
GNU Guix Reference Manual
Using the GNU Guix Functional Package Manager

The GNU Guix Developers

Edition db86261
24 April 2024

Copyright c© 2012-2024 Ludovic Courtès
Copyright c© 2013, 2014, 2016 Andreas Enge
Copyright c© 2013 Nikita Karetnikov
Copyright c© 2014, 2015, 2016 Alex Kost
Copyright c© 2015, 2016 Mathieu Lirzin
Copyright c© 2014 Pierre-Antoine Rault
Copyright c© 2015 Taylan Ulrich Bayırlı/Kammer
Copyright c© 2015, 2016, 2017, 2019, 2020, 2021, 2023 Leo Famulari
Copyright c© 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023 Ricardo Wurmus
Copyright c© 2016 Ben Woodcroft
Copyright c© 2016, 2017, 2018, 2021 Chris Marusich
Copyright c© 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023 Efraim Flashner
Copyright c© 2016 John Darrington
Copyright c© 2016, 2017 Nikita Gillmann
Copyright c© 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023 Jan Nieuwenhuizen
Copyright c© 2016, 2017, 2018, 2019, 2020, 2021 Julien Lepiller
Copyright c© 2016 Alex ter Weele
Copyright c© 2016, 2017, 2018, 2019, 2020, 2021 Christopher Baines
Copyright c© 2017, 2018, 2019 Clément Lassieur
Copyright c© 2017, 2018, 2020, 2021, 2022 Mathieu Othacehe
Copyright c© 2017 Federico Beffa
Copyright c© 2017, 2018, 2024 Carlo Zancanaro
Copyright c© 2017 Thomas Danckaert
Copyright c© 2017 humanitiesNerd
Copyright c© 2017, 2021 Christine Lemmer-Webber
Copyright c© 2017, 2018, 2019, 2020, 2021, 2022 Marius Bakke
Copyright c© 2017, 2019, 2020, 2022 Hartmut Goebel
Copyright c© 2017, 2019, 2020, 2021, 2022, 2023 Maxim Cournoyer
Copyright c© 2017–2022 Tobias Geerinckx-Rice
Copyright c© 2017 George Clemmer
Copyright c© 2017 Andy Wingo
Copyright c© 2017, 2018, 2019, 2020, 2023 Arun Isaac
Copyright c© 2017 nee
Copyright c© 2018 Rutger Helling
Copyright c© 2018, 2021, 2023 Oleg Pykhalov
Copyright c© 2018 Mike Gerwitz
Copyright c© 2018 Pierre-Antoine Rouby
Copyright c© 2018, 2019 Gábor Boskovits
Copyright c© 2018, 2019, 2020, 2022, 2023, 2024 Florian Pelz
Copyright c© 2018 Laura Lazzati
Copyright c© 2018 Alex Vong
Copyright c© 2019 Josh Holland

Copyright c© 2019, 2020 Diego Nicola Barbato
Copyright c© 2019 Ivan Petkov
Copyright c© 2019 Jakob L. Kreuze
Copyright c© 2019 Kyle Andrews
Copyright c© 2019 Alex Griffin
Copyright c© 2019, 2020, 2021, 2022 Guillaume Le Vaillant
Copyright c© 2020 Liliana Marie Prikler
Copyright c© 2019, 2020, 2021, 2022, 2023 Simon Tournier
Copyright c© 2020 Wiktor Żelazny
Copyright c© 2020 Damien Cassou
Copyright c© 2020 Jakub K¡dzioªka
Copyright c© 2020 Jack Hill
Copyright c© 2020 Naga Malleswari
Copyright c© 2020, 2021 Brice Waegeneire
Copyright c© 2020 R Veera Kumar
Copyright c© 2020, 2021, 2022 Pierre Langlois
Copyright c© 2020 pinoaffe
Copyright c© 2020, 2023 André Batista
Copyright c© 2020, 2021 Alexandru-Sergiu Marton
Copyright c© 2020 raingloom
Copyright c© 2020 Daniel Brooks
Copyright c© 2020 John Soo
Copyright c© 2020 Jonathan Brielmaier
Copyright c© 2020 Edgar Vincent
Copyright c© 2021, 2022 Maxime Devos
Copyright c© 2021 B. Wilson
Copyright c© 2021 Xinglu Chen
Copyright c© 2021 Raghav Gururajan
Copyright c© 2021 Domagoj Stolfa
Copyright c© 2021 Hui Lu
Copyright c© 2021 pukkamustard
Copyright c© 2021 Alice Brenon
Copyright c© 2021-2023 Josselin Poiret
Copyright c© 2021, 2023 muradm
Copyright c© 2021, 2022 Andrew Tropin
Copyright c© 2021 Sarah Morgensen
Copyright c© 2022 Remco van ’t Veer
Copyright c© 2022 Aleksandr Vityazev
Copyright c© 2022 Philip McGrath
Copyright c© 2022 Karl Hallsby
Copyright c© 2022 Justin Veilleux
Copyright c© 2022 Reily Siegel
Copyright c© 2022 Simon Streit
Copyright c© 2022 (
Copyright c© 2022 John Kehayias
Copyright c© 2022–2023 Bruno Victal
Copyright c© 2022 Ivan Vilata-i-Balaguer

Copyright c© 2023-2024 Giacomo Leidi
Copyright c© 2022 Antero Mejr
Copyright c© 2023 Karl Hallsby
Copyright c© 2023 Nathaniel Nicandro
Copyright c© 2023 Tanguy Le Carrour
Copyright c© 2023 Zheng Junjie
Copyright c© 2023 Brian Cully
Copyright c© 2023 Felix Lechner
Copyright c© 2023 Foundation Devices, Inc.
Copyright c© 2023 Thomas Ieong
Copyright c© 2023 Saku Laesvuori
Copyright c© 2023 Graham James Addis
Copyright c© 2023 Tomas Volf
Copyright c© 2024 Herman Rimm
Copyright c© 2024 Matthew Trzcinski
Copyright c© 2024 Richard Sent

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

i

Table of Contents

1 Introduction . 1
1.1 Managing Software the Guix Way . 1
1.2 GNU Distribution . 2

2 Installation . 4
2.1 Binary Installation . 4
2.2 Setting Up the Daemon . 5

2.2.1 Build Environment Setup . 5
2.2.2 Using the Offload Facility . 7
2.2.3 SELinux Support . 10

2.2.3.1 Installing the SELinux policy . 10
2.2.3.2 Limitations . 11

2.3 Invoking guix-daemon . 11
2.4 Application Setup . 16

2.4.1 Locales . 16
2.4.2 Name Service Switch . 17
2.4.3 X11 Fonts . 17
2.4.4 X.509 Certificates . 18
2.4.5 Emacs Packages . 18

2.5 Upgrading Guix . 18

3 System Installation . 20
3.1 Limitations . 20
3.2 Hardware Considerations . 20
3.3 USB Stick and DVD Installation . 21

Copying to a USB Stick . 21
Burning on a DVD . 21
Booting . 21

3.4 Preparing for Installation . 22
3.5 Guided Graphical Installation . 22
3.6 Manual Installation . 24

3.6.1 Keyboard Layout, Networking, and Partitioning 24
3.6.1.1 Keyboard Layout . 25
3.6.1.2 Networking . 25
3.6.1.3 Disk Partitioning . 26

3.6.2 Proceeding with the Installation . 28
3.7 After System Installation . 29
3.8 Installing Guix in a Virtual Machine . 29
3.9 Building the Installation Image . 29
3.10 Building the Installation Image for ARM Boards 30

4 Getting Started . 31

ii

5 Package Management . 34
5.1 Features . 34
5.2 Invoking guix package . 35
5.3 Substitutes . 44

5.3.1 Official Substitute Servers . 45
5.3.2 Substitute Server Authorization . 45
5.3.3 Getting Substitutes from Other Servers 46
5.3.4 Substitute Authentication . 47
5.3.5 Proxy Settings . 48
5.3.6 Substitution Failure . 48
5.3.7 On Trusting Binaries . 48

5.4 Packages with Multiple Outputs . 49
5.5 Invoking guix locate . 50
5.6 Invoking guix gc . 51
5.7 Invoking guix pull . 54
5.8 Invoking guix time-machine . 58
5.9 Inferiors . 59
5.10 Invoking guix describe . 61
5.11 Invoking guix archive . 63

6 Channels . 66
6.1 Specifying Additional Channels . 66
6.2 Using a Custom Guix Channel . 66
6.3 Replicating Guix . 67
6.4 Customizing the System-Wide Guix . 68
6.5 Channel Authentication . 69
6.6 Channels with Substitutes . 69
6.7 Creating a Channel . 70
6.8 Package Modules in a Sub-directory . 71
6.9 Declaring Channel Dependencies . 72
6.10 Specifying Channel Authorizations . 72
6.11 Primary URL . 74
6.12 Writing Channel News . 74

7 Development . 76
7.1 Invoking guix shell . 76
7.2 Invoking guix environment . 83
7.3 Invoking guix pack . 88
7.4 The GCC toolchain . 95
7.5 Invoking guix git authenticate . 95

iii

8 Programming Interface . 97
8.1 Package Modules . 97
8.2 Defining Packages . 98

8.2.1 package Reference . 101
8.2.2 origin Reference . 105

8.3 Defining Package Variants . 109
8.4 Writing Manifests . 113
8.5 Build Systems . 117
8.6 Build Phases . 137
8.7 Build Utilities . 140

8.7.1 Dealing with Store File Names . 141
8.7.2 File Types . 141
8.7.3 File Manipulation . 142
8.7.4 File Search . 143
8.7.5 Program Invocation . 144
8.7.6 Build Phases . 145
8.7.7 Wrappers . 146

8.8 Search Paths . 147
8.9 The Store . 150
8.10 Derivations . 152
8.11 The Store Monad . 155
8.12 G-Expressions . 159
8.13 Invoking guix repl . 168
8.14 Using Guix Interactively . 170

9 Utilities . 173
9.1 Invoking guix build . 173

9.1.1 Common Build Options . 173
9.1.2 Package Transformation Options . 175
9.1.3 Additional Build Options . 181
9.1.4 Debugging Build Failures . 186

9.2 Invoking guix edit . 187
9.3 Invoking guix download . 187
9.4 Invoking guix hash . 188
9.5 Invoking guix import . 189
9.6 Invoking guix refresh . 197
9.7 Invoking guix style . 204
9.8 Invoking guix lint . 206
9.9 Invoking guix size . 209
9.10 Invoking guix graph . 211
9.11 Invoking guix publish . 216
9.12 Invoking guix challenge . 220
9.13 Invoking guix copy . 222
9.14 Invoking guix container . 223
9.15 Invoking guix weather . 224
9.16 Invoking guix processes . 226

iv

10 Foreign Architectures . 228
10.1 Cross-Compilation . 228
10.2 Native Builds . 229

11 System Configuration . 231
11.1 Getting Started . 231
11.2 Using the Configuration System . 233

Bootloader . 235
Globally-Visible Packages . 235
System Services . 236
Inspecting Services . 241
Instantiating the System . 242
The Programming Interface . 242

11.3 operating-system Reference . 242
11.4 File Systems . 246

11.4.1 Btrfs file system . 250
11.5 Mapped Devices . 251
11.6 Swap Space . 253
11.7 User Accounts . 256
11.8 Keyboard Layout . 259
11.9 Locales . 261

11.9.1 Locale Data Compatibility Considerations 262
11.10 Services . 263

11.10.1 Base Services . 263
11.10.2 Scheduled Job Execution . 283
11.10.3 Log Rotation . 286
11.10.4 Networking Setup . 289
11.10.5 Networking Services . 301
11.10.6 Unattended Upgrades . 323
11.10.7 X Window . 325
11.10.8 Printing Services . 335
11.10.9 Desktop Services . 347
11.10.10 Sound Services . 364
11.10.11 File Search Services . 367
11.10.12 Database Services . 368
11.10.13 Mail Services . 374
11.10.14 Messaging Services . 400
11.10.15 Telephony Services . 408
11.10.16 File-Sharing Services . 415
11.10.17 Monitoring Services . 426
11.10.18 Kerberos Services . 436
11.10.19 LDAP Services . 438
11.10.20 Web Services . 447
11.10.21 Certificate Services . 467
11.10.22 DNS Services . 470
11.10.23 VNC Services . 481

v

11.10.24 VPN Services . 483
11.10.25 Network File System . 489
11.10.26 Samba Services . 491
11.10.27 Continuous Integration . 494
11.10.28 Power Management Services . 498
11.10.29 Audio Services . 506
11.10.30 Virtualization Services . 512
11.10.31 Version Control Services . 539
11.10.32 Game Services . 557
11.10.33 PAM Mount Service . 557
11.10.34 Guix Services . 560
11.10.35 Linux Services . 568
11.10.36 Hurd Services . 574
11.10.37 Miscellaneous Services . 574

11.11 Setuid Programs . 587
11.12 X.509 Certificates . 589
11.13 Name Service Switch . 589
11.14 Initial RAM Disk . 591
11.15 Bootloader Configuration . 594
11.16 Invoking guix system . 601
11.17 Invoking guix deploy . 609
11.18 Running Guix in a Virtual Machine . 613

11.18.1 Connecting Through SSH . 614
11.18.2 Using virt-viewer with Spice . 615

11.19 Defining Services . 615
11.19.1 Service Composition . 615
11.19.2 Service Types and Services . 616
11.19.3 Service Reference . 618
11.19.4 Shepherd Services . 623
11.19.5 Complex Configurations . 627

12 System Troubleshooting Tips 634
12.1 Chrooting into an existing system . 634

13 Home Configuration . 636
13.1 Declaring the Home Environment . 636
13.2 Configuring the Shell . 638
13.3 Home Services . 639

13.3.1 Essential Home Services . 639
13.3.2 Shells . 644
13.3.3 Scheduled User’s Job Execution . 649
13.3.4 Power Management Home Services . 650
13.3.5 Managing User Daemons . 651
13.3.6 Secure Shell . 651
13.3.7 GNU Privacy Guard . 656
13.3.8 Desktop Home Services . 657

vi

13.3.9 Guix Home Services . 660
13.3.10 Fonts Home Services . 660
13.3.11 Sound Home Services . 661
13.3.12 Mail Home Services . 663
13.3.13 Messaging Home Services . 665
13.3.14 Media Home Services . 665
13.3.15 Networking Home Services . 666
13.3.16 Miscellaneous Home Services . 666

13.4 Invoking guix home . 667

14 Documentation . 672

15 Platforms . 673
15.1 platform Reference . 673
15.2 Supported Platforms . 673

16 Creating System Images . 675
16.1 image Reference . 675

16.1.1 partition Reference . 676
16.2 Instantiate an Image . 677
16.3 image-type Reference . 680
16.4 Image Modules . 682

17 Installing Debugging Files 683
17.1 Separate Debug Info . 683
17.2 Rebuilding Debug Info . 684

18 Using TEX and LATEX . 686

19 Security Updates . 688

20 Bootstrapping . 690
20.1 The Full-Source Bootstrap . 690
20.2 Preparing to Use the Bootstrap Binaries . 693
Building the Build Tools . 694
Building the Bootstrap Binaries . 696
Reducing the Set of Bootstrap Binaries . 696

21 Porting to a New Platform 697

vii

22 Contributing . 698
22.1 Requirements . 698
22.2 Building from Git . 699
22.3 Running the Test Suite . 701
22.4 Running Guix Before It Is Installed . 702
22.5 The Perfect Setup . 703

22.5.1 Viewing Bugs within Emacs . 705
22.6 Alternative Setups . 706

22.6.1 Guile Studio . 706
22.6.2 Vim and NeoVim . 706

22.7 Source Tree Structure . 707
22.8 Packaging Guidelines . 711

22.8.1 Software Freedom . 712
22.8.2 Package Naming . 713
22.8.3 Version Numbers . 713
22.8.4 Synopses and Descriptions . 715
22.8.5 Snippets versus Phases . 716
22.8.6 Cyclic Module Dependencies . 716
22.8.7 Emacs Packages . 717
22.8.8 Python Modules . 717

22.8.8.1 Specifying Dependencies . 718
22.8.9 Perl Modules . 718
22.8.10 Java Packages . 719
22.8.11 Rust Crates . 719
22.8.12 Elm Packages . 719
22.8.13 Fonts . 721

22.9 Coding Style . 721
22.9.1 Programming Paradigm . 721
22.9.2 Modules . 721
22.9.3 Data Types and Pattern Matching . 721
22.9.4 Formatting Code . 722

22.10 Submitting Patches . 722
22.10.1 Configuring Git . 725
22.10.2 Sending a Patch Series . 725

Single Patches . 725
Notifying Teams . 726
Multiple Patches . 726

22.10.3 Teams . 727
22.11 Tracking Bugs and Changes . 727

22.11.1 The Issue Tracker . 728
22.11.2 Managing Patches and Branches . 728
22.11.3 Debbugs User Interfaces . 728

22.11.3.1 Web interface . 729
22.11.3.2 Command-line interface . 729
22.11.3.3 Emacs interface . 730

22.11.4 Debbugs Usertags . 730

viii

22.11.5 Cuirass Build Notifications . 731
22.12 Commit Access . 731

22.12.1 Applying for Commit Access . 732
22.12.2 Commit Policy . 733
22.12.3 Addressing Issues . 733
22.12.4 Commit Revocation . 734
22.12.5 Helping Out . 734

22.13 Reviewing the Work of Others . 734
22.14 Updating the Guix Package . 736
22.15 Writing Documentation . 736
22.16 Translating Guix . 737

23 Acknowledgments . 742

Appendix A GNU Free Documentation License . . 743

Concept Index . 751

Programming Index . 760

1

1 Introduction

GNU Guix1 is a package management tool for and distribution of the GNU system. Guix
makes it easy for unprivileged users to install, upgrade, or remove software packages, to roll
back to a previous package set, to build packages from source, and generally assists with
the creation and maintenance of software environments.

You can install GNU Guix on top of an existing GNU/Linux system where it comple-
ments the available tools without interference (see Chapter 2 [Installation], page 4), or you
can use it as a standalone operating system distribution, Guix System2. See Section 1.2
[GNU Distribution], page 2.

1.1 Managing Software the Guix Way

Guix provides a command-line package management interface (see Chapter 5 [Package
Management], page 34), tools to help with software development (see Chapter 7 [Devel-
opment], page 76), command-line utilities for more advanced usage (see Chapter 9 [Utili-
ties], page 173), as well as Scheme programming interfaces (see Chapter 8 [Programming
Interface], page 97).

Its build daemon is responsible for building packages on behalf of users (see Section 2.2
[Setting Up the Daemon], page 5) and for downloading pre-built binaries from authorized
sources (see Section 5.3 [Substitutes], page 44).

Guix includes package definitions for many GNU and non-GNU packages, all of which
respect the user’s computing freedom (https://www.gnu.org/philosophy/free-sw.
html). It is extensible: users can write their own package definitions (see Section 8.2
[Defining Packages], page 98) and make them available as independent package modules
(see Section 8.1 [Package Modules], page 97). It is also customizable: users can derive
specialized package definitions from existing ones, including from the command line (see
Section 9.1.2 [Package Transformation Options], page 175).

Under the hood, Guix implements the functional package management discipline pio-
neered by Nix (see Chapter 23 [Acknowledgments], page 742). In Guix, the package build
and installation process is seen as a function, in the mathematical sense. That function
takes inputs, such as build scripts, a compiler, and libraries, and returns an installed pack-
age. As a pure function, its result depends solely on its inputs—for instance, it cannot refer
to software or scripts that were not explicitly passed as inputs. A build function always
produces the same result when passed a given set of inputs. It cannot alter the environ-
ment of the running system in any way; for instance, it cannot create, modify, or delete files
outside of its build and installation directories. This is achieved by running build processes
in isolated environments (or containers), where only their explicit inputs are visible.

The result of package build functions is cached in the file system, in a special directory
called the store (see Section 8.9 [The Store], page 150). Each package is installed in a direc-
tory of its own in the store—by default under /gnu/store. The directory name contains a

1 “Guix” is pronounced like “geeks”, or “iks” using the international phonetic alphabet (IPA).
2 We used to refer to Guix System as “Guix System Distribution” or “GuixSD”. We now consider it makes

more sense to group everything under the “Guix” banner since, after all, Guix System is readily available
through the guix system command, even if you’re using a different distro underneath!

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html

Chapter 1: Introduction 2

hash of all the inputs used to build that package; thus, changing an input yields a different
directory name.

This approach is the foundation for the salient features of Guix: support for transactional
package upgrade and rollback, per-user installation, and garbage collection of packages (see
Section 5.1 [Features], page 34).

1.2 GNU Distribution

Guix comes with a distribution of the GNU system consisting entirely of free software3. The
distribution can be installed on its own (see Chapter 3 [System Installation], page 20), but
it is also possible to install Guix as a package manager on top of an installed GNU/Linux
system (see Chapter 2 [Installation], page 4). When we need to distinguish between the
two, we refer to the standalone distribution as Guix System.

The distribution provides core GNU packages such as GNU libc, GCC, and Binutils,
as well as many GNU and non-GNU applications. The complete list of available packages
can be browsed on-line (https://www.gnu.org/software/guix/packages) or by running
guix package (see Section 5.2 [Invoking guix package], page 35):

guix package --list-available

Our goal is to provide a practical 100% free software distribution of Linux-based and
other variants of GNU, with a focus on the promotion and tight integration of GNU com-
ponents, and an emphasis on programs and tools that help users exert that freedom.

Packages are currently available on the following platforms:

x86_64-linux

Intel/AMD x86_64 architecture, Linux-Libre kernel.

i686-linux

Intel 32-bit architecture (IA32), Linux-Libre kernel.

armhf-linux

ARMv7-A architecture with hard float, Thumb-2 and NEON, using the EABI
hard-float application binary interface (ABI), and Linux-Libre kernel.

aarch64-linux

little-endian 64-bit ARMv8-A processors, Linux-Libre kernel.

i586-gnu GNU/Hurd (https://hurd.gnu.org) on the Intel 32-bit architecture (IA32).

This configuration is experimental and under development. The easiest way for
you to give it a try is by setting up an instance of hurd-vm-service-type on
your GNU/Linux machine (see [transparent-emulation-qemu], page 520). See
Chapter 22 [Contributing], page 698, on how to help!

mips64el-linux (unsupported)

little-endian 64-bit MIPS processors, specifically the Loongson series, n32 ABI,
and Linux-Libre kernel. This configuration is no longer fully supported; in
particular, there is no ongoing work to ensure that this architecture still works.
Should someone decide they wish to revive this architecture then the code is
still available.

3 The term “free” here refers to the freedom provided to users of that software (https://www.gnu.org/
philosophy/free-sw.html).

https://www.gnu.org/software/guix/packages
https://hurd.gnu.org
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html

Chapter 1: Introduction 3

powerpc-linux (unsupported)

big-endian 32-bit PowerPC processors, specifically the PowerPC G4 with Al-
tiVec support, and Linux-Libre kernel. This configuration is not fully supported
and there is no ongoing work to ensure this architecture works.

powerpc64le-linux

little-endian 64-bit Power ISA processors, Linux-Libre kernel. This includes
POWER9 systems such as the RYF Talos II mainboard (https://www.fsf.
org/news/talos-ii-mainboard-and-talos-ii-lite-mainboard-now-fsf-certified-to-respect-your-freedom).
This platform is available as a "technology preview": although it is supported,
substitutes are not yet available from the build farm (see Section 5.3
[Substitutes], page 44), and some packages may fail to build (see Section 22.11
[Tracking Bugs and Changes], page 727). That said, the Guix community is
actively working on improving this support, and now is a great time to try it
and get involved!

riscv64-linux

little-endian 64-bit RISC-V processors, specifically RV64GC, and Linux-Libre
kernel. This platform is available as a "technology preview": although it is
supported, substitutes are not yet available from the build farm (see Section 5.3
[Substitutes], page 44), and some packages may fail to build (see Section 22.11
[Tracking Bugs and Changes], page 727). That said, the Guix community is
actively working on improving this support, and now is a great time to try it
and get involved!

With Guix System, you declare all aspects of the operating system configuration and
Guix takes care of instantiating the configuration in a transactional, reproducible, and
stateless fashion (see Chapter 11 [System Configuration], page 231). Guix System uses
the Linux-libre kernel, the Shepherd initialization system (see Section “Introduction” in
The GNU Shepherd Manual), the well-known GNU utilities and tool chain, as well as the
graphical environment or system services of your choice.

Guix System is available on all the above platforms except mips64el-linux, powerpc-
linux, powerpc64le-linux and riscv64-linux.

For information on porting to other architectures or kernels, see Chapter 21 [Porting],
page 697.

Building this distribution is a cooperative effort, and you are invited to join! See Chap-
ter 22 [Contributing], page 698, for information about how you can help.

https://www.fsf.org/news/talos-ii-mainboard-and-talos-ii-lite-mainboard-now-fsf-certified-to-respect-your-freedom
https://www.fsf.org/news/talos-ii-mainboard-and-talos-ii-lite-mainboard-now-fsf-certified-to-respect-your-freedom

4

2 Installation

You can install the package management tool Guix on top of an existing GNU/Linux or
GNU/Hurd system1, referred to as a foreign distro. If, instead, you want to install the
complete, standalone GNU system distribution, Guix System, see Chapter 3 [System In-
stallation], page 20. This section is concerned only with the installation of Guix on a foreign
distro.

Important: This section only applies to systems without Guix. Following it for
existing Guix installations will overwrite important system files.

When installed on a foreign distro, GNU Guix complements the available tools with-
out interference. Its data lives exclusively in two directories, usually /gnu/store and
/var/guix; other files on your system, such as /etc, are left untouched.

Once installed, Guix can be updated by running guix pull (see Section 5.7 [Invoking
guix pull], page 54).

2.1 Binary Installation

This section describes how to install Guix from a self-contained tarball providing binaries
for Guix and for all its dependencies. This is often quicker than installing from source,
described later (see Section 22.2 [Building from Git], page 699).

Important: This section only applies to systems without Guix. Following it for
existing Guix installations will overwrite important system files.

Some GNU/Linux distributions, such as Debian, Ubuntu, and openSUSE provide Guix
through their own package managers. The version of Guix may be older than db86261 but
you can update it afterwards by running ‘guix pull’.

