, from the same module, contains most of the tools for building TeX Live packages; for convenience, it is also added by default to the native inputs. However, this can be troublesome when building a dependency of texlive-latex-bin itself. In this particular situation, the #:texlive-latex-bin? argument should be set to #f.

Variable: ruby-build-system

This variable is exported by (guix build-system ruby). It implements the RubyGems build procedure used by Ruby packages, which involves running gem build followed by gem install.

The source field of a package that uses this build system typically references a gem archive, since this is the format that Ruby developers use when releasing their software. The build system unpacks the gem archive, potentially patches the source, runs the test suite, repackages the gem, and installs it. Additionally, directories and tarballs may be referenced to allow building unreleased gems from Git or a traditional source release tarball.

Which Ruby package is used can be specified with the #:ruby parameter. A list of additional flags to be passed to the gem command can be specified with the #:gem-flags parameter.

Variable: waf-build-system

This variable is exported by (guix build-system waf). It implements a build procedure around the waf script. The common phases—configure, build, and install—are implemented by passing their names as arguments to the waf script.

The waf script is executed by the Python interpreter. Which Python package is used to run the script can be specified with the #:python parameter.

Variable: zig-build-system

This variable is exported by (guix build-system zig). It implements the build procedures for the Zig build system (zig build command).

Selecting this build system adds zig to the package inputs, in addition to the packages of gnu-build-system.

There is no configure phase because Zig packages typically do not need to be configured. The #:zig-build-flags parameter is a list of flags that are passed to the zig command during the build. The #:zig-test-flags parameter is a list of flags that are passed to the zig test command during the check phase. The default compiler package can be overridden with the #:zig argument.

The optional zig-release-type parameter declares the type of release. Possible values are: safe, fast, or small. The default value is #f, which causes the release flag to be omitted from the zig command. That results in a debug build.

Variable: scons-build-system

This variable is exported by (guix build-system scons). It implements the build procedure used by the SCons software construction tool. This build system runs scons to build the package, scons test to run tests, and then scons install to install the package.

Additional flags to be passed to scons can be specified with the #:scons-flags parameter. The default build and install targets can be overridden with #:build-targets and #:install-targets respectively. The version of Python used to run SCons can be specified by selecting the appropriate SCons package with the #:scons parameter.

Variable: haskell-build-system

This variable is exported by (guix build-system haskell). It implements the Cabal build procedure used by Haskell packages, which involves running runhaskell Setup.hs configure --prefix=/gnu/store/… and runhaskell Setup.hs build. Instead of installing the package by running runhaskell Setup.hs install, to avoid trying to register libraries in the read-only compiler store directory, the build system uses runhaskell Setup.hs copy, followed by runhaskell Setup.hs register. In addition, the build system generates the package documentation by running runhaskell Setup.hs haddock, unless #:haddock? #f is passed. Optional Haddock parameters can be passed with the help of the #:haddock-flags parameter. If the file Setup.hs is not found, the build system looks for Setup.lhs instead.

Which Haskell compiler is used can be specified with the #:haskell parameter which defaults to ghc.

Variable: dub-build-system

This variable is exported by (guix build-system dub). It implements the Dub build procedure used by D packages, which involves running dub build and dub run. Installation is done by copying the files manually.

Which D compiler is used can be specified with the #:ldc parameter which defaults to ldc.

Variable: emacs-build-system

This variable is exported by (guix build-system emacs). It implements an installation procedure similar to the packaging system of Emacs itself (see Packages in The GNU Emacs Manual).

It first creates the package-autoloads.el file, then it byte compiles all Emacs Lisp files. Differently from the Emacs packaging system, the Info documentation files are moved to the standard documentation directory and the dir file is deleted. The Elisp package files are installed directly under share/emacs/site-lisp.

Variable: font-build-system

This variable is exported by (guix build-system font). It implements an installation procedure for font packages where upstream provides pre-compiled TrueType, OpenType, etc. font files that merely need to be copied into place. It copies font files to standard locations in the output directory.

Variable: meson-build-system

This variable is exported by (guix build-system meson). It implements the build procedure for packages that use Meson as their build system.

It adds both Meson and Ninja to the set of inputs, and they can be changed with the parameters #:meson and #:ninja if needed.

This build system is an extension of gnu-build-system, but with the following phases changed to some specific for Meson:

configure

The phase runs meson with the flags specified in #:configure-flags. The flag --buildtype is always set to debugoptimized unless something else is specified in #:build-type.

build

The phase runs ninja to build the package in parallel by default, but this can be changed with #:parallel-build?.

check

The phase runs ‘meson test’ with a base set of options that cannot be overridden. This base set of options can be extended via the #:test-options argument, for example to select or skip a specific test suite.

install

The phase runs ninja install and can not be changed.

Apart from that, the build system also adds the following phases:

fix-runpath

This phase ensures that all binaries can find the libraries they need. It searches for required libraries in subdirectories of the package being built, and adds those to RUNPATH where needed. It also removes references to libraries left over from the build phase by meson, such as test dependencies, that aren’t actually required for the program to run.

glib-or-gtk-wrap

This phase is the phase provided by glib-or-gtk-build-system, and it is not enabled by default. It can be enabled with #:glib-or-gtk?.

glib-or-gtk-compile-schemas

This phase is the phase provided by glib-or-gtk-build-system, and it is not enabled by default. It can be enabled with #:glib-or-gtk?.

Variable: linux-module-build-system

linux-module-build-system allows building Linux kernel modules.

This build system is an extension of gnu-build-system, but with the following phases changed:

configure

This phase configures the environment so that the Linux kernel’s Makefile can be used to build the external kernel module.

build

This phase uses the Linux kernel’s Makefile in order to build the external kernel module.

install

This phase uses the Linux kernel’s Makefile in order to install the external kernel module.

It is possible and useful to specify the Linux kernel to use for building the module (in the arguments form of a package using the linux-module-build-system, use the key #:linux to specify it).

Variable: node-build-system

This variable is exported by (guix build-system node). It implements the build procedure used by Node.js, which implements an approximation of the npm install command, followed by an npm test command.

Which Node.js package is used to interpret the npm commands can be specified with the #:node parameter which defaults to node.

Variable: tree-sitter-build-system

This variable is exported by (guix build-system tree-sitter). It implements procedures to compile grammars for the Tree-sitter parsing library. It essentially runs tree-sitter generate to translate grammar.js grammars to JSON and then to C. Which it then compiles to native code.

Tree-sitter packages may support multiple grammars, so this build system supports a #:grammar-directories keyword to specify a list of locations where a grammar.js file may be found.

Grammars sometimes depend on each other, such as C++ depending on C and TypeScript depending on JavaScript. You may use inputs to declare such dependencies.

Lastly, for packages that do not need anything as sophisticated, a “trivial” build system is provided. It is trivial in the sense that it provides basically no support: it does not pull any implicit inputs, and does not have a notion of build phases.

Variable: trivial-build-system

This variable is exported by (guix build-system trivial).

This build system requires a #:builder argument. This argument must be a Scheme expression that builds the package output(s)—as with build-expression->derivation (see build-expression->derivation).

Variable: channel-build-system

This variable is exported by (guix build-system channel).

This build system is meant primarily for internal use. A package using this build system must have a channel specification as its source field (see Channels); alternatively, its source can be a directory name, in which case an additional #:commit argument must be supplied to specify the commit being built (a hexadecimal string).

Optionally, a #:channels argument specifying additional channels can be provided.

The resulting package is a Guix instance of the given channel(s), similar to how guix time-machine would build it.


Next: Build Phases, Previous: Writing Manifests, Up: Programming Interface   [Contents][Index]