For Debian or a derivative such as Ubuntu, call:

sudo apt install guix

Likewise, on openSUSE:

sudo zypper install guix

The Guix project also provides a shell script, guix-install.sh, which automates the
binary installation process without use of a foreign distro package manager2. Use of guix-
install.sh requires Bash, GnuPG, GNU tar, wget, and Xz.

The script guides you through the following:

• Downloading and extracting the binary tarball

• Setting up the build daemon

• Making the ‘guix’ command available to non-root users

• Configuring substitute servers

As root, run:

cd /tmp

wget https://git.savannah.gnu.org/cgit/guix.git/plain/etc/guix-install.sh

1 Hurd support is currently limited.
2 https://git.savannah.gnu.org/cgit/guix.git/plain/etc/guix-install.sh

https://git.savannah.gnu.org/cgit/guix.git/plain/etc/guix-install.sh

Chapter 2: Installation 5

chmod +x guix-install.sh

./guix-install.sh

Note: By default, guix-install.sh will configure Guix to download pre-built
package binaries, called substitutes (see Section 5.3 [Substitutes], page 44),
from the project’s build farms. If you choose not to permit this, Guix will build
everything from source, making each installation and upgrade very expensive.
See Section 5.3.7 [On Trusting Binaries], page 48, for a discussion of why you
may want to build packages from source.

To use substitutes from bordeaux.guix.gnu.org, ci.guix.gnu.org or a mir-
ror, you must authorize them. For example,

guix archive --authorize < \

~root/.config/guix/current/share/guix/bordeaux.guix.gnu.org.pub

guix archive --authorize < \

~root/.config/guix/current/share/guix/ci.guix.gnu.org.pub

When you’re done installing Guix, see Section 2.4 [Application Setup], page 16, for extra
configuration you might need, and Chapter 4 [Getting Started], page 31, for your first steps!

Note: The binary installation tarball can be (re)produced and verified simply
by running the following command in the Guix source tree:

make guix-binary.system.tar.xz

... which, in turn, runs:

guix pack -s system --localstatedir \

--profile-name=current-guix guix

See Section 7.3 [Invoking guix pack], page 88, for more info on this handy tool.

Should you eventually want to uninstall Guix, run the same script with the --uninstall
flag:

./guix-install.sh --uninstall

With --uninstall, the script irreversibly deletes all the Guix files, configuration, and
services.

2.2 Setting Up the Daemon

Operations such as building a package or running the garbage collector are all performed by
a specialized process, the build daemon, on behalf of clients. Only the daemon may access
the store and its associated database. Thus, any operation that manipulates the store goes
through the daemon. For instance, command-line tools such as guix package and guix

build communicate with the daemon (via remote procedure calls) to instruct it what to
do.

The following sections explain how to prepare the build daemon’s environment. See
Section 5.3 [Substitutes], page 44, for how to allow the daemon to download pre-built
binaries.

2.2.1 Build Environment Setup

In a standard multi-user setup, Guix and its daemon—the guix-daemon program—are
installed by the system administrator; /gnu/store is owned by root and guix-daemon

Chapter 2: Installation 6

runs as root. Unprivileged users may use Guix tools to build packages or otherwise access
the store, and the daemon will do it on their behalf, ensuring that the store is kept in a
consistent state, and allowing built packages to be shared among users.

When guix-daemon runs as root, you may not want package build processes themselves
to run as root too, for obvious security reasons. To avoid that, a special pool of build
users should be created for use by build processes started by the daemon. These build
users need not have a shell and a home directory: they will just be used when the daemon
drops root privileges in build processes. Having several such users allows the daemon to
launch distinct build processes under separate UIDs, which guarantees that they do not
interfere with each other—an essential feature since builds are regarded as pure functions
(see Chapter 1 [Introduction], page 1).

On a GNU/Linux system, a build user pool may be created like this (using Bash syntax
and the shadow commands):

groupadd --system guixbuild

for i in $(seq -w 1 10);

do

useradd -g guixbuild -G guixbuild \

-d /var/empty -s $(which nologin) \

-c "Guix build user $i" --system \

guixbuilder$i;

done

The number of build users determines how many build jobs may run in parallel, as speci-
fied by the --max-jobs option (see Section 2.3 [Invoking guix-daemon], page 11). To use
guix system vm and related commands, you may need to add the build users to the kvm

group so they can access /dev/kvm, using -G guixbuild,kvm instead of -G guixbuild (see
Section 11.16 [Invoking guix system], page 601).

The guix-daemon program may then be run as root with the following command3:

guix-daemon --build-users-group=guixbuild

This way, the daemon starts build processes in a chroot, under one of the guixbuilder

users. On GNU/Linux, by default, the chroot environment contains nothing but:

• a minimal /dev directory, created mostly independently from the host /dev4;

• the /proc directory; it only shows the processes of the container since a separate PID
name space is used;

• /etc/passwd with an entry for the current user and an entry for user nobody;

• /etc/group with an entry for the user’s group;

• /etc/hosts with an entry that maps localhost to 127.0.0.1;

• a writable /tmp directory.

3 If your machine uses the systemd init system, copying the prefix/lib/systemd/system/guix-

daemon.service file to /etc/systemd/system will ensure that guix-daemon is automatically started.
Similarly, if your machine uses the Upstart init system, copy the prefix/lib/upstart/system/guix-

daemon.conf file to /etc/init.
4 “Mostly”, because while the set of files that appear in the chroot’s /dev is fixed, most of these files can

only be created if the host has them.

Chapter 2: Installation 7

The chroot does not contain a /home directory, and the HOME environment variable is
set to the non-existent /homeless-shelter. This helps to highlight inappropriate uses of
HOME in the build scripts of packages.

All this usually enough to ensure details of the environment do not influence build
processes. In some exceptional cases where more control is needed—typically over the date,
kernel, or CPU—you can resort to a virtual build machine (see [build-vm], page 522).

You can influence the directory where the daemon stores build trees via the TMPDIR

environment variable. However, the build tree within the chroot is always called /tmp/guix-

build-name.drv-0, where name is the derivation name—e.g., coreutils-8.24. This way,
the value of TMPDIR does not leak inside build environments, which avoids discrepancies in
cases where build processes capture the name of their build tree.

The daemon also honors the http_proxy and https_proxy environment variables for
HTTP and HTTPS downloads it performs, be it for fixed-output derivations (see Sec-
tion 8.10 [Derivations], page 152) or for substitutes (see Section 5.3 [Substitutes], page 44).

If you are installing Guix as an unprivileged user, it is still possible to run guix-daemon

provided you pass --disable-chroot. However, build processes will not be isolated from
one another, and not from the rest of the system. Thus, build processes may interfere with
each other, and may access programs, libraries, and other files available on the system—
making it much harder to view them as pure functions.

2.2.2 Using the Offload Facility

When desired, the build daemon can offload derivation builds to other machines running
Guix, using the offload build hook5. When that feature is enabled, a list of user-specified
build machines is read from /etc/guix/machines.scm; every time a build is requested,
for instance via guix build, the daemon attempts to offload it to one of the machines that
satisfy the constraints of the derivation, in particular its system types—e.g., x86_64-linux.
A single machine can have multiple system types, either because its architecture natively
supports it, via emulation (see [transparent-emulation-qemu], page 520), or both. Missing
prerequisites for the build are copied over SSH to the target machine, which then proceeds
with the build; upon success the output(s) of the build are copied back to the initial machine.
The offload facility comes with a basic scheduler that attempts to select the best machine.
The best machine is chosen among the available machines based on criteria such as:

1. The availability of a build slot. A build machine can have as many build slots (connec-
tions) as the value of the parallel-builds field of its build-machine object.

2. Its relative speed, as defined via the speed field of its build-machine object.

3. Its load. The normalized machine load must be lower than a threshold value, config-
urable via the overload-threshold field of its build-machine object.

4. Disk space availability. More than a 100 MiB must be available.

The /etc/guix/machines.scm file typically looks like this:

(list (build-machine

(name "eightysix.example.org")

(systems (list "x86_64-linux" "i686-linux"))

5 This feature is available only when Guile-SSH (https://github.com/artyom-poptsov/guile-ssh) is
present.

https://github.com/artyom-poptsov/guile-ssh

Chapter 2: Installation 8

(host-key "ssh-ed25519 AAAAC3Nza...")

(user "bob")

(speed 2.)) ;incredibly fast!

(build-machine

(name "armeight.example.org")

(systems (list "aarch64-linux"))

(host-key "ssh-rsa AAAAB3Nza...")

(user "alice")

;; Remember 'guix offload' is spawned by

;; 'guix-daemon' as root.

(private-key "/root/.ssh/identity-for-guix")))

In the example above we specify a list of two build machines, one for the x86_64 and i686

architectures and one for the aarch64 architecture.

In fact, this file is—not surprisingly!—a Scheme file that is evaluated when the offload
hook is started. Its return value must be a list of build-machine objects. While this
example shows a fixed list of build machines, one could imagine, say, using DNS-SD to return
a list of potential build machines discovered in the local network (see Section “Introduction”
inUsing Avahi in Guile Scheme Programs). The build-machine data type is detailed below.

[Data Type]build-machine
This data type represents build machines to which the daemon may offload builds.
The important fields are:

name The host name of the remote machine.

systems The system types the remote machine supports—e.g., (list "x86_64-

linux" "i686-linux").

user The user account on the remote machine to use when connecting over
SSH. Note that the SSH key pair must not be passphrase-protected, to
allow non-interactive logins.

host-key This must be the machine’s SSH public host key in OpenSSH format.
This is used to authenticate the machine when we connect to it. It is a
long string that looks like this:

ssh-ed25519 AAAAC3NzaC...mde+UhL hint@example.org

If the machine is running the OpenSSH daemon, sshd, the host key can
be found in a file such as /etc/ssh/ssh_host_ed25519_key.pub.

If the machine is running the SSH daemon of GNU lsh, lshd, the host
key is in /etc/lsh/host-key.pub or a similar file. It can be converted
to the OpenSSH format using lsh-export-key (see Section “Converting
keys” in LSH Manual):

$ lsh-export-key --openssh < /etc/lsh/host-key.pub

ssh-rsa AAAAB3NzaC1yc2EAAAAEOp8FoQAAAQEAs1eB46LV...

A number of optional fields may be specified:

Chapter 2: Installation 9

port (default: 22)
Port number of SSH server on the machine.

private-key (default: ~root/.ssh/id_rsa)
The SSH private key file to use when connecting to the machine, in
OpenSSH format. This key must not be protected with a passphrase.

Note that the default value is the private key of the root account. Make
sure it exists if you use the default.

compression (default: "zlib@openssh.com,zlib")
compression-level (default: 3)

The SSH-level compression methods and compression level requested.

Note that offloading relies on SSH compression to reduce bandwidth usage
when transferring files to and from build machines.

daemon-socket (default: "/var/guix/daemon-socket/socket")
File name of the Unix-domain socket guix-daemon is listening to on that
machine.

overload-threshold (default: 0.8)
The load threshold above which a potential offload machine is disregarded
by the offload scheduler. The value roughly translates to the total pro-
cessor usage of the build machine, ranging from 0.0 (0%) to 1.0 (100%).
It can also be disabled by setting overload-threshold to #f.

parallel-builds (default: 1)
The number of builds that may run in parallel on the machine.

speed (default: 1.0)
A “relative speed factor”. The offload scheduler will tend to prefer ma-
chines with a higher speed factor.

features (default: '())
A list of strings denoting specific features supported by the machine. An
example is "kvm" for machines that have the KVM Linux modules and
corresponding hardware support. Derivations can request features by
name, and they will be scheduled on matching build machines.

Note: On Guix System, instead of managing /etc/guix/machines.scm inde-
pendently, you can choose to specify build machines directly in the operating-
system declaration, in the build-machines field of guix-configuration. See
[guix-configuration-build-machines], page 274.

The guix command must be in the search path on the build machines. You can check
whether this is the case by running:

ssh build-machine guix repl --version

There is one last thing to do once machines.scm is in place. As explained above, when
offloading, files are transferred back and forth between the machine stores. For this to work,
you first need to generate a key pair on each machine to allow the daemon to export signed
archives of files from the store (see Section 5.11 [Invoking guix archive], page 63):

guix archive --generate-key

Chapter 2: Installation 10

Note: This key pair is not related to the SSH key pair that was previously
mentioned in the description of the build-machine data type.

Each build machine must authorize the key of the master machine so that it accepts store
items it receives from the master:

guix archive --authorize < master-public-key.txt

Likewise, the master machine must authorize the key of each build machine.

All the fuss with keys is here to express pairwise mutual trust relations between the
master and the build machines. Concretely, when the master receives files from a build
machine (and vice versa), its build daemon can make sure they are genuine, have not been
tampered with, and that they are signed by an authorized key.

To test whether your setup is operational, run this command on the master node:

guix offload test

This will attempt to connect to each of the build machines specified in
/etc/guix/machines.scm, make sure Guix is available on each machine, attempt to
export to the machine and import from it, and report any error in the process.

If you want to test a different machine file, just specify it on the command line:

guix offload test machines-qualif.scm

Last, you can test the subset of the machines whose name matches a regular expression
like this:

guix offload test machines.scm '\.gnu\.org$'

To display the current load of all build hosts, run this command on the main node:

guix offload status

2.2.3 SELinux Support

Guix includes an SELinux policy file at etc/guix-daemon.cil that can be installed on a
system where SELinux is enabled, in order to label Guix files and to specify the expected
behavior of the daemon. Since Guix System does not provide an SELinux base policy, the
daemon policy cannot be used on Guix System.

2.2.3.1 Installing the SELinux policy

Note: The guix-install.sh binary installation script offers to perform the
steps below for you (see Section 2.1 [Binary Installation], page 4).

To install the policy run this command as root:

semodule -i /var/guix/profiles/per-user/root/current-guix/share/selinux/guix-daemon.cil

Then, as root, relabel the file system, possibly after making it writable:

mount -o remount,rw /gnu/store

restorecon -R /gnu /var/guix

At this point you can start or restart guix-daemon; on a distribution that uses systemd
as its service manager, you can do that with:

systemctl restart guix-daemon

Chapter 2: Installation 11

Once the policy is installed, the file system has been relabeled, and the daemon has been
restarted, it should be running in the guix_daemon_t context. You can confirm this with
the following command:

ps -Zax | grep guix-daemon

Monitor the SELinux log files as you run a command like guix build hello to convince
yourself that SELinux permits all necessary operations.

2.2.3.2 Limitations

This policy is not perfect. Here is a list of limitations or quirks that should be considered
when deploying the provided SELinux policy for the Guix daemon.

1. guix_daemon_socket_t isn’t actually used. None of the socket operations involve
contexts that have anything to do with guix_daemon_socket_t. It doesn’t hurt to
have this unused label, but it would be preferable to define socket rules for only this
label.

2. guix gc cannot access arbitrary links to profiles. By design, the file label of the destina-
tion of a symlink is independent of the file label of the link itself. Although all profiles
under $localstatedir are labelled, the links to these profiles inherit the label of the
directory they are in. For links in the user’s home directory this will be user_home_

t. But for links from the root user’s home directory, or /tmp, or the HTTP server’s
working directory, etc, this won’t work. guix gc would be prevented from reading and
following these links.

3. The daemon’s feature to listen for TCP connections might no longer work. This might
require extra rules, because SELinux treats network sockets differently from files.

4. Currently all files with a name matching the regular expression /gnu/store/.+-

(guix-.+|profile)/bin/guix-daemon are assigned the label guix_daemon_exec_t;
this means that any file with that name in any profile would be permitted to run in
the guix_daemon_t domain. This is not ideal. An attacker could build a package
that provides this executable and convince a user to install and run it, which lifts it
into the guix_daemon_t domain. At that point SELinux could not prevent it from
accessing files that are allowed for processes in that domain.

You will need to relabel the store directory after all upgrades to guix-daemon, such
as after running guix pull. Assuming the store is in /gnu, you can do this with
restorecon -vR /gnu, or by other means provided by your operating system.

We could generate a much more restrictive policy at installation time, so that only the
exact file name of the currently installed guix-daemon executable would be labelled
with guix_daemon_exec_t, instead of using a broad regular expression. The downside
is that root would have to install or upgrade the policy at installation time when-
ever the Guix package that provides the effectively running guix-daemon executable is
upgraded.

2.3 Invoking guix-daemon

The guix-daemon program implements all the functionality to access the store. This in-
cludes launching build processes, running the garbage collector, querying the availability of
a build result, etc. It is normally run as root like this:

guix-daemon --build-users-group=guixbuild

Chapter 2: Installation 12

This daemon can also be started following the systemd “socket activation” protocol (see
Section “Service De- and Constructors” in The GNU Shepherd Manual).

For details on how to set it up, see Section 2.2 [Setting Up the Daemon], page 5.

By default, guix-daemon launches build processes under different UIDs, taken from the
build group specified with --build-users-group. In addition, each build process is run
in a chroot environment that only contains the subset of the store that the build process
depends on, as specified by its derivation (see Chapter 8 [Programming Interface], page 97),
plus a set of specific system directories. By default, the latter contains /dev and /dev/pts.
Furthermore, on GNU/Linux, the build environment is a container: in addition to having
its own file system tree, it has a separate mount name space, its own PID name space,
network name space, etc. This helps achieve reproducible builds (see Section 5.1 [Features],
page 34).

When the daemon performs a build on behalf of the user, it creates a build directory
under /tmp or under the directory specified by its TMPDIR environment variable. This
directory is shared with the container for the duration of the build, though within the
container, the build tree is always called /tmp/guix-build-name.drv-0.

The build directory is automatically deleted upon completion, unless the build failed and
the client specified --keep-failed (see Section 9.1.1 [Common Build Options], page 173).

The daemon listens for connections and spawns one sub-process for each session started
by a client (one of the guix sub-commands). The guix processes command allows you to
get an overview of the activity on your system by viewing each of the active sessions and
clients. See Section 9.16 [Invoking guix processes], page 226, for more information.

The following command-line options are supported:

--build-users-group=group

Take users from group to run build processes (see Section 2.2 [Setting Up the
Daemon], page 5).

--no-substitutes

Do not use substitutes for build products. That is, always build things locally
instead of allowing downloads of pre-built binaries (see Section 5.3 [Substitutes],
page 44).

When the daemon runs with --no-substitutes, clients can still explicitly en-
able substitution via the set-build-options remote procedure call (see Sec-
tion 8.9 [The Store], page 150).

--substitute-urls=urls

Consider urls the default whitespace-separated list of substitute source
URLs. When this option is omitted, ‘https://bordeaux.guix.gnu.org
https://ci.guix.gnu.org’ is used.

This means that substitutes may be downloaded from urls, as long as they are
signed by a trusted signature (see Section 5.3 [Substitutes], page 44).

See Section 5.3.3 [Getting Substitutes from Other Servers], page 46, for more in-
formation on how to configure the daemon to get substitutes from other servers.

Chapter 2: Installation 13

--no-offload

Do not use offload builds to other machines (see Section 2.2.2 [Daemon Offload
Setup], page 7). That is, always build things locally instead of offloading builds
to remote machines.

--cache-failures

Cache build failures. By default, only successful builds are cached.

When this option is used, guix gc --list-failures can be used to query the
set of store items marked as failed; guix gc --clear-failures removes store
items from the set of cached failures. See Section 5.6 [Invoking guix gc], page 51.

--cores=n

-c n Use n CPU cores to build each derivation; 0 means as many as available.

The default value is 0, but it may be overridden by clients, such as the --cores
option of guix build (see Section 9.1 [Invoking guix build], page 173).

The effect is to define the NIX_BUILD_CORES environment variable in the build
process, which can then use it to exploit internal parallelism—for instance, by
running make -j$NIX_BUILD_CORES.

--max-jobs=n

-M n Allow at most n build jobs in parallel. The default value is 1. Setting it to 0

means that no builds will be performed locally; instead, the daemon will offload
builds (see Section 2.2.2 [Daemon Offload Setup], page 7), or simply fail.

--max-silent-time=seconds

When the build or substitution process remains silent for more than seconds,
terminate it and report a build failure.

The default value is 3600 (one hour).

The value specified here can be overridden by clients (see Section 9.1.1 [Common
Build Options], page 173).

--timeout=seconds

Likewise, when the build or substitution process lasts for more than seconds,
terminate it and report a build failure.

The default value is 24 hours.

The value specified here can be overridden by clients (see Section 9.1.1 [Common
Build Options], page 173).

--rounds=N

Build each derivation n times in a row, and raise an error if consecutive build
results are not bit-for-bit identical. Note that this setting can be overridden by
clients such as guix build (see Section 9.1 [Invoking guix build], page 173).

When used in conjunction with --keep-failed, the differing output is kept
in the store, under /gnu/store/...-check. This makes it easy to look for
differences between the two results.

--debug Produce debugging output.

This is useful to debug daemon start-up issues, but then it may be overridden
by clients, for example the --verbosity option of guix build (see Section 9.1
[Invoking guix build], page 173).

Chapter 2: Installation 14

--chroot-directory=dir

Add dir to the build chroot.

Doing this may change the result of build processes—for instance if they use
optional dependencies found in dir when it is available, and not otherwise. For
that reason, it is not recommended to do so. Instead, make sure that each
derivation declares all the inputs that it needs.

--disable-chroot

Disable chroot builds.

Using this option is not recommended since, again, it would allow build pro-
cesses to gain access to undeclared dependencies. It is necessary, though, when
guix-daemon is running under an unprivileged user account.

--log-compression=type

Compress build logs according to type, one of gzip, bzip2, or none.

Unless --lose-logs is used, all the build logs are kept in the localstatedir. To
save space, the daemon automatically compresses them with gzip by default.

--discover[=yes|no]

Whether to discover substitute servers on the local network using mDNS and
DNS-SD.

This feature is still experimental. However, here are a few considerations.

1. It might be faster/less expensive than fetching from remote servers;

2. There are no security risks, only genuine substitutes will be used (see Sec-
tion 5.3.4 [Substitute Authentication], page 47);

3. An attacker advertising guix publish on your LAN cannot serve you ma-
licious binaries, but they can learn what software you’re installing;

4. Servers may serve substitute over HTTP, unencrypted, so anyone on the
LAN can see what software you’re installing.

It is also possible to enable or disable substitute server discovery at run-time
by running:

herd discover guix-daemon on

herd discover guix-daemon off

--disable-deduplication

Disable automatic file “deduplication” in the store.

By default, files added to the store are automatically “deduplicated”: if a newly
added file is identical to another one found in the store, the daemon makes the
new file a hard link to the other file. This can noticeably reduce disk usage,
at the expense of slightly increased input/output load at the end of a build
process. This option disables this optimization.

--gc-keep-outputs[=yes|no]

Tell whether the garbage collector (GC) must keep outputs of live derivations.

When set to yes, the GC will keep the outputs of any live derivation available
in the store—the .drv files. The default is no, meaning that derivation outputs
are kept only if they are reachable from a GC root. See Section 5.6 [Invoking
guix gc], page 51, for more on GC roots.

Chapter 2: Installation 15

--gc-keep-derivations[=yes|no]

Tell whether the garbage collector (GC) must keep derivations corresponding
to live outputs.

When set to yes, as is the case by default, the GC keeps derivations—i.e., .drv
files—as long as at least one of their outputs is live. This allows users to keep
track of the origins of items in their store. Setting it to no saves a bit of disk
space.

In this way, setting --gc-keep-derivations to yes causes liveness to flow from
outputs to derivations, and setting --gc-keep-outputs to yes causes liveness
to flow from derivations to outputs. When both are set to yes, the effect is to
keep all the build prerequisites (the sources, compiler, libraries, and other build-
time tools) of live objects in the store, regardless of whether these prerequisites
are reachable from a GC root. This is convenient for developers since it saves
rebuilds or downloads.

--impersonate-linux-2.6

On Linux-based systems, impersonate Linux 2.6. This means that the kernel’s
uname system call will report 2.6 as the release number.

This might be helpful to build programs that (usually wrongfully) depend on
the kernel version number.

--lose-logs

Do not keep build logs. By default they are kept under localstatedir/guix/log.

--system=system

Assume system as the current system type. By default it is the architec-
ture/kernel pair found at configure time, such as x86_64-linux.

--listen=endpoint

Listen for connections on endpoint. endpoint is interpreted as the file name of
a Unix-domain socket if it starts with / (slash sign). Otherwise, endpoint is
interpreted as a host name or host name and port to listen to. Here are a few
examples:

--listen=/gnu/var/daemon

Listen for connections on the /gnu/var/daemon Unix-domain
socket, creating it if needed.

--listen=localhost

Listen for TCP connections on the network interface corresponding
to localhost, on port 44146.

--listen=128.0.0.42:1234

Listen for TCP connections on the network interface corresponding
to 128.0.0.42, on port 1234.

This option can be repeated multiple times, in which case guix-daemon accepts
connections on all the specified endpoints. Users can tell client commands
what endpoint to connect to by setting the GUIX_DAEMON_SOCKET environment
variable (see Section 8.9 [The Store], page 150).

Chapter 2: Installation 16

Note: The daemon protocol is unauthenticated and unencrypted.
Using --listen=host is suitable on local networks, such as clus-
ters, where only trusted nodes may connect to the build daemon.
In other cases where remote access to the daemon is needed, we
recommend using Unix-domain sockets along with SSH.

When --listen is omitted, guix-daemon listens for connections on the Unix-
domain socket located at localstatedir/guix/daemon-socket/socket.

2.4 Application Setup

When using Guix on top of GNU/Linux distribution other than Guix System—a so-called
foreign distro—a few additional steps are needed to get everything in place. Here are some
of them.

2.4.1 Locales

Packages installed via Guix will not use the locale data of the host system. Instead, you
must first install one of the locale packages available with Guix and then define the GUIX_

LOCPATH environment variable:

$ guix install glibc-locales

$ export GUIX_LOCPATH=$HOME/.guix-profile/lib/locale

Note that the glibc-locales package contains data for all the locales supported by the
GNU libc and weighs in at around 930 MiB6. If you only need a few locales, you can define
your custom locales package via the make-glibc-utf8-locales procedure from the (gnu

packages base) module. The following example defines a package containing the various
Canadian UTF-8 locales known to the GNU libc, that weighs around 14 MiB:

(use-modules (gnu packages base))

(define my-glibc-locales

(make-glibc-utf8-locales

glibc

#:locales (list "en_CA" "fr_CA" "ik_CA" "iu_CA" "shs_CA")

#:name "glibc-canadian-utf8-locales"))

The GUIX_LOCPATH variable plays a role similar to LOCPATH (see Section “Locale Names”
in The GNU C Library Reference Manual). There are two important differences though:

1. GUIX_LOCPATH is honored only by the libc in Guix, and not by the libc provided by
foreign distros. Thus, using GUIX_LOCPATH allows you to make sure the programs of
the foreign distro will not end up loading incompatible locale data.

2. libc suffixes each entry of GUIX_LOCPATH with /X.Y, where X.Y is the libc version—e.g.,
2.22. This means that, should your Guix profile contain a mixture of programs linked
against different libc version, each libc version will only try to load locale data in the
right format.

This is important because the locale data format used by different libc versions may be
incompatible.

6 The size of the glibc-locales package is reduced down to about 213 MiB with store deduplication and
further down to about 67 MiB when using a zstd-compressed Btrfs file system.

Chapter 2: Installation 17

2.4.2 Name Service Switch

When using Guix on a foreign distro, we strongly recommend that the system run the
GNU C library’s name service cache daemon, nscd, which should be listening on the
/var/run/nscd/socket socket. Failing to do that, applications installed with Guix may
fail to look up host names or user accounts, or may even crash. The next paragraphs explain
why.

The GNU C library implements a name service switch (NSS), which is an extensible
mechanism for “name lookups” in general: host name resolution, user accounts, and more
(see Section “Name Service Switch” in The GNU C Library Reference Manual).

Being extensible, the NSS supports plugins, which provide new name lookup implemen-
tations: for example, the nss-mdns plugin allow resolution of .local host names, the nis

plugin allows user account lookup using the Network information service (NIS), and so on.
These extra “lookup services” are configured system-wide in /etc/nsswitch.conf, and all
the programs running on the system honor those settings (see Section “NSS Configuration
File” in The GNU C Reference Manual).

When they perform a name lookup—for instance by calling the getaddrinfo function in
C—applications first try to connect to the nscd; on success, nscd performs name lookups on
their behalf. If the nscd is not running, then they perform the name lookup by themselves,
by loading the name lookup services into their own address space and running it. These
name lookup services—the libnss_*.so files—are dlopen’d, but they may come from the
host system’s C library, rather than from the C library the application is linked against
(the C library coming from Guix).

And this is where the problem is: if your application is linked against Guix’s C library
(say, glibc 2.24) and tries to load NSS plugins from another C library (say, libnss_mdns.so
for glibc 2.22), it will likely crash or have its name lookups fail unexpectedly.

Running nscd on the system, among other advantages, eliminates this binary incom-
patibility problem because those libnss_*.so files are loaded in the nscd process, not in
applications themselves.

2.4.3 X11 Fonts

The majority of graphical applications use Fontconfig to locate and load fonts and perform
X11-client-side rendering. The fontconfig package in Guix looks for fonts in $HOME/.guix-

profile by default. Thus, to allow graphical applications installed with Guix to display
fonts, you have to install fonts with Guix as well. Essential font packages include font-

ghostscript, font-dejavu, and font-gnu-freefont.

Once you have installed or removed fonts, or when you notice an application that does
not find fonts, you may need to install Fontconfig and to force an update of its font cache
by running:

guix install fontconfig

fc-cache -rv

To display text written in Chinese languages, Japanese, or Korean in graphical applica-
tions, consider installing font-adobe-source-han-sans or font-wqy-zenhei. The former
has multiple outputs, one per language family (see Section 5.4 [Packages with Multiple Out-
puts], page 49). For instance, the following command installs fonts for Chinese languages:

guix install font-adobe-source-han-sans:cn

Chapter 2: Installation 18

Older programs such as xterm do not use Fontconfig and instead rely on server-side font
rendering. Such programs require to specify a full name of a font using XLFD (X Logical
Font Description), like this:

-*-dejavu sans-medium-r-normal-*-*-100-*-*-*-*-*-1

To be able to use such full names for the TrueType fonts installed in your Guix profile,
you need to extend the font path of the X server:

xset +fp $(dirname $(readlink -f ~/.guix-profile/share/fonts/truetype/fonts.dir))

After that, you can run xlsfonts (from xlsfonts package) to make sure your TrueType
fonts are listed there.

2.4.4 X.509 Certificates

The nss-certs package provides X.509 certificates, which allow programs to authenticate
Web servers accessed over HTTPS.

When using Guix on a foreign distro, you can install this package and define the relevant
environment variables so that packages know where to look for certificates. See Section 11.12
[X.509 Certificates], page 589, for detailed information.

2.4.5 Emacs Packages

When you install Emacs packages with Guix, the Elisp files are placed under the
share/emacs/site-lisp/ directory of the profile in which they are installed. The Elisp
libraries are made available to Emacs through the EMACSLOADPATH environment variable,
which is set when installing Emacs itself.

Additionally, autoload definitions are automatically evaluated at the initialization of
Emacs, by the Guix-specific guix-emacs-autoload-packages procedure. This procedure
can be interactively invoked to have newly installed Emacs packages discovered, without
having to restart Emacs. If, for some reason, you want to avoid auto-loading the Emacs
packages installed with Guix, you can do so by running Emacs with the --no-site-file

option (see Section “Init File” in The GNU Emacs Manual).

Note: Emacs can now compile packages natively. Under the default configura-
tion, this means that Emacs packages will now be just-in-time (JIT) compiled
as you use them, and the results stored in a subdirectory of your user-emacs-
directory.

Furthermore, the build system for Emacs packages transparently supports na-
tive compilation, but note, that emacs-minimal—the default Emacs for build-
ing packages—has been configured without native compilation. To natively
compile your emacs packages ahead of time, use a transformation like --with-
input=emacs-minimal=emacs.

2.5 Upgrading Guix

To upgrade Guix, run:

guix pull

See Section 5.7 [Invoking guix pull], page 54, for more information.

On a foreign distro, you can upgrade the build daemon by running:

sudo -i guix pull

Chapter 2: Installation 19

followed by (assuming your distro uses the systemd service management tool):

systemctl restart guix-daemon.service

On Guix System, upgrading the daemon is achieved by reconfiguring the system (see
Section 11.16 [Invoking guix system], page 601).

20

3 System Installation

This section explains how to install Guix System on a machine. Guix, as a package manager,
can also be installed on top of a running GNU/Linux system, see Chapter 2 [Installation],
page 4.

3.1 Limitations

We consider Guix System to be ready for a wide range of “desktop” and server use cases. The
reliability guarantees it provides—transactional upgrades and rollbacks, reproducibility—
make it a solid foundation.

Nevertheless, before you proceed with the installation, be aware of the following note-
worthy limitations applicable to version db86261:

• More and more system services are provided (see Section 11.10 [Services], page 263),
but some may be missing.

• GNOME, Xfce, LXDE, and Enlightenment are available (see Section 11.10.9 [Desktop
Services], page 347), as well as a number of X11 window managers. However, KDE is
currently missing.

More than a disclaimer, this is an invitation to report issues (and success stories!), and
to join us in improving it. See Chapter 22 [Contributing], page 698, for more info.

3.2 Hardware Considerations

GNU Guix focuses on respecting the user’s computing freedom. It builds around the kernel
Linux-libre, which means that only hardware for which free software drivers and firmware
exist is supported. Nowadays, a wide range of off-the-shelf hardware is supported on
GNU/Linux-libre—from keyboards to graphics cards to scanners and Ethernet controllers.
Unfortunately, there are still areas where hardware vendors deny users control over their
own computing, and such hardware is not supported on Guix System.

One of the main areas where free drivers or firmware are lacking is WiFi devices. WiFi
devices known to work include those using Atheros chips (AR9271 and AR7010), which
corresponds to the ath9k Linux-libre driver, and those using Broadcom/AirForce chips
(BCM43xx with Wireless-Core Revision 5), which corresponds to the b43-open Linux-libre
driver. Free firmware exists for both and is available out-of-the-box on Guix System, as
part of %base-firmware (see Section 11.3 [operating-system Reference], page 242).

The installer warns you early on if it detects devices that are known not to work due to
the lack of free firmware or free drivers.

The Free Software Foundation (https://www.fsf.org/) runs Respects Your Freedom
(https://www.fsf.org/ryf) (RYF), a certification program for hardware products that
respect your freedom and your privacy and ensure that you have control over your device.
We encourage you to check the list of RYF-certified devices.

Another useful resource is the H-Node (https://www.h-node.org/) web site. It con-
tains a catalog of hardware devices with information about their support in GNU/Linux.

https://www.fsf.org/
https://www.fsf.org/ryf
https://www.fsf.org/ryf
https://www.h-node.org/

Chapter 3: System Installation 21

3.3 USB Stick and DVD Installation

An ISO-9660 installation image that can be written to a USB stick or burnt to a DVD can be
downloaded from ‘https://ftp.gnu.org/gnu/guix/guix-system-install-db86261.x86_64-linux.iso’,
where you can replace x86_64-linux with one of:

x86_64-linux

for a GNU/Linux system on Intel/AMD-compatible 64-bit CPUs;

i686-linux

for a 32-bit GNU/Linux system on Intel-compatible CPUs.

Make sure to download the associated .sig file and to verify the authenticity of the
image against it, along these lines:

$ wget https://ftp.gnu.org/gnu/guix/guix-system-install-db86261.x86_64-linux.iso.sig

$ gpg --verify guix-system-install-db86261.x86_64-linux.iso.sig

If that command fails because you do not have the required public key, then run this
command to import it:

$ wget https://sv.gnu.org/people/viewgpg.php?user_id=15145 \

-qO - | gpg --import -

and rerun the gpg --verify command.

Take note that a warning like “This key is not certified with a trusted signature!” is
normal.

This image contains the tools necessary for an installation. It is meant to be copied as
is to a large-enough USB stick or DVD.

Copying to a USB Stick

Insert a USB stick of 1 GiB or more into your machine, and determine its device name.
Assuming that the USB stick is known as /dev/sdX, copy the image with:

dd if=guix-system-install-db86261.x86_64-linux.iso of=/dev/sdX status=progress

sync

Access to /dev/sdX usually requires root privileges.

Burning on a DVD

Insert a blank DVD into your machine, and determine its device name. Assuming that the
DVD drive is known as /dev/srX, copy the image with:

growisofs -dvd-compat -Z /dev/srX=guix-system-install-db86261.x86_64-linux.iso

Access to /dev/srX usually requires root privileges.

Booting

Once this is done, you should be able to reboot the system and boot from the USB stick
or DVD. The latter usually requires you to get in the BIOS or UEFI boot menu, where
you can choose to boot from the USB stick. In order to boot from Libreboot, switch to the
command mode by pressing the c key and type search_grub usb.

Sadly, on some machines, the installation medium cannot be properly booted and you
only see a black screen after booting even after you waited for ten minutes. This may

Chapter 3: System Installation 22

indicate that your machine cannot run Guix System; perhaps you instead want to install
Guix on a foreign distro (see Section 2.1 [Binary Installation], page 4). But don’t give up
just yet; a possible workaround is pressing the e key in the GRUB boot menu and appending
nomodeset to the Linux bootline. Sometimes the black screen issue can also be resolved by
connecting a different display.

See Section 3.8 [Installing Guix in a VM], page 29, if, instead, you would like to install
Guix System in a virtual machine (VM).

3.4 Preparing for Installation

Once you have booted, you can use the guided graphical installer, which makes it easy to
get started (see Section 3.5 [Guided Graphical Installation], page 22). Alternatively, if you
are already familiar with GNU/Linux and if you want more control than what the graphical
installer provides, you can choose the “manual” installation process (see Section 3.6 [Manual
Installation], page 24).

The graphical installer is available on TTY1. You can obtain root shells on TTYs 3 to 6
by hitting ctrl-alt-f3, ctrl-alt-f4, etc. TTY2 shows this documentation and you can
reach it with ctrl-alt-f2. Documentation is browsable using the Info reader commands
(see Stand-alone GNU Info). The installation system runs the GPM mouse daemon, which
allows you to select text with the left mouse button and to paste it with the middle button.

Note: Installation requires access to the Internet so that any missing depen-
dencies of your system configuration can be downloaded. See the “Networking”
section below.

3.5 Guided Graphical Installation

The graphical installer is a text-based user interface. It will guide you, with dialog boxes,
through the steps needed to install GNU Guix System.

The first dialog boxes allow you to set up the system as you use it during the installation:
you can choose the language, keyboard layout, and set up networking, which will be used
during the installation. The image below shows the networking dialog.

Chapter 3: System Installation 23

Later steps allow you to partition your hard disk, as shown in the image below, to choose
whether or not to use encrypted file systems, to enter the host name and root password,
and to create an additional account, among other things.

Chapter 3: System Installation 24

Note that, at any time, the installer allows you to exit the current installation step and
resume at a previous step, as show in the image below.

Once you’re done, the installer produces an operating system configuration and displays
it (see Section 11.2 [Using the Configuration System], page 233). At that point you can hit
“OK” and installation will proceed. On success, you can reboot into the new system and
enjoy. See Section 3.7 [After System Installation], page 29, for what’s next!

3.6 Manual Installation

This section describes how you would “manually” install GNU Guix System on your ma-
chine. This option requires familiarity with GNU/Linux, with the shell, and with common
administration tools. If you think this is not for you, consider using the guided graphical
installer (see Section 3.5 [Guided Graphical Installation], page 22).

The installation system provides root shells on TTYs 3 to 6; press ctrl-alt-f3,
ctrl-alt-f4, and so on to reach them. It includes many common tools needed to
install the system, but is also a full-blown Guix System. This means that you can install
additional packages, should you need it, using guix package (see Section 5.2 [Invoking
guix package], page 35).

3.6.1 Keyboard Layout, Networking, and Partitioning

Before you can install the system, you may want to adjust the keyboard layout, set up
networking, and partition your target hard disk. This section will guide you through this.

Chapter 3: System Installation 25

3.6.1.1 Keyboard Layout

The installation image uses the US qwerty keyboard layout. If you want to change it, you
can use the loadkeys command. For example, the following command selects the Dvorak
keyboard layout:

loadkeys dvorak

See the files under /run/current-system/profile/share/keymaps for a list of available
keyboard layouts. Run man loadkeys for more information.

3.6.1.2 Networking

Run the following command to see what your network interfaces are called:

ifconfig -a

. . . or, using the GNU/Linux-specific ip command:

ip address

Wired interfaces have a name starting with ‘e’; for example, the interface corresponding
to the first on-board Ethernet controller is called ‘eno1’. Wireless interfaces have a name
starting with ‘w’, like ‘w1p2s0’.

Wired connection
To configure a wired network run the following command, substituting interface
with the name of the wired interface you want to use.

ifconfig interface up

. . . or, using the GNU/Linux-specific ip command:

ip link set interface up

Wireless connection
To configure wireless networking, you can create a configuration file for the
wpa_supplicant configuration tool (its location is not important) using one of
the available text editors such as nano:

nano wpa_supplicant.conf

As an example, the following stanza can go to this file and will work for many
wireless networks, provided you give the actual SSID and passphrase for the
network you are connecting to:

network={

ssid="my-ssid"

key_mgmt=WPA-PSK

psk="the network's secret passphrase"

}

Start the wireless service and run it in the background with the following com-
mand (substitute interface with the name of the network interface you want to
use):

wpa_supplicant -c wpa_supplicant.conf -i interface -B

Run man wpa_supplicant for more information.

At this point, you need to acquire an IP address. On a network where IP addresses are
automatically assigned via DHCP, you can run:

dhclient -v interface

Chapter 3: System Installation 26

Try to ping a server to see if networking is up and running:

ping -c 3 gnu.org

Setting up network access is almost always a requirement because the image does not
contain all the software and tools that may be needed.

If you need HTTP and HTTPS access to go through a proxy, run the following command:

herd set-http-proxy guix-daemon URL

where URL is the proxy URL, for example http://example.org:8118.

If you want to, you can continue the installation remotely by starting an SSH server:

herd start ssh-daemon

Make sure to either set a password with passwd, or configure OpenSSH public key
authentication before logging in.

3.6.1.3 Disk Partitioning

Unless this has already been done, the next step is to partition, and then format the target
partition(s).

The installation image includes several partitioning tools, including Parted (see Section
“Overview” in GNU Parted User Manual), fdisk, and cfdisk. Run it and set up your disk
with the partition layout you want:

cfdisk

If your disk uses the GUID Partition Table (GPT) format and you plan to install BIOS-
based GRUB (which is the default), make sure a BIOS Boot Partition is available (see
Section “BIOS installation” in GNU GRUB manual).

If you instead wish to use EFI-based GRUB, a FAT32 EFI System Partition (ESP) is
required. This partition can be mounted at /boot/efi for instance and must have the esp
flag set. E.g., for parted:

parted /dev/sda set 1 esp on

Note:

Unsure whether to use EFI- or BIOS-based GRUB? If the directory
/sys/firmware/efi exists in the installation image, then you should probably
perform an EFI installation, using grub-efi-bootloader. Otherwise
you should use the BIOS-based GRUB, known as grub-bootloader.
See Section 11.15 [Bootloader Configuration], page 594, for more info on
bootloaders.

Once you are done partitioning the target hard disk drive, you have to create a file system
on the relevant partition(s)1. For the ESP, if you have one and assuming it is /dev/sda1,
run:

mkfs.fat -F32 /dev/sda1

For the root file system, ext4 is the most widely used format. Other file systems, such
as Btrfs, support compression, which is reported to nicely complement file deduplication

1 Currently Guix System only supports ext4, btrfs, JFS, F2FS, and XFS file systems. In particular, code
that reads file system UUIDs and labels only works for these file system types.

Chapter 3: System Installation 27

that the daemon performs independently of the file system (see Section 2.3 [Invoking guix-
daemon], page 11).

Preferably, assign file systems a label so that you can easily and reliably refer to them
in file-system declarations (see Section 11.4 [File Systems], page 246). This is typically
done using the -L option of mkfs.ext4 and related commands. So, assuming the target
root partition lives at /dev/sda2, a file system with the label my-root can be created with:

mkfs.ext4 -L my-root /dev/sda2

If you are instead planning to encrypt the root partition, you can use the Crypt-
setup/LUKS utilities to do that (see man cryptsetup for more information).

Warning: While efforts are in progress to extend support to LUKS2, please note
that Guix only supports devices of type LUKS1 at the moment. You can verify
that your existing LUKS device is of the right type by running cryptsetup

luksDump device. Alternatively, you can create a new LUKS1 device with
cryptsetup luksFormat --type luks1 device.

Assuming you want to store the root partition on /dev/sda2, the command sequence to
format it as a LUKS1 partition would be along these lines:

cryptsetup luksFormat --type luks1 /dev/sda2

cryptsetup open /dev/sda2 my-partition

mkfs.ext4 -L my-root /dev/mapper/my-partition

Once that is done, mount the target file system under /mnt with a command like (again,
assuming my-root is the label of the root file system):

mount LABEL=my-root /mnt

Also mount any other file systems you would like to use on the target system relative to
this path. If you have opted for /boot/efi as an EFI mount point for example, mount it
at /mnt/boot/efi now so it is found by guix system init afterwards.

Finally, if you plan to use one or more swap partitions (see Section 11.6 [Swap Space],
page 253), make sure to initialize them with mkswap. Assuming you have one swap partition
on /dev/sda3, you would run:

mkswap /dev/sda3

swapon /dev/sda3

Alternatively, you may use a swap file. For example, assuming that in the new system
you want to use the file /swapfile as a swap file, you would run2:

This is 10 GiB of swap space. Adjust "count" to change the size.

dd if=/dev/zero of=/mnt/swapfile bs=1MiB count=10240

For security, make the file readable and writable only by root.

chmod 600 /mnt/swapfile

mkswap /mnt/swapfile

swapon /mnt/swapfile

Note that if you have encrypted the root partition and created a swap file in its file
system as described above, then the encryption also protects the swap file, just like any
other file in that file system.

2 This example will work for many types of file systems (e.g., ext4). However, for copy-on-write file
systems (e.g., btrfs), the required steps may be different. For details, see the manual pages for mkswap
and swapon.

Chapter 3: System Installation 28

3.6.2 Proceeding with the Installation

With the target partitions ready and the target root mounted on /mnt, we’re ready to go.
First, run:

herd start cow-store /mnt

This makes /gnu/store copy-on-write, such that packages added to it during the in-
stallation phase are written to the target disk on /mnt rather than kept in memory. This
is necessary because the first phase of the guix system init command (see below) entails
downloads or builds to /gnu/store which, initially, is an in-memory file system.

Next, you have to edit a file and provide the declaration of the operating system to be
installed. To that end, the installation system comes with three text editors. We recommend
GNU nano (see GNU nano Manual), which supports syntax highlighting and parentheses
matching; other editors include mg (an Emacs clone), and nvi (a clone of the original BSD
vi editor). We strongly recommend storing that file on the target root file system, say, as
/mnt/etc/config.scm. Failing to do that, you will have lost your configuration file once
you have rebooted into the newly-installed system.

See Section 11.2 [Using the Configuration System], page 233, for an overview of the
configuration file. The example configurations discussed in that section are available under
/etc/configuration in the installation image. Thus, to get started with a system config-
uration providing a graphical display server (a “desktop” system), you can run something
along these lines:

mkdir /mnt/etc

cp /etc/configuration/desktop.scm /mnt/etc/config.scm

nano /mnt/etc/config.scm

You should pay attention to what your configuration file contains, and in particular:

• Make sure the bootloader-configuration form refers to the targets you want to
install GRUB on. It should mention grub-bootloader if you are installing GRUB in
the legacy way, or grub-efi-bootloader for newer UEFI systems. For legacy systems,
the targets field contain the names of the devices, like (list "/dev/sda"); for UEFI
systems it names the paths to mounted EFI partitions, like (list "/boot/efi"); do
make sure the paths are currently mounted and a file-system entry is specified in
your configuration.

• Be sure that your file system labels match the value of their respective device fields in
your file-system configuration, assuming your file-system configuration uses the
file-system-label procedure in its device field.

• If there are encrypted or RAID partitions, make sure to add a mapped-devices field
to describe them (see Section 11.5 [Mapped Devices], page 251).

Once you are done preparing the configuration file, the new system must be initialized
(remember that the target root file system is mounted under /mnt):

guix system init /mnt/etc/config.scm /mnt

This copies all the necessary files and installs GRUB on /dev/sdX, unless you pass the
--no-bootloader option. For more information, see Section 11.16 [Invoking guix system],
page 601. This command may trigger downloads or builds of missing packages, which can
take some time.

Chapter 3: System Installation 29

Once that command has completed—and hopefully succeeded!—you can run reboot

and boot into the new system. The root password in the new system is initially empty;
other users’ passwords need to be initialized by running the passwd command as root,
unless your configuration specifies otherwise (see [user-account-password], page 257). See
Section 3.7 [After System Installation], page 29, for what’s next!

3.7 After System Installation

Success, you’ve now booted into Guix System! You can upgrade the system whenever you
want by running:

guix pull

sudo guix system reconfigure /etc/config.scm

This builds a new system generation with the latest packages and services.

Now, see Section 11.1 [Getting Started with the System], page 231, and join us on #guix

on the Libera.Chat IRC network or on guix-devel@gnu.org to share your experience!

3.8 Installing Guix in a Virtual Machine

If you’d like to install Guix System in a virtual machine (VM) or on a virtual private server
(VPS) rather than on your beloved machine, this section is for you.

To boot a QEMU (https://qemu.org/) VM for installing Guix System in a disk image,
follow these steps:

1. First, retrieve and decompress the Guix system installation image as described previ-
ously (see Section 3.3 [USB Stick and DVD Installation], page 21).

2. Create a disk image that will hold the installed system. To make a qcow2-formatted
disk image, use the qemu-img command:

qemu-img create -f qcow2 guix-system.img 50G

The resulting file will be much smaller than 50 GB (typically less than 1 MB), but it
will grow as the virtualized storage device is filled up.

3. Boot the USB installation image in a VM:

qemu-system-x86_64 -m 1024 -smp 1 -enable-kvm \

-nic user,model=virtio-net-pci -boot menu=on,order=d \

-drive file=guix-system.img \

-drive media=cdrom,readonly=on,file=guix-system-install-db86261.system.iso

-enable-kvm is optional, but significantly improves performance, see Section 11.18
[Running Guix in a VM], page 613.

4. You’re now root in the VM, proceed with the installation process. See Section 3.4
[Preparing for Installation], page 22, and follow the instructions.

Once installation is complete, you can boot the system that’s on your guix-system.img
image. See Section 11.18 [Running Guix in a VM], page 613, for how to do that.

3.9 Building the Installation Image

The installation image described above was built using the guix system command, specif-
ically:

guix system image -t iso9660 gnu/system/install.scm

mailto:guix-devel@gnu.org
https://qemu.org/

Chapter 3: System Installation 30

Have a look at gnu/system/install.scm in the source tree, and see also Section 11.16
[Invoking guix system], page 601, for more information about the installation image.

3.10 Building the Installation Image for ARM Boards

Many ARM boards require a specific variant of the U-Boot (https://www.denx.de/wiki/
U-Boot/) bootloader.

If you build a disk image and the bootloader is not available otherwise (on another boot
drive etc), it’s advisable to build an image that includes the bootloader, specifically:

guix system image --system=armhf-linux -e '((@ (gnu system install) os-with-u-boot) (@ (gnu system install) installation-os) "A20-OLinuXino-Lime2")'

A20-OLinuXino-Lime2 is the name of the board. If you specify an invalid board, a list
of possible boards will be printed.

https://www.denx.de/wiki/U-Boot/
https://www.denx.de/wiki/U-Boot/

31

4 Getting Started

Presumably, you’ve reached this section because either you have installed Guix on top of
another distribution (see Chapter 2 [Installation], page 4), or you’ve installed the standalone
Guix System (see Chapter 3 [System Installation], page 20). It’s time for you to get started
using Guix and this section aims to help you do that and give you a feel of what it’s like.

Guix is about installing software, so probably the first thing you’ll want to do is to
actually look for software. Let’s say you’re looking for a text editor, you can run:

guix search text editor

This command shows you a number of matching packages, each time showing the pack-
age’s name, version, a description, and additional info. Once you’ve found out the one you
want to use, let’s say Emacs (ah ha!), you can go ahead and install it (run this command
as a regular user, no need for root privileges!):

guix install emacs

You’ve installed your first package, congrats! The package is now visible in your default
profile, $HOME/.guix-profile—a profile is a directory containing installed packages. In
the process, you’ve probably noticed that Guix downloaded pre-built binaries; or, if you
explicitly chose to not use pre-built binaries, then probably Guix is still building software
(see Section 5.3 [Substitutes], page 44, for more info).

Unless you’re using Guix System, the guix install command must have printed this
hint:

hint: Consider setting the necessary environment variables by running:

GUIX_PROFILE="$HOME/.guix-profile"

. "$GUIX_PROFILE/etc/profile"

Alternately, see `guix package --search-paths -p "$HOME/.guix-profile"'.

Indeed, you must now tell your shell where emacs and other programs installed with Guix
are to be found. Pasting the two lines above will do just that: it will add $HOME/.guix-

profile/bin—which is where the installed package is—to the PATH environment variable.
You can paste these two lines in your shell so they take effect right away, but more impor-
tantly you should add them to ~/.bash_profile (or equivalent file if you do not use Bash)
so that environment variables are set next time you spawn a shell. You only need to do this
once and other search paths environment variables will be taken care of similarly—e.g., if
you eventually install python and Python libraries, GUIX_PYTHONPATH will be defined.

You can go on installing packages at your will. To list installed packages, run:

guix package --list-installed

To remove a package, you would unsurprisingly run guix remove. A distinguishing
feature is the ability to roll back any operation you made—installation, removal, upgrade—
by simply typing:

guix package --roll-back

This is because each operation is in fact a transaction that creates a new generation.
These generations and the difference between them can be displayed by running:

guix package --list-generations

Chapter 4: Getting Started 32

Now you know the basics of package management!

Going further: See Chapter 5 [Package Management], page 34, for more about
package management. You may like declarative package management with
guix package --manifest, managing separate profiles with --profile, delet-
ing old generations, collecting garbage, and other nifty features that will come
in handy as you become more familiar with Guix. If you are a developer, see
Chapter 7 [Development], page 76, for additional tools. And if you’re curious,
see Section 5.1 [Features], page 34, to peek under the hood.

You can also manage the configuration of your entire home environment—your
user “dot files”, services, and packages—using Guix Home. See Chapter 13
[Home Configuration], page 636, to learn more about it!

Once you’ve installed a set of packages, you will want to periodically upgrade them to
the latest and greatest version. To do that, you will first pull the latest revision of Guix
and its package collection:

guix pull

The end result is a new guix command, under ~/.config/guix/current/bin. Unless
you’re on Guix System, the first time you run guix pull, be sure to follow the hint that the
command prints and, similar to what we saw above, paste these two lines in your terminal
and .bash_profile:

GUIX_PROFILE="$HOME/.config/guix/current"

. "$GUIX_PROFILE/etc/profile"

You must also instruct your shell to point to this new guix:

hash guix

At this point, you’re running a brand new Guix. You can thus go ahead and actually
upgrade all the packages you previously installed:

guix upgrade

As you run this command, you will see that binaries are downloaded (or perhaps some
packages are built), and eventually you end up with the upgraded packages. Should one of
these upgraded packages not be to your liking, remember you can always roll back!

You can display the exact revision of Guix you’re currently using by running:

guix describe

The information it displays is all it takes to reproduce the exact same Guix, be it at a
different point in time or on a different machine.

Going further: See Section 5.7 [Invoking guix pull], page 54, for more informa-
tion. See Chapter 6 [Channels], page 66, on how to specify additional channels
to pull packages from, how to replicate Guix, and more. You may also find
time-machine handy (see Section 5.8 [Invoking guix time-machine], page 58).

If you installed Guix System, one of the first things you’ll want to do is to upgrade your
system. Once you’ve run guix pull to get the latest Guix, you can upgrade the system like
this:

sudo guix system reconfigure /etc/config.scm

Upon completion, the system runs the latest versions of its software packages. Just like
for packages, you can always roll back to a previous generation of the whole system. See

Chapter 4: Getting Started 33

Section 11.1 [Getting Started with the System], page 231, to learn how to manage your
system.

Now you know enough to get started!

Resources: The rest of this manual provides a reference for all things Guix.
Here are some additional resources you may find useful:

• See The GNU Guix Cookbook, for a list of “how-to” style of recipes for a
variety of applications.

• The GNU Guix Reference Card (https://guix.gnu.org/guix-refcard.
pdf) lists in two pages most of the commands and options you’ll ever need.

• The web site contains instructional videos (https://guix.gnu.org/en/
videos/) covering topics such as everyday use of Guix, how to get help,
and how to become a contributor.

• See Chapter 14 [Documentation], page 672, to learn how to access docu-
mentation on your computer.

We hope you will enjoy Guix as much as the community enjoys building it!

https://guix.gnu.org/guix-refcard.pdf
https://guix.gnu.org/guix-refcard.pdf
https://guix.gnu.org/en/videos/
https://guix.gnu.org/en/videos/

34

5 Package Management

The purpose of GNU Guix is to allow users to easily install, upgrade, and remove software
packages, without having to know about their build procedures or dependencies. Guix also
goes beyond this obvious set of features.

This chapter describes the main features of Guix, as well as the package management
tools it provides. Along with the command-line interface described below (see Section 5.2
[Invoking guix package], page 35), you may also use the Emacs-Guix interface (see The
Emacs-Guix Reference Manual), after installing emacs-guix package (run M-x guix-help

command to start with it):

guix install emacs-guix

5.1 Features

Here we assume you’ve already made your first steps with Guix (see Chapter 4 [Getting
Started], page 31) and would like to get an overview about what’s going on under the hood.

When using Guix, each package ends up in the package store, in its own directory—
something that resembles /gnu/store/xxx-package-1.2, where xxx is a base32 string.

Instead of referring to these directories, users have their own profile, which points to the
packages that they actually want to use. These profiles are stored within each user’s home
directory, at $HOME/.guix-profile.

For example, alice installs GCC 4.7.2. As a result, /home/alice/.guix-

profile/bin/gcc points to /gnu/store/...-gcc-4.7.2/bin/gcc. Now, on the same
machine, bob had already installed GCC 4.8.0. The profile of bob simply continues to
point to /gnu/store/...-gcc-4.8.0/bin/gcc—i.e., both versions of GCC coexist on the
same system without any interference.

The guix package command is the central tool to manage packages (see Section 5.2
[Invoking guix package], page 35). It operates on the per-user profiles, and can be used with
normal user privileges.

The command provides the obvious install, remove, and upgrade operations. Each invo-
cation is actually a transaction: either the specified operation succeeds, or nothing happens.
Thus, if the guix package process is terminated during the transaction, or if a power out-
age occurs during the transaction, then the user’s profile remains in its previous state, and
remains usable.

In addition, any package transaction may be rolled back. So, if, for example, an upgrade
installs a new version of a package that turns out to have a serious bug, users may roll
back to the previous instance of their profile, which was known to work well. Similarly, the
global system configuration on Guix is subject to transactional upgrades and roll-back (see
Section 11.1 [Getting Started with the System], page 231).

All packages in the package store may be garbage-collected. Guix can determine which
packages are still referenced by user profiles, and remove those that are provably no longer
referenced (see Section 5.6 [Invoking guix gc], page 51). Users may also explicitly remove
old generations of their profile so that the packages they refer to can be collected.

Guix takes a purely functional approach to package management, as described in the
introduction (see Chapter 1 [Introduction], page 1). Each /gnu/store package directory

Chapter 5: Package Management 35

name contains a hash of all the inputs that were used to build that package—compiler,
libraries, build scripts, etc. This direct correspondence allows users to make sure a given
package installation matches the current state of their distribution. It also helps maximize
build reproducibility : thanks to the isolated build environments that are used, a given build
is likely to yield bit-identical files when performed on different machines (see Section 2.3
[Invoking guix-daemon], page 11).

This foundation allows Guix to support transparent binary/source deployment. When a
pre-built binary for a /gnu/store item is available from an external source—a substitute,
Guix just downloads it and unpacks it; otherwise, it builds the package from source, locally
(see Section 5.3 [Substitutes], page 44). Because build results are usually bit-for-bit repro-
ducible, users do not have to trust servers that provide substitutes: they can force a local
build and challenge providers (see Section 9.12 [Invoking guix challenge], page 220).

Control over the build environment is a feature that is also useful for developers. The
guix shell command allows developers of a package to quickly set up the right development
environment for their package, without having to manually install the dependencies of the
package into their profile (see Section 7.1 [Invoking guix shell], page 76).

All of Guix and its package definitions is version-controlled, and guix pull allows you to
“travel in time” on the history of Guix itself (see Section 5.7 [Invoking guix pull], page 54).
This makes it possible to replicate a Guix instance on a different machine or at a later
point in time, which in turn allows you to replicate complete software environments, while
retaining precise provenance tracking of the software.

5.2 Invoking guix package

The guix package command is the tool that allows users to install, upgrade, and remove
packages, as well as rolling back to previous configurations. These operations work on a user
profile—a directory of installed packages. Each user has a default profile in $HOME/.guix-

profile. The command operates only on the user’s own profile, and works with normal
user privileges (see Section 5.1 [Features], page 34). Its syntax is:

guix package options

Primarily, options specifies the operations to be performed during the transaction. Upon
completion, a new profile is created, but previous generations of the profile remain available,
should the user want to roll back.

For example, to remove lua and install guile and guile-cairo in a single transaction:

guix package -r lua -i guile guile-cairo

For your convenience, we also provide the following aliases:

• guix search is an alias for guix package -s,

• guix install is an alias for guix package -i,

• guix remove is an alias for guix package -r,

• guix upgrade is an alias for guix package -u,

• and guix show is an alias for guix package --show=.

These aliases are less expressive than guix package and provide fewer options, so in
some cases you’ll probably want to use guix package directly.

Chapter 5: Package Management 36

guix package also supports a declarative approach whereby the user specifies the ex-
act set of packages to be available and passes it via the --manifest option (see [profile-
manifest], page 39).

For each user, a symlink to the user’s default profile is automatically created in
$HOME/.guix-profile. This symlink always points to the current generation of the user’s
default profile. Thus, users can add $HOME/.guix-profile/bin to their PATH environment
variable, and so on.

If you are not using Guix System, consider adding the following lines to your ~/.bash_
profile (see Section “Bash Startup Files” in The GNU Bash Reference Manual) so that
newly-spawned shells get all the right environment variable definitions:

GUIX_PROFILE="$HOME/.guix-profile" ; \

source "$GUIX_PROFILE/etc/profile"

In a multi-user setup, user profiles are stored in a place registered as a garbage-collector
root, which $HOME/.guix-profile points to (see Section 5.6 [Invoking guix gc], page 51).
That directory is normally localstatedir/guix/profiles/per-user/user, where local-
statedir is the value passed to configure as --localstatedir, and user is the user name.
The per-user directory is created when guix-daemon is started, and the user sub-directory
is created by guix package.

The options can be among the following:

--install=package ...

-i package ...

Install the specified packages.

Each package may specify a simple package name, such as guile, optionally
followed by an at-sign and version number, such as guile@3.0.7 or simply
guile@3.0. In the latter case, the newest version prefixed by 3.0 is selected.

If no version number is specified, the newest available version will be selected.
In addition, such a package specification may contain a colon, followed by the
name of one of the outputs of the package, as in gcc:doc or binutils@2.22:lib
(see Section 5.4 [Packages with Multiple Outputs], page 49).

Packages with a corresponding name (and optionally version) are searched
for among the GNU distribution modules (see Section 8.1 [Package Modules],
page 97).

Alternatively, a package can directly specify a store file name such as
/gnu/store/...-guile-3.0.7, as produced by, e.g., guix build.

Sometimes packages have propagated inputs: these are dependencies
that automatically get installed along with the required package (see
[package-propagated-inputs], page 102, for information about propagated
inputs in package definitions).

An example is the GNU MPC library: its C header files refer to those of the
GNU MPFR library, which in turn refer to those of the GMP library. Thus,
when installing MPC, the MPFR and GMP libraries also get installed in the
profile; removing MPC also removes MPFR and GMP—unless they had also
been explicitly installed by the user.

Chapter 5: Package Management 37

Besides, packages sometimes rely on the definition of environment variables for
their search paths (see explanation of --search-paths below). Any missing or
possibly incorrect environment variable definitions are reported here.

--install-from-expression=exp

-e exp Install the package exp evaluates to.

exp must be a Scheme expression that evaluates to a <package> object. This
option is notably useful to disambiguate between same-named variants of a
package, with expressions such as (@ (gnu packages commencement) guile-

final).

Note that this option installs the first output of the specified package, which
may be insufficient when needing a specific output of a multiple-output package.

--install-from-file=file

-f file Install the package that the code within file evaluates to.

As an example, file might contain a definition like this (see Section 8.2 [Defining
Packages], page 98):

(use-modules (guix)

(guix build-system gnu)

(guix licenses))

(package

(name "hello")

(version "2.10")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"))))

(build-system gnu-build-system)

(synopsis "Hello, GNU world: An example GNU package")

(description "Guess what GNU Hello prints!")

(home-page "http://www.gnu.org/software/hello/")

(license gpl3+))

Developers may find it useful to include such a guix.scm file in the root of their
project source tree that can be used to test development snapshots and create
reproducible development environments (see Section 7.1 [Invoking guix shell],
page 76).

The file may also contain a JSON representation of one or more package defi-
nitions. Running guix package -f on hello.json with the following contents
would result in installing the package greeter after building myhello:

[

{

"name": "myhello",

"version": "2.10",

Chapter 5: Package Management 38

"source": "mirror://gnu/hello/hello-2.10.tar.gz",

"build-system": "gnu",

"arguments": {

"tests?": false

},

"home-page": "https://www.gnu.org/software/hello/",

"synopsis": "Hello, GNU world: An example GNU package",

"description": "GNU Hello prints a greeting.",

"license": "GPL-3.0+",

"native-inputs": ["gettext"]

},

{

"name": "greeter",

"version": "1.0",

"source": "mirror://gnu/hello/hello-2.10.tar.gz",

"build-system": "gnu",

"arguments": {

"test-target": "foo",

"parallel-build?": false

},

"home-page": "https://example.com/",

"synopsis": "Greeter using GNU Hello",

"description": "This is a wrapper around GNU Hello.",

"license": "GPL-3.0+",

"inputs": ["myhello", "hello"]

}

]

--remove=package ...

-r package ...

Remove the specified packages.

As for --install, each package may specify a version number and/or output
name in addition to the package name. For instance, ‘-r glibc:debug’ would
remove the debug output of glibc.

--upgrade[=regexp ...]

-u [regexp ...]

Upgrade all the installed packages. If one or more regexps are specified, upgrade
only installed packages whose name matches a regexp. Also see the --do-not-
upgrade option below.

Note that this upgrades package to the latest version of packages found in
the distribution currently installed. To update your distribution, you should
regularly run guix pull (see Section 5.7 [Invoking guix pull], page 54).

When upgrading, package transformations that were originally applied when
creating the profile are automatically re-applied (see Section 9.1.2 [Package
Transformation Options], page 175). For example, assume you first installed
Emacs from the tip of its development branch with:

Chapter 5: Package Management 39

guix install emacs-next --with-branch=emacs-next=master

Next time you run guix upgrade, Guix will again pull the tip of the Emacs
development branch and build emacs-next from that checkout.

Note that transformation options such as --with-branch and --with-source

depend on external state; it is up to you to ensure that they work as expected.
You can also discard a transformations that apply to a package by running:

guix install package

--do-not-upgrade[=regexp ...]

When used together with the --upgrade option, do not upgrade any packages
whose name matches a regexp. For example, to upgrade all packages in the
current profile except those containing the substring “emacs”:

$ guix package --upgrade . --do-not-upgrade emacs

--manifest=file

-m file Create a new generation of the profile from the manifest object returned by the
Scheme code in file. This option can be repeated several times, in which case
the manifests are concatenated.

This allows you to declare the profile’s contents rather than constructing it
through a sequence of --install and similar commands. The advantage is that
file can be put under version control, copied to different machines to reproduce
the same profile, and so on.

file must return a manifest object, which is roughly a list of packages:

(use-package-modules guile emacs)

(packages->manifest

(list emacs

guile-2.0

;; Use a specific package output.

(list guile-2.0 "debug")))

See Section 8.4 [Writing Manifests], page 113, for information on how to write
a manifest. See [export-manifest], page 44, to learn how to obtain a manifest
file from an existing profile.

--roll-back

Roll back to the previous generation of the profile—i.e., undo the last transac-
tion.

When combined with options such as --install, roll back occurs before any
other actions.

When rolling back from the first generation that actually contains installed
packages, the profile is made to point to the zeroth generation, which contains
no files apart from its own metadata.

After having rolled back, installing, removing, or upgrading packages overwrites
previous future generations. Thus, the history of the generations in a profile is
always linear.

Chapter 5: Package Management 40

--switch-generation=pattern

-S pattern

Switch to a particular generation defined by pattern.

pattern may be either a generation number or a number prefixed with “+”
or “-”. The latter means: move forward/backward by a specified number of
generations. For example, if you want to return to the latest generation after
--roll-back, use --switch-generation=+1.

The difference between --roll-back and --switch-generation=-1 is that
--switch-generation will not make a zeroth generation, so if a specified gen-
eration does not exist, the current generation will not be changed.

--search-paths[=kind]

Report environment variable definitions, in Bash syntax, that may be needed
in order to use the set of installed packages. These environment variables are
used to specify search paths for files used by some of the installed packages.

For example, GCC needs the CPATH and LIBRARY_PATH environment variables
to be defined so it can look for headers and libraries in the user’s profile (see Sec-
tion “Environment Variables” in Using the GNU Compiler Collection (GCC)).
If GCC and, say, the C library are installed in the profile, then --search-paths

will suggest setting these variables to profile/include and profile/lib, re-
spectively (see Section 8.8 [Search Paths], page 147, for info on search path
specifications associated with packages.)

The typical use case is to define these environment variables in the shell:

$ eval $(guix package --search-paths)

kind may be one of exact, prefix, or suffix, meaning that the returned
environment variable definitions will either be exact settings, or prefixes or
suffixes of the current value of these variables. When omitted, kind defaults to
exact.

This option can also be used to compute the combined search paths of several
profiles. Consider this example:

$ guix package -p foo -i guile

$ guix package -p bar -i guile-json

$ guix package -p foo -p bar --search-paths

The last command above reports about the GUILE_LOAD_PATH variable, even
though, taken individually, neither foo nor bar would lead to that recommen-
dation.

--profile=profile

-p profile

Use profile instead of the user’s default profile.

profile must be the name of a file that will be created upon completion. Con-
cretely, profile will be a mere symbolic link (“symlink”) pointing to the actual
profile where packages are installed:

$ guix install hello -p ~/code/my-profile

...

$ ~/code/my-profile/bin/hello

Chapter 5: Package Management 41

Hello, world!

All it takes to get rid of the profile is to remove this symlink and its siblings
that point to specific generations:

$ rm ~/code/my-profile ~/code/my-profile-*-link

--list-profiles

List all the user’s profiles:

$ guix package --list-profiles

/home/charlie/.guix-profile

/home/charlie/code/my-profile

/home/charlie/code/devel-profile

/home/charlie/tmp/test

When running as root, list all the profiles of all the users.

--allow-collisions

Allow colliding packages in the new profile. Use at your own risk!

By default, guix package reports as an error collisions in the profile. Collisions
happen when two or more different versions or variants of a given package end
up in the profile.

--bootstrap

Use the bootstrap Guile to build the profile. This option is only useful to
distribution developers.

In addition to these actions, guix package supports the following options to query the
current state of a profile, or the availability of packages:

--search=regexp

-s regexp List the available packages whose name, synopsis, or description matches regexp
(in a case-insensitive fashion), sorted by relevance. Print all the metadata of
matching packages in recutils format (see GNU recutils manual).

This allows specific fields to be extracted using the recsel command, for in-
stance:

$ guix package -s malloc | recsel -p name,version,relevance

name: jemalloc

version: 4.5.0

relevance: 6

name: glibc

version: 2.25

relevance: 1

name: libgc

version: 7.6.0

relevance: 1

Similarly, to show the name of all the packages available under the terms of the
GNU LGPL version 3:

$ guix package -s "" | recsel -p name -e 'license ~ "LGPL 3"'

Chapter 5: Package Management 42

name: elfutils

name: gmp

...

It is also possible to refine search results using several -s flags to guix package,
or several arguments to guix search. For example, the following command
returns a list of board games (this time using the guix search alias):

$ guix search '\<board\>' game | recsel -p name

name: gnubg

...

If we were to omit -s game, we would also get software packages that deal with
printed circuit boards; removing the angle brackets around board would further
add packages that have to do with keyboards.

And now for a more elaborate example. The following command searches for
cryptographic libraries, filters out Haskell, Perl, Python, and Ruby libraries,
and prints the name and synopsis of the matching packages:

$ guix search crypto library | \

recsel -e '! (name ~ "^(ghc|perl|python|ruby)")' -p name,synopsis

See Section “Selection Expressions” in GNU recutils manual, for more informa-
tion on selection expressions for recsel -e.

--show=package

Show details about package, taken from the list of available packages, in
recutils format (see GNU recutils manual).

$ guix package --show=guile | recsel -p name,version

name: guile

version: 3.0.5

name: guile

version: 3.0.2

name: guile

version: 2.2.7

...

You may also specify the full name of a package to only get details about a
specific version of it (this time using the guix show alias):

$ guix show guile@3.0.5 | recsel -p name,version

name: guile

version: 3.0.5

--list-installed[=regexp]

-I [regexp]

List the currently installed packages in the specified profile, with the most re-
cently installed packages shown last. When regexp is specified, list only installed
packages whose name matches regexp.

Chapter 5: Package Management 43

For each installed package, print the following items, separated by tabs: the
package name, its version string, the part of the package that is installed (for
instance, out for the default output, include for its headers, etc.), and the
path of this package in the store.

--list-available[=regexp]

-A [regexp]

List packages currently available in the distribution for this system (see Sec-
tion 1.2 [GNU Distribution], page 2). When regexp is specified, list only avail-
able packages whose name matches regexp.

For each package, print the following items separated by tabs: its name, its
version string, the parts of the package (see Section 5.4 [Packages with Multiple
Outputs], page 49), and the source location of its definition.

--list-generations[=pattern]

-l [pattern]

Return a list of generations along with their creation dates; for each generation,
show the installed packages, with the most recently installed packages shown
last. Note that the zeroth generation is never shown.

For each installed package, print the following items, separated by tabs: the
name of a package, its version string, the part of the package that is installed
(see Section 5.4 [Packages with Multiple Outputs], page 49), and the location
of this package in the store.

When pattern is used, the command returns only matching generations. Valid
patterns include:

• Integers and comma-separated integers. Both patterns denote generation
numbers. For instance, --list-generations=1 returns the first one.

And --list-generations=1,8,2 outputs three generations in the speci-
fied order. Neither spaces nor trailing commas are allowed.

• Ranges. --list-generations=2..9 prints the specified generations and
everything in between. Note that the start of a range must be smaller than
its end.

It is also possible to omit the endpoint. For example, --list-

generations=2.., returns all generations starting from the second
one.

• Durations. You can also get the last N days, weeks, or months by passing
an integer along with the first letter of the duration. For example, --list-
generations=20d lists generations that are up to 20 days old.

--delete-generations[=pattern]

-d [pattern]

When pattern is omitted, delete all generations except the current one.

This command accepts the same patterns as --list-generations. When pat-
tern is specified, delete the matching generations. When pattern specifies a
duration, generations older than the specified duration match. For instance,
--delete-generations=1m deletes generations that are more than one month
old.

Chapter 5: Package Management 44

If the current generation matches, it is not deleted. Also, the zeroth generation
is never deleted.

Note that deleting generations prevents rolling back to them. Consequently,
this command must be used with care.

--export-manifest

Write to standard output a manifest suitable for --manifest corresponding to
the chosen profile(s).

This option is meant to help you migrate from the “imperative” operating
mode—running guix install, guix upgrade, etc.—to the declarative mode
that --manifest offers.

Be aware that the resulting manifest approximates what your profile actually
contains; for instance, depending on how your profile was created, it can refer
to packages or package versions that are not exactly what you specified.

Keep in mind that a manifest is purely symbolic: it only contains package
names and possibly versions, and their meaning varies over time. If you wish
to “pin” channels to the revisions that were used to build the profile(s), see
--export-channels below.

--export-channels

Write to standard output the list of channels used by the chosen profile(s), in a
format suitable for guix pull --channels or guix time-machine --channels

(see Chapter 6 [Channels], page 66).

Together with --export-manifest, this option provides information allowing
you to replicate the current profile (see Section 6.3 [Replicating Guix], page 67).

However, note that the output of this command approximates what was ac-
tually used to build this profile. In particular, a single profile might have
been built from several different revisions of the same channel. In that case,
--export-manifest chooses the last one and writes the list of other revisions
in a comment. If you really need to pick packages from different channel revi-
sions, you can use inferiors in your manifest to do so (see Section 5.9 [Inferiors],
page 59).

Together with --export-manifest, this is a good starting point if you are
willing to migrate from the “imperative” model to the fully declarative model
consisting of a manifest file along with a channels file pinning the exact channel
revision(s) you want.

Finally, since guix package may actually start build processes, it supports all the com-
mon build options (see Section 9.1.1 [Common Build Options], page 173). It also supports
package transformation options, such as --with-source, and preserves them across up-
grades (see Section 9.1.2 [Package Transformation Options], page 175).

5.3 Substitutes

Guix supports transparent source/binary deployment, which means that it can either build
things locally, or download pre-built items from a server, or both. We call these pre-built
items substitutes—they are substitutes for local build results. In many cases, downloading
a substitute is much faster than building things locally.

Chapter 5: Package Management 45

Substitutes can be anything resulting from a derivation build (see Section 8.10 [Deriva-
tions], page 152). Of course, in the common case, they are pre-built package binaries, but
source tarballs, for instance, which also result from derivation builds, can be available as
substitutes.

5.3.1 Official Substitute Servers

bordeaux.guix.gnu.org and ci.guix.gnu.org are both front-ends to official build
farms that build packages from Guix continuously for some architectures, and make
them available as substitutes. These are the default source of substitutes; which can
be overridden by passing the --substitute-urls option either to guix-daemon (see
[guix-daemon --substitute-urls], page 12) or to client tools such as guix package (see
[client --substitute-urls option], page 174).

Substitute URLs can be either HTTP or HTTPS. HTTPS is recommended because
communications are encrypted; conversely, using HTTP makes all communications visible
to an eavesdropper, who could use the information gathered to determine, for instance,
whether your system has unpatched security vulnerabilities.

Substitutes from the official build farms are enabled by default when using Guix System
(see Section 1.2 [GNU Distribution], page 2). However, they are disabled by default when
using Guix on a foreign distribution, unless you have explicitly enabled them via one of
the recommended installation steps (see Chapter 2 [Installation], page 4). The following
paragraphs describe how to enable or disable substitutes for the official build farm; the same
procedure can also be used to enable substitutes for any other substitute server.

5.3.2 Substitute Server Authorization

To allow Guix to download substitutes from bordeaux.guix.gnu.org, ci.guix.gnu.org
or a mirror, you must add the relevant public key to the access control list (ACL) of
archive imports, using the guix archive command (see Section 5.11 [Invoking guix archive],
page 63). Doing so implies that you trust the substitute server to not be compromised and
to serve genuine substitutes.

Note: If you are using Guix System, you can skip this section: Guix System
authorizes substitutes from bordeaux.guix.gnu.org and ci.guix.gnu.org by
default.

The public keys for each of the project maintained substitute servers are installed
along with Guix, in prefix/share/guix/, where prefix is the installation prefix of Guix.
If you installed Guix from source, make sure you checked the GPG signature of guix-
db86261.tar.gz, which contains this public key file. Then, you can run something like
this:

guix archive --authorize < prefix/share/guix/bordeaux.guix.gnu.org.pub

guix archive --authorize < prefix/share/guix/ci.guix.gnu.org.pub

Once this is in place, the output of a command like guix build should change from
something like:

$ guix build emacs --dry-run

The following derivations would be built:

/gnu/store/yr7bnx8xwcayd6j95r2clmkdl1qh688w-emacs-24.3.drv

/gnu/store/x8qsh1hlhgjx6cwsjyvybnfv2i37z23w-dbus-1.6.4.tar.gz.drv

Chapter 5: Package Management 46

/gnu/store/1ixwp12fl950d15h2cj11c73733jay0z-alsa-lib-1.0.27.1.tar.bz2.drv

/gnu/store/nlma1pw0p603fpfiqy7kn4zm105r5dmw-util-linux-2.21.drv

...

to something like:

$ guix build emacs --dry-run

112.3 MB would be downloaded:

/gnu/store/pk3n22lbq6ydamyymqkkz7i69wiwjiwi-emacs-24.3

/gnu/store/2ygn4ncnhrpr61rssa6z0d9x22si0va3-libjpeg-8d

/gnu/store/71yz6lgx4dazma9dwn2mcjxaah9w77jq-cairo-1.12.16

/gnu/store/7zdhgp0n1518lvfn8mb96sxqfmvqrl7v-libxrender-0.9.7

...

The text changed from “The following derivations would be built” to “112.3 MB would
be downloaded”. This indicates that substitutes from the configured substitute servers are
usable and will be downloaded, when possible, for future builds.

The substitute mechanism can be disabled globally by running guix-daemon with --no-

substitutes (see Section 2.3 [Invoking guix-daemon], page 11). It can also be disabled
temporarily by passing the --no-substitutes option to guix package, guix build, and
other command-line tools.

5.3.3 Getting Substitutes from Other Servers

Guix can look up and fetch substitutes from several servers. This is useful when you
are using packages from additional channels for which the official server does not have
substitutes but another server provides them. Another situation where this is useful is
when you would prefer to download from your organization’s substitute server, resorting to
the official server only as a fallback or dismissing it altogether.

You can give Guix a list of substitute server URLs and it will check them in the specified
order. You also need to explicitly authorize the public keys of substitute servers to instruct
Guix to accept the substitutes they sign.

On Guix System, this is achieved by modifying the configuration of the guix service.
Since the guix service is part of the default lists of services, %base-services and %desktop-

services, you can use modify-services to change its configuration and add the URLs and
substitute keys that you want (see Section 11.19.3 [Service Reference], page 618).

As an example, suppose you want to fetch substitutes from guix.example.org and to
authorize the signing key of that server, in addition to the default bordeaux.guix.gnu.org
and ci.guix.gnu.org. The resulting operating system configuration will look something
like:

(operating-system

;; ...

(services

;; Assume we're starting from '%desktop-services'. Replace it

;; with the list of services you're actually using.

(modify-services %desktop-services

(guix-service-type config =>

(guix-configuration

(inherit config)

Chapter 5: Package Management 47

(substitute-urls

(append (list "https://guix.example.org")

%default-substitute-urls))

(authorized-keys

(append (list (local-file "./key.pub"))

%default-authorized-guix-keys)))))))

This assumes that the file key.pub contains the signing key of guix.example.org. With
this change in place in your operating system configuration file (say /etc/config.scm), you
can reconfigure and restart the guix-daemon service or reboot so the changes take effect:

$ sudo guix system reconfigure /etc/config.scm

$ sudo herd restart guix-daemon

If you’re running Guix on a “foreign distro”, you would instead take the following steps
to get substitutes from additional servers:

1. Edit the service configuration file for guix-daemon; when using systemd, this is nor-
mally /etc/systemd/system/guix-daemon.service. Add the --substitute-urls

option on the guix-daemon command line and list the URLs of interest (see [daemon-
substitute-urls], page 12):

... --substitute-urls='https://guix.example.org https://bordeaux.guix.gnu.org

https://ci.guix.gnu.org'

2. Restart the daemon. For systemd, it goes like this:

systemctl daemon-reload

systemctl restart guix-daemon.service

3. Authorize the key of the new server (see Section 5.11 [Invoking guix archive], page 63):

guix archive --authorize < key.pub

Again this assumes key.pub contains the public key that guix.example.org uses to
sign substitutes.

Now you’re all set! Substitutes will be preferably taken from https://guix.example.org,
using bordeaux.guix.gnu.org then ci.guix.gnu.org as fallback options. Of course you
can list as many substitute servers as you like, with the caveat that substitute lookup can
be slowed down if too many servers need to be contacted.

Troubleshooting: To diagnose problems, you can run guix weather. For ex-
ample, running:

guix weather coreutils

not only tells you which of the currently-configured servers has substitutes for
the coreutils package, it also reports whether one of these servers is unautho-
rized. See Section 9.15 [Invoking guix weather], page 224, for more information.

Note that there are also situations where one may want to add the URL of a substitute
server without authorizing its key. See Section 5.3.4 [Substitute Authentication], page 47,
to understand this fine point.

5.3.4 Substitute Authentication

Guix detects and raises an error when attempting to use a substitute that has been tampered
with. Likewise, it ignores substitutes that are not signed, or that are not signed by one of
the keys listed in the ACL.

Chapter 5: Package Management 48

There is one exception though: if an unauthorized server provides substitutes that are
bit-for-bit identical to those provided by an authorized server, then the unauthorized server
becomes eligible for downloads. For example, assume we have chosen two substitute servers
with this option:

--substitute-urls="https://a.example.org https://b.example.org"

If the ACL contains only the key for ‘b.example.org’, and if ‘a.example.org’
happens to serve the exact same substitutes, then Guix will download substitutes from
‘a.example.org’ because it comes first in the list and can be considered a mirror of
‘b.example.org’. In practice, independent build machines usually produce the same
binaries, thanks to bit-reproducible builds (see below).

When using HTTPS, the server’s X.509 certificate is not validated (in other words, the
server is not authenticated), contrary to what HTTPS clients such as Web browsers usually
do. This is because Guix authenticates substitute information itself, as explained above,
which is what we care about (whereas X.509 certificates are about authenticating bindings
between domain names and public keys).

5.3.5 Proxy Settings

Substitutes are downloaded over HTTP or HTTPS. The http_proxy and https_proxy

environment variables can be set in the environment of guix-daemon and are honored
for downloads of substitutes. Note that the value of those environment variables in the
environment where guix build, guix package, and other client commands are run has
absolutely no effect.

5.3.6 Substitution Failure

Even when a substitute for a derivation is available, sometimes the substitution attempt
will fail. This can happen for a variety of reasons: the substitute server might be offline,
the substitute may recently have been deleted, the connection might have been interrupted,
etc.

When substitutes are enabled and a substitute for a derivation is available, but the
substitution attempt fails, Guix will attempt to build the derivation locally depending on
whether or not --fallback was given (see [common build option --fallback], page 174).
Specifically, if --fallback was omitted, then no local build will be performed, and the
derivation is considered to have failed. However, if --fallback was given, then Guix will
attempt to build the derivation locally, and the success or failure of the derivation depends
on the success or failure of the local build. Note that when substitutes are disabled or no
substitute is available for the derivation in question, a local build will always be performed,
regardless of whether or not --fallback was given.

To get an idea of how many substitutes are available right now, you can try running
the guix weather command (see Section 9.15 [Invoking guix weather], page 224). This
command provides statistics on the substitutes provided by a server.

5.3.7 On Trusting Binaries

Today, each individual’s control over their own computing is at the mercy of institutions,
corporations, and groups with enough power and determination to subvert the computing
infrastructure and exploit its weaknesses. While using substitutes can be convenient, we

Chapter 5: Package Management 49

encourage users to also build on their own, or even run their own build farm, such that
the project run substitute servers are less of an interesting target. One way to help is by
publishing the software you build using guix publish so that others have one more choice
of server to download substitutes from (see Section 9.11 [Invoking guix publish], page 216).

Guix has the foundations to maximize build reproducibility (see Section 5.1 [Features],
page 34). In most cases, independent builds of a given package or derivation should yield
bit-identical results. Thus, through a diverse set of independent package builds, we can
strengthen the integrity of our systems. The guix challenge command aims to help users
assess substitute servers, and to assist developers in finding out about non-deterministic
package builds (see Section 9.12 [Invoking guix challenge], page 220). Similarly, the --check
option of guix build allows users to check whether previously-installed substitutes are
genuine by rebuilding them locally (see [build-check], page 185).

In the future, we want Guix to have support to publish and retrieve binaries to/from
other users, in a peer-to-peer fashion. If you would like to discuss this project, join us on
guix-devel@gnu.org.

5.4 Packages with Multiple Outputs

Often, packages defined in Guix have a single output—i.e., the source package leads to
exactly one directory in the store. When running guix install glibc, one installs the
default output of the GNU libc package; the default output is called out, but its name can
be omitted as shown in this command. In this particular case, the default output of glibc
contains all the C header files, shared libraries, static libraries, Info documentation, and
other supporting files.

Sometimes it is more appropriate to separate the various types of files produced from
a single source package into separate outputs. For instance, the GLib C library (used
by GTK+ and related packages) installs more than 20 MiB of reference documentation as
HTML pages. To save space for users who do not need it, the documentation goes to a
separate output, called doc. To install the main GLib output, which contains everything
but the documentation, one would run:

guix install glib

The command to install its documentation is:

guix install glib:doc

While the colon syntax works for command-line specification of package outputs, it
will not work when using a package variable in Scheme code. For example, to add the
documentation of glib to the globally installed packages of an operating-system (see
Section 11.3 [operating-system Reference], page 242), a list of two items, the first one being
the package variable and the second one the name of the output to select (a string), must
be used instead:

(use-modules (gnu packages glib))

;; glib-with-documentation is the Guile symbol for the glib package

(operating-system

...

(packages

(append

mailto:guix-devel@gnu.org

Chapter 5: Package Management 50

(list (list glib-with-documentation "doc"))

%base-packages)))

Some packages install programs with different “dependency footprints”. For instance,
the WordNet package installs both command-line tools and graphical user interfaces (GUIs).
The former depend solely on the C library, whereas the latter depend on Tcl/Tk and the
underlying X libraries. In this case, we leave the command-line tools in the default output,
whereas the GUIs are in a separate output. This allows users who do not need the GUIs to
save space. The guix size command can help find out about such situations (see Section 9.9
[Invoking guix size], page 209). guix graph can also be helpful (see Section 9.10 [Invoking
guix graph], page 211).

There are several such multiple-output packages in the GNU distribution. Other conven-
tional output names include lib for libraries and possibly header files, bin for stand-alone
programs, and debug for debugging information (see Chapter 17 [Installing Debugging
Files], page 683). The outputs of a package are listed in the third column of the output of
guix package --list-available (see Section 5.2 [Invoking guix package], page 35).

5.5 Invoking guix locate

There’s so much free software out there that sooner or later, you will need to search for
packages. The guix search command that we’ve seen before (see Section 5.2 [Invoking guix
package], page 35) lets you search by keywords:

guix search video editor

Sometimes, you instead want to find which package provides a given file, and this is
where guix locate comes in. Here is how you can find which package provides the ls

command:

$ guix locate ls

coreutils@9.1 /gnu/store/...-coreutils-9.1/bin/ls

Of course the command works for any file, not just commands:

$ guix locate unistr.h

icu4c@71.1 /gnu/store/.../include/unicode/unistr.h

libunistring@1.0 /gnu/store/.../include/unistr.h

You may also specify glob patterns with wildcards. For example, here is how you would
search for packages providing .service files:

$ guix locate -g '*.service'

man-db@2.11.1 .../lib/systemd/system/man-db.service

wpa-supplicant@2.10 .../system-services/fi.w1.wpa_supplicant1.service

The guix locate command relies on a database that maps file names to package names.
By default, it automatically creates that database if it does not exist yet by traversing
packages available locally, which can take a few minutes (depending on the size of your
store and the speed of your storage device).

Note: For now, guix locate builds its database based on purely local
knowledge—meaning that you will not find packages that never reached your
store. Eventually it will support downloading a pre-built database so you can
potentially find more packages.

Chapter 5: Package Management 51

By default, guix locate first tries to look for a system-wide database, usually under
/var/cache/guix/locate; if it does not exist or is too old, it falls back to the per-user
database, by default under ~/.cache/guix/locate. On a multi-user system, administrators
may want to periodically update the system-wide database so that all users can benefit from
it, for instance by setting up package-database-service-type (see Section 11.10.11 [File
Search Services], page 367).

The general syntax is:

guix locate [options...] file...

... where file is the name of a file to search for (specifically, the “base name” of the file:
files whose parent directories are called file are not matched).

The available options are as follows:

--glob-g Interpret file . . . as glob patterns—patterns that may include wildcards, such
as ‘*.scm’ to denote all files ending in ‘.scm’.

--stats Display database statistics.

--update

-u Update the file database.

By default, the database is automatically updated when it is too old.

--clear Clear the database and re-populate it.

This option lets you start anew, ensuring old data is removed from the data-
base, which also avoids having an endlessly growing database. By default guix
locate automatically does that periodically, though infrequently.

--database=file

Use file as the database, creating it if necessary.

By default, guix locate picks the database under ~/.cache/guix or
/var/cache/guix, whichever is the most recent one.

--method=method

-m method Use method to select the set of packages to index. Possible values are:

manifests

This is the default method: it works by traversing profiles on the
machine and recording packages it encounters—packages you or
other users of the machine installed, directly or indirectly. It is
fast but it can miss other packages available in the store but not
referred to by any profile.

store This is a slower but more exhaustive method: it checks among
all the existing packages those that are available in the store and
records them.

5.6 Invoking guix gc

Packages that are installed, but not used, may be garbage-collected. The guix gc command
allows users to explicitly run the garbage collector to reclaim space from the /gnu/store

directory. It is the only way to remove files from /gnu/store—removing files or directories
manually may break it beyond repair!

Chapter 5: Package Management 52

The garbage collector has a set of known roots: any file under /gnu/store reachable
from a root is considered live and cannot be deleted; any other file is considered dead and
may be deleted. The set of garbage collector roots (“GC roots” for short) includes default
user profiles; by default, the symlinks under /var/guix/gcroots represent these GC roots.
New GC roots can be added with guix build --root, for example (see Section 9.1 [Invoking
guix build], page 173). The guix gc --list-roots command lists them.

Prior to running guix gc --collect-garbage to make space, it is often useful to remove
old generations from user profiles; that way, old package builds referenced by those genera-
tions can be reclaimed. This is achieved by running guix package --delete-generations

(see Section 5.2 [Invoking guix package], page 35).

Our recommendation is to run a garbage collection periodically, or when you are short
on disk space. For instance, to guarantee that at least 5 GB are available on your disk,
simply run:

guix gc -F 5G

It is perfectly safe to run as a non-interactive periodic job (see Section 11.10.2 [Scheduled
Job Execution], page 283, for how to set up such a job). Running guix gc with no arguments
will collect as much garbage as it can, but that is often inconvenient: you may find yourself
having to rebuild or re-download software that is “dead” from the GC viewpoint but that
is necessary to build other pieces of software—e.g., the compiler tool chain.

The guix gc command has three modes of operation: it can be used to garbage-collect
any dead files (the default), to delete specific files (the --delete option), to print garbage-
collector information, or for more advanced queries. The garbage collection options are as
follows:

--collect-garbage[=min]

-C [min] Collect garbage—i.e., unreachable /gnu/store files and sub-directories. This
is the default operation when no option is specified.

When min is given, stop once min bytes have been collected. min may be a
number of bytes, or it may include a unit as a suffix, such as MiB for mebibytes
and GB for gigabytes (see Section “Block size” in GNU Coreutils).

When min is omitted, collect all the garbage.

--free-space=free

-F free Collect garbage until free space is available under /gnu/store, if possible; free
denotes storage space, such as 500MiB, as described above.

When free or more is already available in /gnu/store, do nothing and exit
immediately.

--delete-generations[=duration]

-d [duration]

Before starting the garbage collection process, delete all the generations older
than duration, for all the user profiles and home environment generations; when
run as root, this applies to all the profiles of all the users.

For example, this command deletes all the generations of all your profiles that
are older than 2 months (except generations that are current), and then pro-
ceeds to free space until at least 10 GiB are available:

guix gc -d 2m -F 10G

Chapter 5: Package Management 53

--delete

-D Attempt to delete all the store files and directories specified as arguments. This
fails if some of the files are not in the store, or if they are still live.

--list-failures

List store items corresponding to cached build failures.

This prints nothing unless the daemon was started with --cache-failures

(see Section 2.3 [Invoking guix-daemon], page 11).

--list-roots

List the GC roots owned by the user; when run as root, list all the GC roots.

--list-busy

List store items in use by currently running processes. These store items are
effectively considered GC roots: they cannot be deleted.

--clear-failures

Remove the specified store items from the failed-build cache.

Again, this option only makes sense when the daemon is started with --cache-

failures. Otherwise, it does nothing.

--list-dead

Show the list of dead files and directories still present in the store—i.e., files
and directories no longer reachable from any root.

--list-live

Show the list of live store files and directories.

In addition, the references among existing store files can be queried:

--references

--referrers

List the references (respectively, the referrers) of store files given as arguments.

--requisites

-R List the requisites of the store files passed as arguments. Requisites include the
store files themselves, their references, and the references of these, recursively.
In other words, the returned list is the transitive closure of the store files.

See Section 9.9 [Invoking guix size], page 209, for a tool to profile the size of
the closure of an element. See Section 9.10 [Invoking guix graph], page 211, for
a tool to visualize the graph of references.

--derivers

Return the derivation(s) leading to the given store items (see Section 8.10
[Derivations], page 152).

For example, this command:

guix gc --derivers $(guix package -I ^emacs$ | cut -f4)

returns the .drv file(s) leading to the emacs package installed in your profile.

Note that there may be zero matching .drv files, for instance because these
files have been garbage-collected. There can also be more than one matching
.drv due to fixed-output derivations.

Chapter 5: Package Management 54

Lastly, the following options allow you to check the integrity of the store and to control
disk usage.

--verify[=options]

Verify the integrity of the store.

By default, make sure that all the store items marked as valid in the database
of the daemon actually exist in /gnu/store.

When provided, options must be a comma-separated list containing one or more
of contents and repair.

When passing --verify=contents, the daemon computes the content hash
of each store item and compares it against its hash in the database. Hash
mismatches are reported as data corruptions. Because it traverses all the files
in the store, this command can take a long time, especially on systems with a
slow disk drive.

Using --verify=repair or --verify=contents,repair causes the daemon to
try to repair corrupt store items by fetching substitutes for them (see Section 5.3
[Substitutes], page 44). Because repairing is not atomic, and thus potentially
dangerous, it is available only to the system administrator. A lightweight al-
ternative, when you know exactly which items in the store are corrupt, is guix
build --repair (see Section 9.1 [Invoking guix build], page 173).

--optimize

Optimize the store by hard-linking identical files—this is deduplication.

The daemon performs deduplication after each successful build or archive im-
port, unless it was started with --disable-deduplication (see Section 2.3
[Invoking guix-daemon], page 11). Thus, this option is primarily useful when
the daemon was running with --disable-deduplication.

--vacuum-database

Guix uses an sqlite database to keep track of the items in (see Section 8.9
[The Store], page 150). Over time it is possible that the database may grow
to a large size and become fragmented. As a result, one may wish to clear the
freed space and join the partially used pages in the database left behind from
removed packages or after running the garbage collector. Running sudo guix gc

--vacuum-database will lock the database and VACUUM the store, defragmenting
the database and purging freed pages, unlocking the database when it finishes.

5.7 Invoking guix pull

Packages are installed or upgraded to the latest version available in the distribution cur-
rently available on your local machine. To update that distribution, along with the Guix
tools, you must run guix pull: the command downloads the latest Guix source code and
package descriptions, and deploys it. Source code is downloaded from a Git (https://
git-scm.com/book/en/) repository, by default the official GNU Guix repository, though
this can be customized. guix pull ensures that the code it downloads is authentic by
verifying that commits are signed by Guix developers.

Specifically, guix pull downloads code from the channels (see Chapter 6 [Channels],
page 66) specified by one of the following, in this order:

https://git-scm.com/book/en/
https://git-scm.com/book/en/

Chapter 5: Package Management 55

1. the --channels option;

2. the user’s ~/.config/guix/channels.scm file, unless -q is passed;

3. the system-wide /etc/guix/channels.scm file, unless -q is passed (on Guix System,
this file can be declared in the operating system configuration, see [guix-configuration-
channels], page 273);

4. the built-in default channels specified in the %default-channels variable.

On completion, guix package will use packages and package versions from this just-
retrieved copy of Guix. Not only that, but all the Guix commands and Scheme modules
will also be taken from that latest version. New guix sub-commands added by the update
also become available.

Any user can update their Guix copy using guix pull, and the effect is limited to the
user who ran guix pull. For instance, when user root runs guix pull, this has no effect
on the version of Guix that user alice sees, and vice versa.

The result of running guix pull is a profile available under ~/.config/guix/current
containing the latest Guix. Thus, make sure to add it to the beginning of your search
path so that you use the latest version, and similarly for the Info manual (see Chapter 14
[Documentation], page 672):

export PATH="$HOME/.config/guix/current/bin:$PATH"

export INFOPATH="$HOME/.config/guix/current/share/info:$INFOPATH"

The --list-generations or -l option lists past generations produced by guix pull,
along with details about their provenance:

$ guix pull -l

Generation 1 Jun 10 2018 00:18:18

guix 65956ad

repository URL: https://git.savannah.gnu.org/git/guix.git

branch: origin/master

commit: 65956ad3526ba09e1f7a40722c96c6ef7c0936fe

Generation 2 Jun 11 2018 11:02:49

guix e0cc7f6

repository URL: https://git.savannah.gnu.org/git/guix.git

branch: origin/master

commit: e0cc7f669bec22c37481dd03a7941c7d11a64f1d

Generation 3 Jun 13 2018 23:31:07 (current)

guix 844cc1c

repository URL: https://git.savannah.gnu.org/git/guix.git

branch: origin/master

commit: 844cc1c8f394f03b404c5bb3aee086922373490c

See Section 5.10 [Invoking guix describe], page 61, for other ways to describe the current
status of Guix.

This ~/.config/guix/current profile works exactly like the profiles created by guix

package (see Section 5.2 [Invoking guix package], page 35). That is, you can list generations,
roll back to the previous generation—i.e., the previous Guix—and so on:

$ guix pull --roll-back

Chapter 5: Package Management 56

switched from generation 3 to 2

$ guix pull --delete-generations=1

deleting /var/guix/profiles/per-user/charlie/current-guix-1-link

You can also use guix package (see Section 5.2 [Invoking guix package], page 35) to
manage the profile by naming it explicitly:

$ guix package -p ~/.config/guix/current --roll-back

switched from generation 3 to 2

$ guix package -p ~/.config/guix/current --delete-generations=1

deleting /var/guix/profiles/per-user/charlie/current-guix-1-link

The guix pull command is usually invoked with no arguments, but it supports the
following options:

--url=url

--commit=commit

--branch=branch

Download code for the guix channel from the specified url, at the given commit
(a valid Git commit ID represented as a hexadecimal string or the name of a
tag), or branch.

These options are provided for convenience, but you can also specify your con-
figuration in the ~/.config/guix/channels.scm file or using the --channels
option (see below).

--channels=file

-C file Read the list of channels from file instead of ~/.config/guix/channels.scm or
/etc/guix/channels.scm. file must contain Scheme code that evaluates to a
list of channel objects. See Chapter 6 [Channels], page 66, for more information.

--no-channel-files

-q Inhibit loading of the user and system channel files, ~/.config/guix/channels.scm
and /etc/guix/channels.scm.

--news

-N Display news written by channel authors for their users for changes made since
the previous generation (see Chapter 6 [Channels], page 66). When --details

is passed, additionally display new and upgraded packages.

You can view that information for previous generations with guix pull -l.

--list-generations[=pattern]

-l [pattern]

List all the generations of ~/.config/guix/current or, if pattern is provided,
the subset of generations that match pattern. The syntax of pattern is the
same as with guix package --list-generations (see Section 5.2 [Invoking
guix package], page 35).

By default, this prints information about the channels used in each revision as
well as the corresponding news entries. If you pass --details, it will also print
the list of packages added and upgraded in each generation compared to the
previous one.

Chapter 5: Package Management 57

--details

Instruct --list-generations or --news to display more information about
the differences between subsequent generations—see above.

--roll-back

Roll back to the previous generation of ~/.config/guix/current—i.e., undo
the last transaction.

--switch-generation=pattern

-S pattern

Switch to a particular generation defined by pattern.

pattern may be either a generation number or a number prefixed with “+”
or “-”. The latter means: move forward/backward by a specified number of
generations. For example, if you want to return to the latest generation after
--roll-back, use --switch-generation=+1.

--delete-generations[=pattern]

-d [pattern]

When pattern is omitted, delete all generations except the current one.

This command accepts the same patterns as --list-generations. When pat-
tern is specified, delete the matching generations. When pattern specifies a
duration, generations older than the specified duration match. For instance,
--delete-generations=1m deletes generations that are more than one month
old.

If the current generation matches, it is not deleted.

Note that deleting generations prevents rolling back to them. Consequently,
this command must be used with care.

See Section 5.10 [Invoking guix describe], page 61, for a way to display infor-
mation about the current generation only.

--profile=profile

-p profile

Use profile instead of ~/.config/guix/current.

--dry-run

-n Show which channel commit(s) would be used and what would be built or
substituted but do not actually do it.

--allow-downgrades

Allow pulling older or unrelated revisions of channels than those currently in
use.

By default, guix pull protects against so-called “downgrade attacks” whereby
the Git repository of a channel would be reset to an earlier or unrelated revision
of itself, potentially leading you to install older, known-vulnerable versions of
software packages.

Note: Make sure you understand its security implications before
using --allow-downgrades.

--disable-authentication

Allow pulling channel code without authenticating it.

Chapter 5: Package Management 58

By default, guix pull authenticates code downloaded from channels by verify-
ing that its commits are signed by authorized developers, and raises an error if
this is not the case. This option instructs it to not perform any such verification.

Note: Make sure you understand its security implications before
using --disable-authentication.

--system=system

-s system Attempt to build for system—e.g., i686-linux—instead of the system type of
the build host.

--bootstrap

Use the bootstrap Guile to build the latest Guix. This option is only useful to
Guix developers.

The channel mechanism allows you to instruct guix pull which repository and branch
to pull from, as well as additional repositories containing package modules that should be
deployed. See Chapter 6 [Channels], page 66, for more information.

In addition, guix pull supports all the common build options (see Section 9.1.1 [Com-
mon Build Options], page 173).

5.8 Invoking guix time-machine

The guix time-machine command provides access to other revisions of Guix, for example to
install older versions of packages, or to reproduce a computation in an identical environment.
The revision of Guix to be used is defined by a commit or by a channel description file created
by guix describe (see Section 5.10 [Invoking guix describe], page 61).

Let’s assume that you want to travel to those days of November 2020 when version 1.2.0
of Guix was released and, once you’re there, run the guile of that time:

guix time-machine --commit=v1.2.0 -- \

environment -C --ad-hoc guile -- guile

The command above fetches Guix 1.2.0 (and possibly other channels specified by your
channels.scm configuration files—see below) and runs its guix environment command to
spawn an environment in a container running guile (guix environment has since been
subsumed by guix shell; see Section 7.1 [Invoking guix shell], page 76). It’s like driving
a DeLorean1! The first guix time-machine invocation can be expensive: it may have
to download or even build a large number of packages; the result is cached though and
subsequent commands targeting the same commit are almost instantaneous.

As for guix pull, in the absence of any options, time-machine fetches the latest commits
of the channels specified in ~/.config/guix/channels.scm, /etc/guix/channels.scm, or
the default channels; the -q option lets you ignore these configuration files. The command:

guix time-machine -q -- build hello

will thus build the package hello as defined in the main branch of Guix, without any
additional channel, which is in general a newer revision of Guix than you have installed.
Time travel works in both directions!

1 If you don’t know what a DeLorean is, consider traveling back to the 1980’s. (Back to the Future (1985)
(https://www.imdb.com/title/tt0088763/))

https://www.imdb.com/title/tt0088763/
https://www.imdb.com/title/tt0088763/

Chapter 5: Package Management 59

Note: The history of Guix is immutable and guix time-machine provides the
exact same software as they are in a specific Guix revision. Naturally, no secu-
rity fixes are provided for old versions of Guix or its channels. A careless use of
guix time-machine opens the door to security vulnerabilities. See Section 5.7
[Invoking guix pull], page 54.

guix time-machine raises an error when attempting to travel to commits older than
“v0.16.0” (commit ‘4a0b87f0’), dated Dec. 2018. This is one of the oldest commits sup-
porting the channel mechanism that makes “time travel” possible.

Note: Although it should technically be possible to travel to such an old commit,
the ease to do so will largely depend on the availability of binary substitutes.
When traveling to a distant past, some packages may not easily build from
source anymore. One such example are old versions of OpenSSL whose tests
would fail after a certain date. This particular problem can be worked around
by running a virtual build machine with its clock set to the right time (see
[build-vm], page 522).

The general syntax is:

guix time-machine options... -- command arg...

where command and arg . . . are passed unmodified to the guix command of the specified
revision. The options that define this revision are the same as for guix pull (see Section 5.7
[Invoking guix pull], page 54):

--url=url

--commit=commit

--branch=branch

Use the guix channel from the specified url, at the given commit (a valid Git
commit ID represented as a hexadecimal string or the name of a tag), or branch.

--channels=file

-C file Read the list of channels from file. file must contain Scheme code that evalu-
ates to a list of channel objects. See Chapter 6 [Channels], page 66, for more
information.

--no-channel-files

-q Inhibit loading of the user and system channel files, ~/.config/guix/channels.scm
and /etc/guix/channels.scm.

Thus, guix time-machine -q is equivalent to the following Bash command,
using the “process substitution” syntax (see Section “Process Substitution” in
The GNU Bash Reference Manual):

guix time-machine -C <(echo %default-channels) ...

Note that guix time-machine can trigger builds of channels and their dependencies,
and these are controlled by the standard build options (see Section 9.1.1 [Common Build
Options], page 173).

5.9 Inferiors

Note: The functionality described here is a “technology preview” as of version
db86261. As such, the interface is subject to change.

Chapter 5: Package Management 60

Sometimes you might need to mix packages from the revision of Guix you’re currently
running with packages available in a different revision of Guix. Guix inferiors allow you to
achieve that by composing different Guix revisions in arbitrary ways.

Technically, an “inferior” is essentially a separate Guix process connected to your main
Guix process through a REPL (see Section 8.13 [Invoking guix repl], page 168). The
(guix inferior) module allows you to create inferiors and to communicate with them.
It also provides a high-level interface to browse and manipulate the packages that an infe-
rior provides—inferior packages.

When combined with channels (see Chapter 6 [Channels], page 66), inferiors provide
a simple way to interact with a separate revision of Guix. For example, let’s assume
you want to install in your profile the current guile package, along with the guile-json

as it existed in an older revision of Guix—perhaps because the newer guile-json has an
incompatible API and you want to run your code against the old API. To do that, you could
write a manifest for use by guix package --manifest (see Section 8.4 [Writing Manifests],
page 113); in that manifest, you would create an inferior for that old Guix revision you care
about, and you would look up the guile-json package in the inferior:

(use-modules (guix inferior) (guix channels)

(srfi srfi-1)) ;for 'first'

(define channels

;; This is the old revision from which we want to

;; extract guile-json.

(list (channel

(name 'guix)

(url "https://git.savannah.gnu.org/git/guix.git")

(commit

"65956ad3526ba09e1f7a40722c96c6ef7c0936fe"))))

(define inferior

;; An inferior representing the above revision.

(inferior-for-channels channels))

;; Now create a manifest with the current "guile" package

;; and the old "guile-json" package.

(packages->manifest

(list (first (lookup-inferior-packages inferior "guile-json"))

(specification->package "guile")))

On its first run, guix package --manifest might have to build the channel you specified
before it can create the inferior; subsequent runs will be much faster because the Guix
revision will be cached.

The (guix inferior) module provides the following procedures to open an inferior:

[Procedure]inferior-for-channels channels [#:cache-directory] [#:ttl]
Return an inferior for channels, a list of channels. Use the cache at cache-directory,
where entries can be reclaimed after ttl seconds. This procedure opens a new con-
nection to the build daemon.

Chapter 5: Package Management 61

As a side effect, this procedure may build or substitute binaries for channels, which
can take time.

[Procedure]open-inferior directory [#:command "bin/guix"]
Open the inferior Guix in directory, running directory/command repl or equivalent.
Return #f if the inferior could not be launched.

The procedures listed below allow you to obtain and manipulate inferior packages.

[Procedure]inferior-packages inferior
Return the list of packages known to inferior.

[Procedure]lookup-inferior-packages inferior name [version]
Return the sorted list of inferior packages matching name in inferior, with highest
version numbers first. If version is true, return only packages with a version number
prefixed by version.

[Procedure]inferior-package? obj
Return true if obj is an inferior package.

[Procedure]inferior-package-name package
[Procedure]inferior-package-version package
[Procedure]inferior-package-synopsis package
[Procedure]inferior-package-description package
[Procedure]inferior-package-home-page package
[Procedure]inferior-package-location package
[Procedure]inferior-package-inputs package
[Procedure]inferior-package-native-inputs package
[Procedure]inferior-package-propagated-inputs package
[Procedure]inferior-package-transitive-propagated-inputs package
[Procedure]inferior-package-native-search-paths package
[Procedure]inferior-package-transitive-native-search-paths package
[Procedure]inferior-package-search-paths package

These procedures are the counterpart of package record accessors (see Section 8.2.1
[package Reference], page 101). Most of them work by querying the inferior package
comes from, so the inferior must still be live when you call these procedures.

Inferior packages can be used transparently like any other package or file-like object in
G-expressions (see Section 8.12 [G-Expressions], page 159). They are also transparently
handled by the packages->manifest procedure, which is commonly used in manifests (see
Section 5.2 [Invoking guix package], page 35). Thus you can insert an inferior package pretty
much anywhere you would insert a regular package: in manifests, in the packages field of
your operating-system declaration, and so on.

5.10 Invoking guix describe

Often you may want to answer questions like: “Which revision of Guix am I using?” or
“Which channels am I using?” This is useful information in many situations: if you want
to replicate an environment on a different machine or user account, if you want to report
a bug or to determine what change in the channels you are using caused it, or if you want

Chapter 5: Package Management 62

to record your system state for reproducibility purposes. The guix describe command
answers these questions.

When run from a guix pulled guix, guix describe displays the channel(s) that it was
built from, including their repository URL and commit IDs (see Chapter 6 [Channels],
page 66):

$ guix describe

Generation 10 Sep 03 2018 17:32:44 (current)

guix e0fa68c

repository URL: https://git.savannah.gnu.org/git/guix.git

branch: master

commit: e0fa68c7718fffd33d81af415279d6ddb518f727

If you’re familiar with the Git version control system, this is similar in spirit to git

describe; the output is also similar to that of guix pull --list-generations, but limited
to the current generation (see Section 5.7 [Invoking guix pull], page 54). Because the Git
commit ID shown above unambiguously refers to a snapshot of Guix, this information is all
it takes to describe the revision of Guix you’re using, and also to replicate it.

To make it easier to replicate Guix, guix describe can also be asked to return a list of
channels instead of the human-readable description above:

$ guix describe -f channels

(list (channel

(name 'guix)

(url "https://git.savannah.gnu.org/git/guix.git")

(commit

"e0fa68c7718fffd33d81af415279d6ddb518f727")

(introduction

(make-channel-introduction

"9edb3f66fd807b096b48283debdcddccfea34bad"

(openpgp-fingerprint

"BBB0 2DDF 2CEA F6A8 0D1D E643 A2A0 6DF2 A33A 54FA")))))

You can save this to a file and feed it to guix pull -C on some other machine or at a later
point in time, which will instantiate this exact Guix revision (see Section 5.7 [Invoking guix
pull], page 54). From there on, since you’re able to deploy the same revision of Guix, you
can just as well replicate a complete software environment. We humbly think that this is
awesome, and we hope you’ll like it too!

The details of the options supported by guix describe are as follows:

--format=format

-f format Produce output in the specified format, one of:

human produce human-readable output;

channels produce a list of channel specifications that can be passed to guix

pull -C or installed as ~/.config/guix/channels.scm (see Sec-
tion 5.7 [Invoking guix pull], page 54);

channels-sans-intro

like channels, but omit the introduction field; use it to produce
a channel specification suitable for Guix version 1.1.0 or earlier—

Chapter 5: Package Management 63

the introduction field has to do with channel authentication (see
Chapter 6 [Channels], page 66) and is not supported by these older
versions;

json produce a list of channel specifications in JSON format;

recutils produce a list of channel specifications in Recutils format.

--list-formats

Display available formats for --format option.

--profile=profile

-p profile

Display information about profile.

5.11 Invoking guix archive

The guix archive command allows users to export files from the store into a single archive,
and to later import them on a machine that runs Guix. In particular, it allows store files
to be transferred from one machine to the store on another machine.

Note: If you’re looking for a way to produce archives in a format suitable for
tools other than Guix, see Section 7.3 [Invoking guix pack], page 88.

To export store files as an archive to standard output, run:

guix archive --export options specifications...

specifications may be either store file names or package specifications, as for guix

package (see Section 5.2 [Invoking guix package], page 35). For instance, the following
command creates an archive containing the gui output of the git package and the main
output of emacs:

guix archive --export git:gui /gnu/store/...-emacs-24.3 > great.nar

If the specified packages are not built yet, guix archive automatically builds them. The
build process may be controlled with the common build options (see Section 9.1.1 [Common
Build Options], page 173).

To transfer the emacs package to a machine connected over SSH, one would run:

guix archive --export -r emacs | ssh the-machine guix archive --import

Similarly, a complete user profile may be transferred from one machine to another like this:

guix archive --export -r $(readlink -f ~/.guix-profile) | \

ssh the-machine guix archive --import

However, note that, in both examples, all of emacs and the profile as well as all of their
dependencies are transferred (due to -r), regardless of what is already available in the store
on the target machine. The --missing option can help figure out which items are missing
from the target store. The guix copy command simplifies and optimizes this whole process,
so this is probably what you should use in this case (see Section 9.13 [Invoking guix copy],
page 222).

Each store item is written in the normalized archive or nar format (described below),
and the output of guix archive --export (and input of guix archive --import) is a nar
bundle.

Chapter 5: Package Management 64

The nar format is comparable in spirit to ‘tar’, but with differences that make it more
appropriate for our purposes. First, rather than recording all Unix metadata for each
file, the nar format only mentions the file type (regular, directory, or symbolic link); Unix
permissions and owner/group are dismissed. Second, the order in which directory entries
are stored always follows the order of file names according to the C locale collation order.
This makes archive production fully deterministic.

That nar bundle format is essentially the concatenation of zero or more nars along with
metadata for each store item it contains: its file name, references, corresponding derivation,
and a digital signature.

When exporting, the daemon digitally signs the contents of the archive, and that digital
signature is appended. When importing, the daemon verifies the signature and rejects the
import in case of an invalid signature or if the signing key is not authorized.

The main options are:

--export Export the specified store files or packages (see below). Write the resulting
archive to the standard output.

Dependencies are not included in the output, unless --recursive is passed.

-r

--recursive

When combined with --export, this instructs guix archive to include de-
pendencies of the given items in the archive. Thus, the resulting archive is
self-contained: it contains the closure of the exported store items.

--import Read an archive from the standard input, and import the files listed therein into
the store. Abort if the archive has an invalid digital signature, or if it is signed
by a public key not among the authorized keys (see --authorize below).

--missing

Read a list of store file names from the standard input, one per line, and write
on the standard output the subset of these files missing from the store.

--generate-key[=parameters]

Generate a new key pair for the daemon. This is a prerequisite before archives
can be exported with --export. This operation is usually instantaneous but it
can take time if the system’s entropy pool needs to be refilled. On Guix System,
guix-service-type takes care of generating this key pair the first boot.

The generated key pair is typically stored under /etc/guix, in signing-

key.pub (public key) and signing-key.sec (private key, which must be kept
secret). When parameters is omitted, an ECDSA key using the Ed25519
curve is generated, or, for Libgcrypt versions before 1.6.0, it is a 4096-bit
RSA key. Alternatively, parameters can specify genkey parameters suitable
for Libgcrypt (see Section “General public-key related Functions” in The
Libgcrypt Reference Manual).

--authorize

Authorize imports signed by the public key passed on standard input. The
public key must be in “s-expression advanced format”—i.e., the same format
as the signing-key.pub file.

Chapter 5: Package Management 65

The list of authorized keys is kept in the human-editable file /etc/guix/acl.
The file contains “advanced-format s-expressions” (https://people.csail.
mit.edu/rivest/Sexp.txt) and is structured as an access-control list in the
Simple Public-Key Infrastructure (SPKI) (https://theworld.com/~cme/
spki.txt).

--extract=directory

-x directory

Read a single-item archive as served by substitute servers (see Section 5.3 [Sub-
stitutes], page 44) and extract it to directory. This is a low-level operation
needed in only very narrow use cases; see below.

For example, the following command extracts the substitute for Emacs served
by bordeaux.guix.gnu.org to /tmp/emacs:

$ wget -O - \

https://bordeaux.guix.gnu.org/nar/gzip/...-emacs-24.5 \

| gunzip | guix archive -x /tmp/emacs

Single-item archives are different from multiple-item archives produced by guix

archive --export; they contain a single store item, and they do not embed
a signature. Thus this operation does no signature verification and its output
should be considered unsafe.

The primary purpose of this operation is to facilitate inspection of archive
contents coming from possibly untrusted substitute servers (see Section 9.12
[Invoking guix challenge], page 220).

--list

-t Read a single-item archive as served by substitute servers (see Section 5.3 [Sub-
stitutes], page 44) and print the list of files it contains, as in this example:

$ wget -O - \

https://bordeaux.guix.gnu.org/nar/lzip/...-emacs-26.3 \

| lzip -d | guix archive -t

https://people.csail.mit.edu/rivest/Sexp.txt
https://people.csail.mit.edu/rivest/Sexp.txt
https://theworld.com/~cme/spki.txt
https://theworld.com/~cme/spki.txt

66

6 Channels

Guix and its package collection are updated by running guix pull. By default guix pull

downloads and deploys Guix itself from the official GNU Guix repository. This can be
customized by providing a file specifying the set of channels to pull from (see Section 5.7
[Invoking guix pull], page 54). A channel specifies the URL and branch of a Git repository
to be deployed, and guix pull can be instructed to pull from one or more channels. In
other words, channels can be used to customize and to extend Guix, as we will see below.
Guix is able to take into account security concerns and deal with authenticated updates.

6.1 Specifying Additional Channels

You can specify additional channels to pull from. To use a channel, write
~/.config/guix/channels.scm to instruct guix pull to pull from it in addition to the
default Guix channel(s):

;; Add variant packages to those Guix provides.

(cons (channel

(name 'variant-packages)

(url "https://example.org/variant-packages.git"))

%default-channels)

Note that the snippet above is (as always!) Scheme code; we use cons to add a channel the
list of channels that the variable %default-channels is bound to (see Section “Pairs” in
GNU Guile Reference Manual). With this file in place, guix pull builds not only Guix but
also the package modules from your own repository. The result in ~/.config/guix/current

is the union of Guix with your own package modules:

$ guix describe

Generation 19 Aug 27 2018 16:20:48

guix d894ab8

repository URL: https://git.savannah.gnu.org/git/guix.git

branch: master

commit: d894ab8e9bfabcefa6c49d9ba2e834dd5a73a300

variant-packages dd3df5e

repository URL: https://example.org/variant-packages.git

branch: master

commit: dd3df5e2c8818760a8fc0bd699e55d3b69fef2bb

The output of guix describe above shows that we’re now running Generation 19 and that
it includes both Guix and packages from the variant-packages channel (see Section 5.10
[Invoking guix describe], page 61).

6.2 Using a Custom Guix Channel

The channel called guix specifies where Guix itself—its command-line tools as well as its
package collection—should be downloaded. For instance, suppose you want to update from
another copy of the Guix repository at example.org, and specifically the super-hacks

branch, you can write in ~/.config/guix/channels.scm this specification:

;; Tell 'guix pull' to use another repo.

Chapter 6: Channels 67

(list (channel

(name 'guix)

(url "https://example.org/another-guix.git")

(branch "super-hacks")))

From there on, guix pull will fetch code from the super-hacks branch of the repository
at example.org. The authentication concern is addressed below (see Section 6.5 [Channel
Authentication], page 69).

Note that you can specify a local directory on the url field above if the channel that
you intend to use resides on a local file system. However, in this case guix checks said
directory for ownership before any further processing. This means that if the user is not
the directory owner, but wants to use it as their default, they will then need to set it as a
safe directory in their global git configuration file. Otherwise, guix will refuse to even read
it. Supposing your system-wide local directory is at /src/guix.git, you would then create
a git configuration file at ~/.gitconfig with the following contents:

[safe]

directory = /src/guix.git

This also applies to the root user unless when called with sudo by the directory owner.

6.3 Replicating Guix

The guix describe command shows precisely which commits were used to build the in-
stance of Guix we’re using (see Section 5.10 [Invoking guix describe], page 61). We can
replicate this instance on another machine or at a different point in time by providing a
channel specification “pinned” to these commits that looks like this:

;; Deploy specific commits of my channels of interest.

(list (channel

(name 'guix)

(url "https://git.savannah.gnu.org/git/guix.git")

(commit "6298c3ffd9654d3231a6f25390b056483e8f407c"))

(channel

(name 'variant-packages)

(url "https://example.org/variant-packages.git")

(commit "dd3df5e2c8818760a8fc0bd699e55d3b69fef2bb")))

To obtain this pinned channel specification, the easiest way is to run guix describe and
to save its output in the channels format in a file, like so:

guix describe -f channels > channels.scm

The resulting channels.scm file can be passed to the -C option of guix pull (see Sec-
tion 5.7 [Invoking guix pull], page 54) or guix time-machine (see Section 5.8 [Invoking guix
time-machine], page 58), as in this example:

guix time-machine -C channels.scm -- shell python -- python3

Given the channels.scm file, the command above will always fetch the exact same Guix
instance, then use that instance to run the exact same Python (see Section 7.1 [Invoking
guix shell], page 76). On any machine, at any time, it ends up running the exact same
binaries, bit for bit.

Chapter 6: Channels 68

Pinned channels address a problem similar to “lock files” as implemented by some de-
ployment tools—they let you pin and reproduce a set of packages. In the case of Guix
though, you are effectively pinning the entire package set as defined at the given channel
commits; in fact, you are pinning all of Guix, including its core modules and command-line
tools. You’re also getting strong guarantees that you are, indeed, obtaining the exact same
software.

This gives you super powers, allowing you to track the provenance of binary artifacts
with very fine grain, and to reproduce software environments at will—some sort of “meta
reproducibility” capabilities, if you will. See Section 5.9 [Inferiors], page 59, for another
way to take advantage of these super powers.

6.4 Customizing the System-Wide Guix

If you’re running Guix System or building system images with it, maybe you will
want to customize the system-wide guix it provides—specifically, /run/current-

system/profile/bin/guix. For example, you might want to provide additional channels
or to pin its revision.

This can be done using the guix-for-channels procedure, which returns a package for
the given channels, and using it as part of your operating system configuration, as in this
example:

(use-modules (guix channels))

(define my-channels

;; Channels that should be available to

;; /run/current-system/profile/bin/guix.

(append

(list (channel

(name 'guix-science)

(url "https://github.com/guix-science/guix-science")

(branch "master")))

%default-channels))

(operating-system

;; ...

(services

;; Change the package used by 'guix-service-type'.

(modify-services %base-services

(guix-service-type

config => (guix-configuration

(inherit config)

(channels my-channels)

(guix (guix-for-channels my-channels)))))))

The resulting operating system will have both the guix and the guix-science channels
visible by default. The channels field of guix-configuration above further ensures that
/etc/guix/channels.scm, which is used by guix pull, specifies the same set of channels
(see [guix-configuration-channels], page 273).

Chapter 6: Channels 69

The (gnu packages package-management) module exports the guix-for-channels

procedure, described below.

[Procedure]guix-for-channels channels
Return a package corresponding to channels.

The result is a “regular” package, which can be used in guix-configuration as
shown above or in any other place that expects a package.

6.5 Channel Authentication

The guix pull and guix time-machine commands authenticate the code retrieved from
channels: they make sure each commit that is fetched is signed by an authorized developer.
The goal is to protect from unauthorized modifications to the channel that would lead users
to run malicious code.

As a user, you must provide a channel introduction in your channels file so that Guix
knows how to authenticate its first commit. A channel specification, including its introduc-
tion, looks something along these lines:

(channel

(name 'some-channel)

(url "https://example.org/some-channel.git")

(introduction

(make-channel-introduction

"6f0d8cc0d88abb59c324b2990bfee2876016bb86"

(openpgp-fingerprint

"CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5"))))

The specification above shows the name and URL of the channel. The call to make-

channel-introduction above specifies that authentication of this channel starts at commit
6f0d8cc..., which is signed by the OpenPGP key with fingerprint CABB A931....

For the main channel, called guix, you automatically get that information from your
Guix installation. For other channels, include the channel introduction provided by the
channel authors in your channels.scm file. Make sure you retrieve the channel introduction
from a trusted source since that is the root of your trust.

If you’re curious about the authentication mechanics, read on!

6.6 Channels with Substitutes

When running guix pull, Guix will first compile the definitions of every available package.
This is an expensive operation for which substitutes (see Section 5.3 [Substitutes], page 44)
may be available. The following snippet in channels.scm will ensure that guix pull uses
the latest commit with available substitutes for the package definitions: this is done by
querying the continuous integration server at https://ci.guix.gnu.org.

(use-modules (guix ci))

(list (channel-with-substitutes-available

%default-guix-channel

"https://ci.guix.gnu.org"))

https://ci.guix.gnu.org

Chapter 6: Channels 70

Note that this does not mean that all the packages that you will install after running
guix pull will have available substitutes. It only ensures that guix pull will not try to
compile package definitions. This is particularly useful when using machines with limited
resources.

6.7 Creating a Channel

Let’s say you have a bunch of custom package variants or personal packages that you think
would make little sense to contribute to the Guix project, but would like to have these
packages transparently available to you at the command line. By creating a channel, you
can use and publish such a package collection. This involves the following steps:

1. A channel lives in a Git repository so the first step, when creating a channel, is to
create its repository:

mkdir my-channel

cd my-channel

git init

2. The next step is to create files containing package modules (see Section 8.1 [Package
Modules], page 97), each of which will contain one or more package definitions (see
Section 8.2 [Defining Packages], page 98). A channel can provide things other than
packages, such as build systems or services; we’re using packages as it’s the most
common use case.

For example, Alice might want to provide a module called (alice packages

greetings) that will provide her favorite “hello world” implementations. To do that
Alice will create a directory corresponding to that module name.

mkdir -p alice/packages

$EDITOR alice/packages/greetings.scm

git add alice/packages/greetings.scm

You can name your package modules however you like; the main constraint to keep
in mind is to avoid name clashes with other package collections, which is why our
hypothetical Alice wisely chose the (alice packages ...) name space.

Note that you can also place modules in a sub-directory of the repository; see Section 6.8
[Package Modules in a Sub-directory], page 71, for more info on that.

3. With this first module in place, the next step is to test the packages it provides. This
can be done with guix build, which needs to be told to look for modules in the Git
checkout. For example, assuming (alice packages greetings) provides a package
called hi-from-alice, Alice will run this command from the Git checkout:

guix build -L. hi-from-alice

... where -L. adds the current directory to Guile’s load path (see Section “Load Paths”
in GNU Guile Reference Manual).

4. It might take Alice a few iterations to obtain satisfying package definitions. Eventually
Alice will commit this file:

git commit

As a channel author, consider bundling authentication material with your channel so
that users can authenticate it. See Section 6.5 [Channel Authentication], page 69, and
Section 6.10 [Specifying Channel Authorizations], page 72, for info on how to do it.

Chapter 6: Channels 71

5. To use Alice’s channel, anyone can now add it to their channel file (see Section 6.1
[Specifying Additional Channels], page 66) and run guix pull (see Section 5.7 [Invoking
guix pull], page 54):

$EDITOR ~/.config/guix/channels.scm

guix pull

Guix will now behave as if the root directory of that channel’s Git repository had
been permanently added to the Guile load path. In this example, (alice packages

greetings) will automatically be found by the guix command.

Voilà!

Warning: Before you publish your channel, we would like to share a few words
of caution:

• Before publishing a channel, please consider contributing your package def-
initions to Guix proper (see Chapter 22 [Contributing], page 698). Guix as
a project is open to free software of all sorts, and packages in Guix proper
are readily available to all Guix users and benefit from the project’s quality
assurance process.

• Package modules and package definitions are Scheme code that uses var-
ious programming interfaces (APIs). We, Guix developers, never change
APIs gratuitously, but we do not commit to freezing APIs either. When
you maintain package definitions outside Guix, we consider that the com-
patibility burden is on you.

• Corollary: if you’re using an external channel and that channel breaks,
please report the issue to the channel authors, not to the Guix project.

You’ve been warned! Having said this, we believe external channels are a practi-
cal way to exert your freedom to augment Guix’ package collection and to share
your improvements, which are basic tenets of free software (https://www.gnu.
org/philosophy/free-sw.html). Please email us at guix-devel@gnu.org if
you’d like to discuss this.

6.8 Package Modules in a Sub-directory

As a channel author, you may want to keep your channel modules in a sub-directory. If
your modules are in the sub-directory guix, you must add a meta-data file .guix-channel
that contains:

(channel

(version 0)

(directory "guix"))

The modules must be underneath the specified directory, as the directory changes
Guile’s load-path. For example, if .guix-channel has (directory "base"), then
a module defined as (define-module (gnu packages fun)) must be located at
base/gnu/packages/fun.scm.

Doing this allows for only parts of a repository to be used as a channel, as Guix expects
valid Guile modules when pulling. For instance, guix deploy machine configuration files
are not valid Guile modules, and treating them as such would make guix pull fail.

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
mailto:guix-devel@gnu.org

Chapter 6: Channels 72

6.9 Declaring Channel Dependencies

Channel authors may decide to augment a package collection provided by other channels.
They can declare their channel to be dependent on other channels in a meta-data file
.guix-channel, which is to be placed in the root of the channel repository.

The meta-data file should contain a simple S-expression like this:

(channel

(version 0)

(dependencies

(channel

(name some-collection)

(url "https://example.org/first-collection.git")

;; The 'introduction' bit below is optional: you would

;; provide it for dependencies that can be authenticated.

(introduction

(channel-introduction

(version 0)

(commit "a8883b58dc82e167c96506cf05095f37c2c2c6cd")

(signer "CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5"))))

(channel

(name some-other-collection)

(url "https://example.org/second-collection.git")

(branch "testing"))))

In the above example this channel is declared to depend on two other channels, which
will both be fetched automatically. The modules provided by the channel will be compiled
in an environment where the modules of all these declared channels are available.

For the sake of reliability and maintainability, you should avoid dependencies on chan-
nels that you don’t control, and you should aim to keep the number of dependencies to a
minimum.

6.10 Specifying Channel Authorizations

As we saw above, Guix ensures the source code it pulls from channels comes from authorized
developers. As a channel author, you need to specify the list of authorized developers in
the .guix-authorizations file in the channel’s Git repository. The authentication rule is
simple: each commit must be signed by a key listed in the .guix-authorizations file of
its parent commit(s)1 The .guix-authorizations file looks like this:

;; Example '.guix-authorizations' file.

(authorizations

(version 0) ;current file format version

1 Git commits form a directed acyclic graph (DAG). Each commit can have zero or more parents; “regular”
commits have one parent and merge commits have two parent commits. Read Git for Computer Scientists
(https://eagain.net/articles/git-for-computer-scientists/) for a great overview.

https://eagain.net/articles/git-for-computer-scientists/
https://eagain.net/articles/git-for-computer-scientists/

Chapter 6: Channels 73

(("AD17 A21E F8AE D8F1 CC02 DBD9 F8AE D8F1 765C 61E3"

(name "alice"))

("2A39 3FFF 68F4 EF7A 3D29 12AF 68F4 EF7A 22FB B2D5"

(name "bob"))

("CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5"

(name "charlie"))))

Each fingerprint is followed by optional key/value pairs, as in the example above. Cur-
rently these key/value pairs are ignored.

This authentication rule creates a chicken-and-egg issue: how do we authenticate the
first commit? Related to that: how do we deal with channels whose repository history
contains unsigned commits and lack .guix-authorizations? And how do we fork existing
channels?

Channel introductions answer these questions by describing the first commit of a channel
that should be authenticated. The first time a channel is fetched with guix pull or guix
time-machine, the command looks up the introductory commit and verifies that it is signed
by the specified OpenPGP key. From then on, it authenticates commits according to the
rule above. Authentication fails if the target commit is neither a descendant nor an ancestor
of the introductory commit.

Additionally, your channel must provide all the OpenPGP keys that were ever mentioned
in .guix-authorizations, stored as .key files, which can be either binary or “ASCII-
armored”. By default, those .key files are searched for in the branch named keyring but
you can specify a different branch name in .guix-channel like so:

(channel

(version 0)

(keyring-reference "my-keyring-branch"))

To summarize, as the author of a channel, there are three things you have to do to allow
users to authenticate your code:

1. Export the OpenPGP keys of past and present committers with gpg --export and store
them in .key files, by default in a branch named keyring (we recommend making it
an orphan branch).

2. Introduce an initial .guix-authorizations in the channel’s repository. Do that in a
signed commit (see Section 22.12 [Commit Access], page 731, for information on how
to sign Git commits.)

3. Advertise the channel introduction, for instance on your channel’s web page. The
channel introduction, as we saw above, is the commit/key pair—i.e., the commit that
introduced .guix-authorizations, and the fingerprint of the OpenPGP used to sign
it.

Before pushing to your public Git repository, you can run guix git authenticate to
verify that you did sign all the commits you are about to push with an authorized key:

guix git authenticate commit signer

where commit and signer are your channel introduction. See Section 7.5 [Invoking guix git
authenticate], page 95, for details.

Publishing a signed channel requires discipline: any mistake, such as an unsigned com-
mit or a commit signed by an unauthorized key, will prevent users from pulling from your

Chapter 6: Channels 74

channel—well, that’s the whole point of authentication! Pay attention to merges in particu-
lar: merge commits are considered authentic if and only if they are signed by a key present
in the .guix-authorizations file of both branches.

6.11 Primary URL

Channel authors can indicate the primary URL of their channel’s Git repository in the
.guix-channel file, like so:

(channel

(version 0)

(url "https://example.org/guix.git"))

This allows guix pull to determine whether it is pulling code from a mirror of the
channel; when that is the case, it warns the user that the mirror might be stale and displays
the primary URL. That way, users cannot be tricked into fetching code from a stale mirror
that does not receive security updates.

This feature only makes sense for authenticated repositories, such as the official guix
channel, for which guix pull ensures the code it fetches is authentic.

6.12 Writing Channel News

Channel authors may occasionally want to communicate to their users information about
important changes in the channel. You’d send them all an email, but that’s not convenient.

Instead, channels can provide a news file; when the channel users run guix pull, that
news file is automatically read and guix pull --news can display the announcements that
correspond to the new commits that have been pulled, if any.

To do that, channel authors must first declare the name of the news file in their .guix-
channel file:

(channel

(version 0)

(news-file "etc/news.txt"))

The news file itself, etc/news.txt in this example, must look something like this:

(channel-news

(version 0)

(entry (tag "the-bug-fix")

(title (en "Fixed terrible bug")

(fr "Oh la la"))

(body (en "@emph{Good news}! It's fixed!")

(eo "Certe ĝi pli bone funkcias nun!")))

(entry (commit "bdcabe815cd28144a2d2b4bc3c5057b051fa9906")

(title (en "Added a great package")

(ca "Què vol dir guix?"))

(body (en "Don't miss the @code{hello} package!"))))

While the news file is using the Scheme syntax, avoid naming it with a .scm extension
or else it will get picked up when building the channel and yield an error since it is not a
valid module. Alternatively, you can move the channel module to a subdirectory and store
the news file in another directory.

Chapter 6: Channels 75

The file consists of a list of news entries. Each entry is associated with a commit or tag:
it describes changes made in this commit, possibly in preceding commits as well. Users see
entries only the first time they obtain the commit the entry refers to.

The title field should be a one-line summary while body can be arbitrarily long, and
both can contain Texinfo markup (see Section “Overview” in GNU Texinfo). Both the title
and body are a list of language tag/message tuples, which allows guix pull to display news
in the language that corresponds to the user’s locale.

If you want to translate news using a gettext-based workflow, you can extract translatable
strings with xgettext (see Section “xgettext Invocation” in GNU Gettext Utilities). For
example, assuming you write news entries in English first, the command below creates a
PO file containing the strings to translate:

xgettext -o news.po -l scheme -ken etc/news.txt

To sum up, yes, you could use your channel as a blog. But beware, this is not quite what
your users might expect.

76

7 Development

If you are a software developer, Guix provides tools that you should find helpful—
independently of the language you’re developing in. This is what this chapter is
about.

The guix shell command provides a convenient way to set up one-off software envi-
ronments, be it for development purposes or to run a command without installing it in
your profile. The guix pack command allows you to create application bundles that can
be easily distributed to users who do not run Guix.

7.1 Invoking guix shell

The purpose of guix shell is to make it easy to create one-off software environments,
without changing one’s profile. It is typically used to create development environments; it
is also a convenient way to run applications without “polluting” your profile.

Note: The guix shell command was recently introduced to supersede guix

environment (see Section 7.2 [Invoking guix environment], page 83). If you are
familiar with guix environment, you will notice that it is similar but also—we
hope!—more convenient.

The general syntax is:

guix shell [options] [package...]

The following example creates an environment containing Python and NumPy, building
or downloading any missing package, and runs the python3 command in that environment:

guix shell python python-numpy -- python3

Note that it is necessary to include the main python package in this command even if
it is already installed into your environment. This is so that the shell environment knows
to set PYTHONPATH and other related variables. The shell environment cannot check the
previously installed environment, because then it would be non-deterministic. This is true
for most libraries: their corresponding language package should be included in the shell
invocation.

Note:

guix shell can be also be used as a script interpreter, also known as shebang.
Here is an example self-contained Python script making use of this feature:

#!/usr/bin/env -S guix shell python python-numpy -- python3

import numpy

print("This is numpy", numpy.version.version)

You may pass any guix shell option, but there’s one caveat: the Linux kernel
has a limit of 127 bytes on shebang length.

Development environments can be created as in the example below, which spawns an
interactive shell containing all the dependencies and environment variables needed to work
on Inkscape:

guix shell --development inkscape

Exiting the shell places the user back in the original environment before guix shell was
invoked. The next garbage collection (see Section 5.6 [Invoking guix gc], page 51) may clean

Chapter 7: Development 77

up packages that were installed in the environment and that are no longer used outside of
it.

As an added convenience, guix shell will try to do what you mean when it is invoked
interactively without any other arguments as in:

guix shell

If it finds a manifest.scm in the current working directory or any of its parents, it uses
this manifest as though it was given via --manifest. Likewise, if it finds a guix.scm in the
same directories, it uses it to build a development profile as though both --development

and --file were present. In either case, the file will only be loaded if the directory it
resides in is listed in ~/.config/guix/shell-authorized-directories. This provides an
easy way to define, share, and enter development environments.

By default, the shell session or command runs in an augmented environment, where
the new packages are added to search path environment variables such as PATH. You can,
instead, choose to create an isolated environment containing nothing but the packages you
asked for. Passing the --pure option clears environment variable definitions found in the
parent environment1; passing --container goes one step further by spawning a container
isolated from the rest of the system:

guix shell --container emacs gcc-toolchain

The command above spawns an interactive shell in a container where nothing but emacs,
gcc-toolchain, and their dependencies is available. The container lacks network access and
shares no files other than the current working directory with the surrounding environment.
This is useful to prevent access to system-wide resources such as /usr/bin on foreign distros.

This --container option can also prove useful if you wish to run a security-sensitive
application, such as a web browser, in an isolated environment. For example, the command
below launches Ungoogled-Chromium in an isolated environment, which:

• shares network access with the host

• inherits host’s environment variables DISPLAY and XAUTHORITY

• has access to host’s authentication records from the XAUTHORITY file

• has no information about host’s current directory

guix shell --container --network --no-cwd ungoogled-chromium \

--preserve='^XAUTHORITY$' --expose="${XAUTHORITY}" \

--preserve='^DISPLAY$' -- chromium

guix shell defines the GUIX_ENVIRONMENT variable in the shell it spawns; its value is
the file name of the profile of this environment. This allows users to, say, define a specific
prompt for development environments in their .bashrc (see Section “Bash Startup Files”
in The GNU Bash Reference Manual):

if [-n "$GUIX_ENVIRONMENT"]

then

export PS1="\u@\h \w [dev]\$ "

fi

1 Be sure to use the --check option the first time you use guix shell interactively to make sure the shell
does not undo the effect of --pure.

Chapter 7: Development 78

... or to browse the profile:

$ ls "$GUIX_ENVIRONMENT/bin"

The available options are summarized below.

--check Set up the environment and check whether the shell would clobber environment
variables. It’s a good idea to use this option the first time you run guix shell

for an interactive session to make sure your setup is correct.

For example, if the shell modifies the PATH environment variable, report it since
you would get a different environment than what you asked for.

Such problems usually indicate that the shell startup files are unexpectedly
modifying those environment variables. For example, if you are using Bash,
make sure that environment variables are set or modified in ~/.bash_profile

and not in ~/.bashrc—the former is sourced only by log-in shells. See Section
“Bash Startup Files” in The GNU Bash Reference Manual, for details on Bash
start-up files.

--development

-D Cause guix shell to include in the environment the dependencies of the fol-
lowing package rather than the package itself. This can be combined with other
packages. For instance, the command below starts an interactive shell contain-
ing the build-time dependencies of GNU Guile, plus Autoconf, Automake, and
Libtool:

guix shell -D guile autoconf automake libtool

--expression=expr

-e expr Create an environment for the package or list of packages that expr evaluates
to.

For example, running:

guix shell -D -e '(@ (gnu packages maths) petsc-openmpi)'

starts a shell with the environment for this specific variant of the PETSc pack-
age.

Running:

guix shell -e '(@ (gnu) %base-packages)'

starts a shell with all the base system packages available.

The above commands only use the default output of the given packages. To
select other outputs, two element tuples can be specified:

guix shell -e '(list (@ (gnu packages bash) bash) "include")'

See [package-development-manifest], page 117, for information on how to write
a manifest for the development environment of a package.

--file=file

-f file Create an environment containing the package or list of packages that the code
within file evaluates to.

As an example, file might contain a definition like this (see Section 8.2 [Defining
Packages], page 98):

(use-modules (guix)

Chapter 7: Development 79

(gnu packages gdb)

(gnu packages autotools)

(gnu packages texinfo))

;; Augment the package definition of GDB with the build tools

;; needed when developing GDB (and which are not needed when

;; simply installing it.)

(package

(inherit gdb)

(native-inputs (modify-inputs (package-native-inputs gdb)

(prepend autoconf-2.69 automake texinfo))))

With the file above, you can enter a development environment for GDB by
running:

guix shell -D -f gdb-devel.scm

--manifest=file

-m file Create an environment for the packages contained in the manifest object re-
turned by the Scheme code in file. This option can be repeated several times,
in which case the manifests are concatenated.

This is similar to the same-named option in guix package (see
[profile-manifest], page 39) and uses the same manifest files.

See Section 8.4 [Writing Manifests], page 113, for information on how to write
a manifest. See --export-manifest below on how to obtain a first manifest.

--export-manifest

Write to standard output a manifest suitable for --manifest corresponding to
given command-line options.

This is a way to “convert” command-line arguments into a manifest. For exam-
ple, imagine you are tired of typing long lines and would like to get a manifest
equivalent to this command line:

guix shell -D guile git emacs emacs-geiser emacs-geiser-guile

Just add --export-manifest to the command line above:

guix shell --export-manifest \

-D guile git emacs emacs-geiser emacs-geiser-guile

... and you get a manifest along these lines:

(concatenate-manifests

(list (specifications->manifest

(list "git"

"emacs"

"emacs-geiser"

"emacs-geiser-guile"))

(package->development-manifest

(specification->package "guile"))))

You can store it into a file, say manifest.scm, and from there pass it to guix

shell or indeed pretty much any guix command:

guix shell -m manifest.scm

Chapter 7: Development 80

Voilà, you’ve converted a long command line into a manifest! That conver-
sion process honors package transformation options (see Section 9.1.2 [Package
Transformation Options], page 175) so it should be lossless.

--profile=profile

-p profile

Create an environment containing the packages installed in profile. Use guix

package (see Section 5.2 [Invoking guix package], page 35) to create and manage
profiles.

--pure Unset existing environment variables when building the new environment, ex-
cept those specified with --preserve (see below). This has the effect of creating
an environment in which search paths only contain package inputs.

--preserve=regexp

-E regexp When used alongside --pure, preserve the environment variables matching reg-
exp—in other words, put them on a “white list” of environment variables that
must be preserved. This option can be repeated several times.

guix shell --pure --preserve=^SLURM openmpi ... \

-- mpirun ...

This example runs mpirun in a context where the only environment variables
defined are PATH, environment variables whose name starts with ‘SLURM’, as well
as the usual “precious” variables (HOME, USER, etc.).

--search-paths

Display the environment variable definitions that make up the environment.

--system=system

-s system Attempt to build for system—e.g., i686-linux.

--container

-C Run command within an isolated container. The current working directory out-
side the container is mapped inside the container. Additionally, unless overrid-
den with --user, a dummy home directory is created that matches the current
user’s home directory, and /etc/passwd is configured accordingly.

The spawned process runs as the current user outside the container. Inside the
container, it has the same UID and GID as the current user, unless --user is
passed (see below).

--network

-N For containers, share the network namespace with the host system. Containers
created without this flag only have access to the loopback device.

--link-profile

-P For containers, link the environment profile to ~/.guix-profile within the
container and set GUIX_ENVIRONMENT to that. This is equivalent to making
~/.guix-profile a symlink to the actual profile within the container. Linking
will fail and abort the environment if the directory already exists, which will
certainly be the case if guix shell was invoked in the user’s home directory.

Chapter 7: Development 81

Certain packages are configured to look in ~/.guix-profile for configuration
files and data;2 --link-profile allows these programs to behave as expected
within the environment.

--user=user

-u user For containers, use the username user in place of the current user. The gener-
ated /etc/passwd entry within the container will contain the name user, the
home directory will be /home/user, and no user GECOS data will be copied.
Furthermore, the UID and GID inside the container are 1000. user need not
exist on the system.

Additionally, any shared or exposed path (see --share and --expose respec-
tively) whose target is within the current user’s home directory will be remapped
relative to /home/USER; this includes the automatic mapping of the current
working directory.

will expose paths as /home/foo/wd, /home/foo/test, and /home/foo/target

cd $HOME/wd

guix shell --container --user=foo \

--expose=$HOME/test \

--expose=/tmp/target=$HOME/target

While this will limit the leaking of user identity through home paths and each of
the user fields, this is only one useful component of a broader privacy/anonymity
solution—not one in and of itself.

--no-cwd For containers, the default behavior is to share the current working directory
with the isolated container and immediately change to that directory within
the container. If this is undesirable, --no-cwd will cause the current working
directory to not be automatically shared and will change to the user’s home
directory within the container instead. See also --user.

--expose=source[=target]

--share=source[=target]

For containers, --expose (resp. --share) exposes the file system source from
the host system as the read-only (resp. writable) file system target within the
container. If target is not specified, source is used as the target mount point in
the container.

The example below spawns a Guile REPL in a container in which the user’s
home directory is accessible read-only via the /exchange directory:

guix shell --container --expose=$HOME=/exchange guile -- guile

--symlink=spec

-S spec For containers, create the symbolic links specified by spec, as documented in
[pack-symlink-option], page 94.

--emulate-fhs

-F When used with --container, emulate a Filesystem Hierarchy Standard (FHS)
(https://refspecs.linuxfoundation.org/fhs.shtml) configuration within

2 For example, the fontconfig package inspects ~/.guix-profile/share/fonts for additional fonts.

https://refspecs.linuxfoundation.org/fhs.shtml
https://refspecs.linuxfoundation.org/fhs.shtml

Chapter 7: Development 82

the container, providing /bin, /lib, and other directories and files specified by
the FHS.

As Guix deviates from the FHS specification, this option sets up the container
to more closely mimic that of other GNU/Linux distributions. This is useful
for reproducing other development environments, testing, and using programs
which expect the FHS specification to be followed. With this option, the con-
tainer will include a version of glibc that will read /etc/ld.so.cache within
the container for the shared library cache (contrary to glibc in regular Guix
usage) and set up the expected FHS directories: /bin, /etc, /lib, and /usr

from the container’s profile.

--nesting

-W When used with --container, provide Guix inside the container and arrange so
that it can interact with the build daemon that runs outside the container. This
is useful if you want, within your isolated container, to create other containers,
as in this sample session:

$ guix shell -CW coreutils

[env]$ guix shell -C guile -- guile -c '(display "hello!\n")'

hello!

[env]$ exit

The session above starts a container with coreutils programs available in
PATH. From there, we spawn guix shell to create a nested container that
provides nothing but Guile.

Another example is evaluating a guix.scm file that is untrusted, as shown here:

guix shell -CW -- guix build -f guix.scm

The guix build command as executed above can only access the current direc-
tory.

Under the hood, the -W option does several things:

• map the daemon’s socket (by default /var/guix/daemon-socket/socket)
inside the container;

• map the whole store (by default /gnu/store) inside the container such
that store items made available by nested guix invocations are visible;

• add the currently-used guix command to the profile in the container, such
that guix describe returns the same state inside and outside the con-
tainer;

• share the cache (by default ~/.cache/guix) with the host, to speed up
operations such as guix time-machine and guix shell.

--rebuild-cache

In most cases, guix shell caches the environment so that subsequent uses
are instantaneous. Least-recently used cache entries are periodically removed.
The cache is also invalidated, when using --file or --manifest, anytime the
corresponding file is modified.

The --rebuild-cache forces the cached environment to be refreshed. This is
useful when using --file or --manifest and the guix.scm or manifest.scm

Chapter 7: Development 83

file has external dependencies, or if its behavior depends, say, on environment
variables.

--root=file

-r file Make file a symlink to the profile for this environment, and register it as a
garbage collector root.

This is useful if you want to protect your environment from garbage collection,
to make it “persistent”.

When this option is omitted, guix shell caches profiles so that subsequent uses
of the same environment are instantaneous—this is comparable to using --root
except that guix shell takes care of periodically removing the least-recently
used garbage collector roots.

In some cases, guix shell does not cache profiles—e.g., if transformation op-
tions such as --with-latest are used. In those cases, the environment is
protected from garbage collection only for the duration of the guix shell ses-
sion. This means that next time you recreate the same environment, you could
have to rebuild or re-download packages.

See Section 5.6 [Invoking guix gc], page 51, for more on GC roots.

guix shell also supports all of the common build options that guix build supports
(see Section 9.1.1 [Common Build Options], page 173) as well as package transformation
options (see Section 9.1.2 [Package Transformation Options], page 175).

7.2 Invoking guix environment

The purpose of guix environment is to assist in creating development environments.

Deprecation warning: The guix environment command is deprecated in favor
of guix shell, which performs similar functions but is more convenient to use.
See Section 7.1 [Invoking guix shell], page 76.

Being deprecated, guix environment is slated for eventual removal, but the
Guix project is committed to keeping it until May 1st, 2023. Please get in
touch with us at guix-devel@gnu.org if you would like to discuss it.

The general syntax is:

guix environment options package...

The following example spawns a new shell set up for the development of GNU Guile:

guix environment guile

If the needed dependencies are not built yet, guix environment automatically builds
them. The environment of the new shell is an augmented version of the environment that
guix environment was run in. It contains the necessary search paths for building the given
package added to the existing environment variables. To create a “pure” environment, in
which the original environment variables have been unset, use the --pure option3.

3 Users sometimes wrongfully augment environment variables such as PATH in their ~/.bashrc file. As
a consequence, when guix environment launches it, Bash may read ~/.bashrc, thereby introducing
“impurities” in these environment variables. It is an error to define such environment variables in
.bashrc; instead, they should be defined in .bash_profile, which is sourced only by log-in shells. See
Section “Bash Startup Files” in The GNU Bash Reference Manual, for details on Bash start-up files.

mailto:guix-devel@gnu.org

Chapter 7: Development 84

Exiting from a Guix environment is the same as exiting from the shell, and will place the
user back in the old environment before guix environment was invoked. The next garbage
collection (see Section 5.6 [Invoking guix gc], page 51) will clean up packages that were
installed from within the environment and are no longer used outside of it.

guix environment defines the GUIX_ENVIRONMENT variable in the shell it spawns; its
value is the file name of the profile of this environment. This allows users to, say, define a
specific prompt for development environments in their .bashrc (see Section “Bash Startup
Files” in The GNU Bash Reference Manual):

if [-n "$GUIX_ENVIRONMENT"]

then

export PS1="\u@\h \w [dev]\$ "

fi

... or to browse the profile:

$ ls "$GUIX_ENVIRONMENT/bin"

Additionally, more than one package may be specified, in which case the union of the
inputs for the given packages are used. For example, the command below spawns a shell
where all of the dependencies of both Guile and Emacs are available:

guix environment guile emacs

Sometimes an interactive shell session is not desired. An arbitrary command may be
invoked by placing the -- token to separate the command from the rest of the arguments:

guix environment guile -- make -j4

In other situations, it is more convenient to specify the list of packages needed in the
environment. For example, the following command runs python from an environment con-
taining Python 3 and NumPy:

guix environment --ad-hoc python-numpy python -- python3

Furthermore, one might want the dependencies of a package and also some additional
packages that are not build-time or runtime dependencies, but are useful when developing
nonetheless. Because of this, the --ad-hoc flag is positional. Packages appearing before
--ad-hoc are interpreted as packages whose dependencies will be added to the environment.
Packages appearing after are interpreted as packages that will be added to the environment
directly. For example, the following command creates a Guix development environment
that additionally includes Git and strace:

guix environment --pure guix --ad-hoc git strace

Sometimes it is desirable to isolate the environment as much as possible, for maximal
purity and reproducibility. In particular, when using Guix on a host distro that is not Guix
System, it is desirable to prevent access to /usr/bin and other system-wide resources from
the development environment. For example, the following command spawns a Guile REPL
in a “container” where only the store and the current working directory are mounted:

guix environment --ad-hoc --container guile -- guile

Note: The --container option requires Linux-libre 3.19 or newer.

Another typical use case for containers is to run security-sensitive applications such as a
web browser. To run Eolie, we must expose and share some files and directories; we include
nss-certs and expose /etc/ssl/certs/ for HTTPS authentication; finally we preserve

Chapter 7: Development 85

the DISPLAY environment variable since containerized graphical applications won’t display
without it.

guix environment --preserve='^DISPLAY$' --container --network \

--expose=/etc/machine-id \

--expose=/etc/ssl/certs/ \

--share=$HOME/.local/share/eolie/=$HOME/.local/share/eolie/ \

--ad-hoc eolie nss-certs dbus -- eolie

The available options are summarized below.

--check Set up the environment and check whether the shell would clobber environment
variables. See Section 7.1 [Invoking guix shell], page 76, for more info.

--root=file

-r file Make file a symlink to the profile for this environment, and register it as a
garbage collector root.

This is useful if you want to protect your environment from garbage collection,
to make it “persistent”.

When this option is omitted, the environment is protected from garbage collec-
tion only for the duration of the guix environment session. This means that
next time you recreate the same environment, you could have to rebuild or
re-download packages. See Section 5.6 [Invoking guix gc], page 51, for more on
GC roots.

--expression=expr

-e expr Create an environment for the package or list of packages that expr evaluates
to.

For example, running:

guix environment -e '(@ (gnu packages maths) petsc-openmpi)'

starts a shell with the environment for this specific variant of the PETSc pack-
age.

Running:

guix environment --ad-hoc -e '(@ (gnu) %base-packages)'

starts a shell with all the base system packages available.

The above commands only use the default output of the given packages. To
select other outputs, two element tuples can be specified:

guix environment --ad-hoc -e '(list (@ (gnu packages bash) bash) "include")'

--load=file

-l file Create an environment for the package or list of packages that the code within
file evaluates to.

As an example, file might contain a definition like this (see Section 8.2 [Defining
Packages], page 98):

(use-modules (guix)

(gnu packages gdb)

(gnu packages autotools)

(gnu packages texinfo))

Chapter 7: Development 86

;; Augment the package definition of GDB with the build tools

;; needed when developing GDB (and which are not needed when

;; simply installing it.)

(package

(inherit gdb)

(native-inputs (modify-inputs (package-native-inputs gdb)

(prepend autoconf-2.69 automake texinfo))))

--manifest=file

-m file Create an environment for the packages contained in the manifest object re-
turned by the Scheme code in file. This option can be repeated several times,
in which case the manifests are concatenated.

This is similar to the same-named option in guix package (see
[profile-manifest], page 39) and uses the same manifest files.

See [shell-export-manifest], page 79, for information on how to “convert”
command-line options into a manifest.

--ad-hoc Include all specified packages in the resulting environment, as if an ad hoc
package were defined with them as inputs. This option is useful for quickly
creating an environment without having to write a package expression to contain
the desired inputs.

For instance, the command:

guix environment --ad-hoc guile guile-sdl -- guile

runs guile in an environment where Guile and Guile-SDL are available.

Note that this example implicitly asks for the default output of guile and
guile-sdl, but it is possible to ask for a specific output—e.g., glib:bin asks
for the bin output of glib (see Section 5.4 [Packages with Multiple Outputs],
page 49).

This option may be composed with the default behavior of guix environment.
Packages appearing before --ad-hoc are interpreted as packages whose depen-
dencies will be added to the environment, the default behavior. Packages ap-
pearing after are interpreted as packages that will be added to the environment
directly.

--profile=profile

-p profile

Create an environment containing the packages installed in profile. Use guix

package (see Section 5.2 [Invoking guix package], page 35) to create and manage
profiles.

--pure Unset existing environment variables when building the new environment, ex-
cept those specified with --preserve (see below). This has the effect of creating
an environment in which search paths only contain package inputs.

--preserve=regexp

-E regexp When used alongside --pure, preserve the environment variables matching reg-
exp—in other words, put them on a “white list” of environment variables that
must be preserved. This option can be repeated several times.

Chapter 7: Development 87

guix environment --pure --preserve=^SLURM --ad-hoc openmpi ... \

-- mpirun ...

This example runs mpirun in a context where the only environment variables
defined are PATH, environment variables whose name starts with ‘SLURM’, as well
as the usual “precious” variables (HOME, USER, etc.).

--search-paths

Display the environment variable definitions that make up the environment.

--system=system

-s system Attempt to build for system—e.g., i686-linux.

--container

-C Run command within an isolated container. The current working directory out-
side the container is mapped inside the container. Additionally, unless overrid-
den with --user, a dummy home directory is created that matches the current
user’s home directory, and /etc/passwd is configured accordingly.

The spawned process runs as the current user outside the container. Inside the
container, it has the same UID and GID as the current user, unless --user is
passed (see below).

--network

-N For containers, share the network namespace with the host system. Containers
created without this flag only have access to the loopback device.

--link-profile

-P For containers, link the environment profile to ~/.guix-profile within the
container and set GUIX_ENVIRONMENT to that. This is equivalent to making
~/.guix-profile a symlink to the actual profile within the container. Link-
ing will fail and abort the environment if the directory already exists, which
will certainly be the case if guix environment was invoked in the user’s home
directory.

Certain packages are configured to look in ~/.guix-profile for configuration
files and data;4 --link-profile allows these programs to behave as expected
within the environment.

--user=user

-u user For containers, use the username user in place of the current user. The gener-
ated /etc/passwd entry within the container will contain the name user, the
home directory will be /home/user, and no user GECOS data will be copied.
Furthermore, the UID and GID inside the container are 1000. user need not
exist on the system.

Additionally, any shared or exposed path (see --share and --expose respec-
tively) whose target is within the current user’s home directory will be remapped
relative to /home/USER; this includes the automatic mapping of the current
working directory.

will expose paths as /home/foo/wd, /home/foo/test, and /home/foo/target

4 For example, the fontconfig package inspects ~/.guix-profile/share/fonts for additional fonts.

Chapter 7: Development 88

cd $HOME/wd

guix environment --container --user=foo \

--expose=$HOME/test \

--expose=/tmp/target=$HOME/target

While this will limit the leaking of user identity through home paths and each of
the user fields, this is only one useful component of a broader privacy/anonymity
solution—not one in and of itself.

--no-cwd For containers, the default behavior is to share the current working directory
with the isolated container and immediately change to that directory within
the container. If this is undesirable, --no-cwd will cause the current working
directory to not be automatically shared and will change to the user’s home
directory within the container instead. See also --user.

--expose=source[=target]

--share=source[=target]

For containers, --expose (resp. --share) exposes the file system source from
the host system as the read-only (resp. writable) file system target within the
container. If target is not specified, source is used as the target mount point in
the container.

The example below spawns a Guile REPL in a container in which the user’s
home directory is accessible read-only via the /exchange directory:

guix environment --container --expose=$HOME=/exchange --ad-hoc guile -- guile

--emulate-fhs

-F For containers, emulate a Filesystem Hierarchy Standard (FHS) configura-
tion within the container, see the official specification (https://refspecs.
linuxfoundation.org/fhs.shtml). As Guix deviates from the FHS specifi-
cation, this option sets up the container to more closely mimic that of other
GNU/Linux distributions. This is useful for reproducing other development
environments, testing, and using programs which expect the FHS specification
to be followed. With this option, the container will include a version of glibc
which will read /etc/ld.so.cache within the container for the shared library
cache (contrary to glibc in regular Guix usage) and set up the expected FHS
directories: /bin, /etc, /lib, and /usr from the container’s profile.

guix environment also supports all of the common build options that guix build sup-
ports (see Section 9.1.1 [Common Build Options], page 173) as well as package transforma-
tion options (see Section 9.1.2 [Package Transformation Options], page 175).

7.3 Invoking guix pack

Occasionally you want to pass software to people who are not (yet!) lucky enough to be
using Guix. You’d tell them to run guix package -i something, but that’s not possible in
this case. This is where guix pack comes in.

Note: If you are looking for ways to exchange binaries among machines that
already run Guix, see Section 9.13 [Invoking guix copy], page 222, Section 9.11
[Invoking guix publish], page 216, and Section 5.11 [Invoking guix archive],
page 63.

https://refspecs.linuxfoundation.org/fhs.shtml
https://refspecs.linuxfoundation.org/fhs.shtml

Chapter 7: Development 89

The guix pack command creates a shrink-wrapped pack or software bundle: it creates
a tarball or some other archive containing the binaries of the software you’re interested
in, and all its dependencies. The resulting archive can be used on any machine that does
not have Guix, and people can run the exact same binaries as those you have with Guix.
The pack itself is created in a bit-reproducible fashion, so anyone can verify that it really
contains the build results that you pretend to be shipping.

For example, to create a bundle containing Guile, Emacs, Geiser, and all their depen-
dencies, you can run:

$ guix pack guile emacs emacs-geiser

...

/gnu/store/...-pack.tar.gz

The result here is a tarball containing a /gnu/store directory with all the relevant
packages. The resulting tarball contains a profile with the three packages of interest; the
profile is the same as would be created by guix package -i. It is this mechanism that is
used to create Guix’s own standalone binary tarball (see Section 2.1 [Binary Installation],
page 4).

Users of this pack would have to run /gnu/store/...-profile/bin/guile to run Guile,
which you may find inconvenient. To work around it, you can create, say, a /opt/gnu/bin

symlink to the profile:

guix pack -S /opt/gnu/bin=bin guile emacs emacs-geiser

That way, users can happily type /opt/gnu/bin/guile and enjoy.

What if the recipient of your pack does not have root privileges on their machine, and
thus cannot unpack it in the root file system? In that case, you will want to use the
--relocatable option (see below). This option produces relocatable binaries, meaning
they can be placed anywhere in the file system hierarchy: in the example above, users can
unpack your tarball in their home directory and directly run ./opt/gnu/bin/guile.

Alternatively, you can produce a pack in the Docker image format using the following
command:

guix pack -f docker -S /bin=bin guile guile-readline

The result is a tarball that can be passed to the docker load command, followed by docker

run:

docker load < file

docker run -ti guile-guile-readline /bin/guile

where file is the image returned by guix pack, and guile-guile-readline is its “im-
age tag”. See the Docker documentation (https://docs.docker.com/engine/reference/
commandline/load/) for more information.

Yet another option is to produce a SquashFS image with the following command:

guix pack -f squashfs bash guile emacs emacs-geiser

The result is a SquashFS file system image that can either be mounted or directly
be used as a file system container image with the Singularity container execution
environment (https://www.sylabs.io/docs/), using commands like singularity shell

or singularity exec.

https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/load/
https://www.sylabs.io/docs/
https://www.sylabs.io/docs/

Chapter 7: Development 90

Several command-line options allow you to customize your pack:

--format=format

-f format Produce a pack in the given format.

The available formats are:

tarball This is the default format. It produces a tarball containing all the
specified binaries and symlinks.

docker This produces a tarball that follows the Docker Image Specification
(https://github.com/docker/docker/blob/master/image/
spec/v1.2.md). By default, the “repository name” as it appears
in the output of the docker images command is computed from
package names passed on the command line or in the manifest file.
Alternatively, the “repository name” can also be configured via the
--image-tag option. Refer to --help-docker-format for more
information on such advanced options.

squashfs This produces a SquashFS image containing all the specified bina-
ries and symlinks, as well as empty mount points for virtual file
systems like procfs.

Note: Singularity requires you to provide /bin/sh in
the image. For that reason, guix pack -f squashfs

always implies -S /bin=bin. Thus, your guix pack in-
vocation must always start with something like:

guix pack -f squashfs bash ...

If you forget the bash (or similar) package,
singularity run and singularity exec will fail
with an unhelpful “no such file or directory” message.

deb This produces a Debian archive (a package with the ‘.deb’ file ex-
tension) containing all the specified binaries and symbolic links,
that can be installed on top of any dpkg-based GNU(/Linux) dis-
tribution. Advanced options can be revealed via the --help-deb-

format option. They allow embedding control files for more fine-
grained control, such as activating specific triggers or providing a
maintainer configure script to run arbitrary setup code upon instal-
lation.

guix pack -f deb -C xz -S /usr/bin/hello=bin/hello hello

Note: Because archives produced with guix pack con-
tain a collection of store items and because each dpkg

package must not have conflicting files, in practice that
means you likely won’t be able to install more than one
such archive on a given system. You can nonetheless
pack as many Guix packages as you want in one such
archive.

Warning: dpkg will assume ownership of any files con-
tained in the pack that it does not know about. It is

https://github.com/docker/docker/blob/master/image/spec/v1.2.md
https://github.com/docker/docker/blob/master/image/spec/v1.2.md
https://github.com/docker/docker/blob/master/image/spec/v1.2.md

Chapter 7: Development 91

unwise to install Guix-produced ‘.deb’ files on a system
where /gnu/store is shared by other software, such as
a Guix installation or other, non-deb packs.

rpm This produces an RPM archive (a package with the ‘.rpm’ file ex-
tension) containing all the specified binaries and symbolic links,
that can be installed on top of any RPM-based GNU/Linux dis-
tribution. The RPM format embeds checksums for every file it
contains, which the rpm command uses to validate the integrity of
the archive.

Advanced RPM-related options are revealed via the --help-rpm-

format option. These options allow embedding maintainer scripts
that can run before or after the installation of the RPM archive,
for example.

The RPM format supports relocatable packages via the --prefix

option of the rpm command, which can be handy to install an RPM
package to a specific prefix.

guix pack -f rpm -R -C xz -S /usr/bin/hello=bin/hello hello

sudo rpm --install --prefix=/opt /gnu/store/...-hello.rpm

Note: Contrary to Debian packages, conflicting but
identical files in RPM packages can be installed simul-
taneously, which means multiple guix pack-produced
RPM packages can usually be installed side by side
without any problem.

Warning: rpm assumes ownership of any files contained
in the pack, which means it will remove /gnu/store

upon uninstalling a Guix-generated RPM package,
unless the RPM package was installed with the
--prefix option of the rpm command. It is unwise to
install Guix-produced ‘.rpm’ packages on a system
where /gnu/store is shared by other software, such
as a Guix installation or other, non-rpm packs.

--relocatable

-R Produce relocatable binaries—i.e., binaries that can be placed anywhere in the
file system hierarchy and run from there.

When this option is passed once, the resulting binaries require support for user
namespaces in the kernel Linux; when passed twice5, relocatable binaries fall
to back to other techniques if user namespaces are unavailable, and essentially
work anywhere—see below for the implications.

For example, if you create a pack containing Bash with:

guix pack -RR -S /mybin=bin bash

... you can copy that pack to a machine that lacks Guix, and from your home
directory as a normal user, run:

5 Here’s a trick to memorize it: -RR, which adds PRoot support, can be thought of as the abbreviation of
“Really Relocatable”. Neat, isn’t it?

Chapter 7: Development 92

tar xf pack.tar.gz

./mybin/sh

In that shell, if you type ls /gnu/store, you’ll notice that /gnu/store shows
up and contains all the dependencies of bash, even though the machine actually
lacks /gnu/store altogether! That is probably the simplest way to deploy Guix-
built software on a non-Guix machine.

Note: By default, relocatable binaries rely on the user names-
pace feature of the kernel Linux, which allows unprivileged users
to mount or change root. Old versions of Linux did not support it,
and some GNU/Linux distributions turn it off.

To produce relocatable binaries that work even in the absence of
user namespaces, pass --relocatable or -R twice. In that case,
binaries will try user namespace support and fall back to another
execution engine if user namespaces are not supported. The fol-
lowing execution engines are supported:

default Try user namespaces and fall back to PRoot if user
namespaces are not supported (see below).

performance

Try user namespaces and fall back to Fakechroot if user
namespaces are not supported (see below).

userns Run the program through user namespaces and abort
if they are not supported.

proot Run through PRoot. The PRoot (https://proot-me.
github.io/) program provides the necessary support
for file system virtualization. It achieves that by using
the ptrace system call on the running program. This
approach has the advantage to work without requiring
special kernel support, but it incurs run-time overhead
every time a system call is made.

fakechroot

Run through Fakechroot. Fakechroot (https://
github.com/dex4er/fakechroot/) virtualizes file sys-
tem accesses by intercepting calls to C library functions
such as open, stat, exec, and so on. Unlike PRoot,
it incurs very little overhead. However, it does not
always work: for example, some file system accesses
made from within the C library are not intercepted,
and file system accesses made via direct syscalls are
not intercepted either, leading to erratic behavior.

When running a wrapped program, you can explicitly request one of
the execution engines listed above by setting the GUIX_EXECUTION_
ENGINE environment variable accordingly.

https://proot-me.github.io/
https://proot-me.github.io/
https://github.com/dex4er/fakechroot/
https://github.com/dex4er/fakechroot/

Chapter 7: Development 93

--entry-point=command

Use command as the entry point of the resulting pack, if the pack format sup-
ports it—currently docker and squashfs (Singularity) support it. command
must be relative to the profile contained in the pack.

The entry point specifies the command that tools like docker run or
singularity run automatically start by default. For example, you can do:

guix pack -f docker --entry-point=bin/guile guile

The resulting pack can easily be loaded and docker run with no extra argu-
ments will spawn bin/guile:

docker load -i pack.tar.gz

docker run image-id

--entry-point-argument=command

-A command

Use command as an argument to entry point of the resulting pack. This option
is only valid in conjunction with --entry-point and can appear multiple times
on the command line.

guix pack -f docker --entry-point=bin/guile --entry-point-argument="--help" guile

--max-layers=n

Specifies the maximum number of Docker image layers allowed when building
an image.

guix pack -f docker --max-layers=100 guile

This option allows you to limit the number of layers in a Docker image. Docker
images are comprised of multiple layers, and each layer adds to the overall size
and complexity of the image. By setting a maximum number of layers, you can
control the following effects:

• Disk Usage: Increasing the number of layers can help optimize the disk
space required to store multiple images built with a similar package graph.

• Pulling: When transferring images between different nodes or systems,
having more layers can reduce the time required to pull the image.

--expression=expr

-e expr Consider the package expr evaluates to.

This has the same purpose as the same-named option in guix build (see Sec-
tion 9.1.3 [Additional Build Options], page 181).

--manifest=file

-m file Use the packages contained in the manifest object returned by the Scheme code
in file. This option can be repeated several times, in which case the manifests
are concatenated.

This has a similar purpose as the same-named option in guix package (see
[profile-manifest], page 39) and uses the same manifest files. It allows you to
define a collection of packages once and use it both for creating profiles and for
creating archives for use on machines that do not have Guix installed. Note
that you can specify either a manifest file or a list of packages, but not both.

Chapter 7: Development 94

See Section 8.4 [Writing Manifests], page 113, for information on how to write
a manifest. See [shell-export-manifest], page 79, for information on how to
“convert” command-line options into a manifest.

--system=system

-s system Attempt to build for system—e.g., i686-linux—instead of the system type of
the build host.

--target=triplet

Cross-build for triplet, which must be a valid GNU triplet, such as "aarch64-
linux-gnu" (see Section “Specifying target triplets” in Autoconf).

--compression=tool

-C tool Compress the resulting tarball using tool—one of gzip, zstd, bzip2, xz, lzip,
or none for no compression.

--symlink=spec

-S spec Add the symlinks specified by spec to the pack. This option can appear several
times.

spec has the form source=target, where source is the symlink that will be
created and target is the symlink target.

For instance, -S /opt/gnu/bin=bin creates a /opt/gnu/bin symlink pointing
to the bin sub-directory of the profile.

--save-provenance

Save provenance information for the packages passed on the command line.
Provenance information includes the URL and commit of the channels in use
(see Chapter 6 [Channels], page 66).

Provenance information is saved in the /gnu/store/...-profile/manifest

file in the pack, along with the usual package metadata—the name and version
of each package, their propagated inputs, and so on. It is useful information
to the recipient of the pack, who then knows how the pack was (supposedly)
obtained.

This option is not enabled by default because, like timestamps, provenance
information contributes nothing to the build process. In other words, there is
an infinity of channel URLs and commit IDs that can lead to the same pack.
Recording such “silent” metadata in the output thus potentially breaks the
source-to-binary bitwise reproducibility property.

--root=file

-r file Make file a symlink to the resulting pack, and register it as a garbage collector
root.

--localstatedir

--profile-name=name

Include the “local state directory”, /var/guix, in the resulting pack, and
notably the /var/guix/profiles/per-user/root/name profile—by default
name is guix-profile, which corresponds to ~root/.guix-profile.

/var/guix contains the store database (see Section 8.9 [The Store], page 150)
as well as garbage-collector roots (see Section 5.6 [Invoking guix gc], page 51).

Chapter 7: Development 95

Providing it in the pack means that the store is “complete” and manageable by
Guix; not providing it pack means that the store is “dead”: items cannot be
added to it or removed from it after extraction of the pack.

One use case for this is the Guix self-contained binary tarball (see Section 2.1
[Binary Installation], page 4).

--derivation

-d Print the name of the derivation that builds the pack.

--bootstrap

Use the bootstrap binaries to build the pack. This option is only useful to Guix
developers.

In addition, guix pack supports all the common build options (see Section 9.1.1 [Com-
mon Build Options], page 173) and all the package transformation options (see Section 9.1.2
[Package Transformation Options], page 175).

7.4 The GCC toolchain

If you need a complete toolchain for compiling and linking C or C++ source code, use the
gcc-toolchain package. This package provides a complete GCC toolchain for C/C++ de-
velopment, including GCC itself, the GNU C Library (headers and binaries, plus debugging
symbols in the debug output), Binutils, and a linker wrapper.

The wrapper’s purpose is to inspect the -L and -l switches passed to the linker, add
corresponding -rpath arguments, and invoke the actual linker with this new set of argu-
ments. You can instruct the wrapper to refuse to link against libraries not in the store by
setting the GUIX_LD_WRAPPER_ALLOW_IMPURITIES environment variable to no.

The package gfortran-toolchain provides a complete GCC toolchain for Fortran de-
velopment. For other languages, please use ‘guix search gcc toolchain’ (see [Invoking
guix package], page 41).

7.5 Invoking guix git authenticate

The guix git authenticate command authenticates a Git checkout following the same
rule as for channels (see [channel-authentication], page 69). That is, starting from a given
commit, it ensures that all subsequent commits are signed by an OpenPGP key whose
fingerprint appears in the .guix-authorizations file of its parent commit(s).

You will find this command useful if you maintain a channel. But in fact, this authen-
tication mechanism is useful in a broader context, so you might want to use it for Git
repositories that have nothing to do with Guix.

The general syntax is:

guix git authenticate commit signer [options...]

By default, this command authenticates the Git checkout in the current directory; it
outputs nothing and exits with exit code zero on success and non-zero on failure. com-
mit above denotes the first commit where authentication takes place, and signer is the
OpenPGP fingerprint of public key used to sign commit. Together, they form a “chan-
nel introduction” (see [channel-authentication], page 69). The options below allow you to
fine-tune the process.

Chapter 7: Development 96

--repository=directory

-r directory

Open the Git repository in directory instead of the current directory.

--keyring=reference

-k reference

Load OpenPGP keyring from reference, the reference of a branch such as
origin/keyring or my-keyring. The branch must contain OpenPGP pub-
lic keys in .key files, either in binary form or “ASCII-armored”. By default the
keyring is loaded from the branch named keyring.

--end=commit

Authenticate revisions up to commit.

--stats Display commit signing statistics upon completion.

--cache-key=key

Previously-authenticated commits are cached in a file under
~/.cache/guix/authentication. This option forces the cache to be
stored in file key in that directory.

--historical-authorizations=file

By default, any commit whose parent commit(s) lack the .guix-

authorizations file is considered inauthentic. In contrast, this
option considers the authorizations in file for any commit that lacks
.guix-authorizations. The format of file is the same as that of
.guix-authorizations (see [channel-authorizations], page 72).

97

8 Programming Interface

GNU Guix provides several Scheme programming interfaces (APIs) to define, build, and
query packages. The first interface allows users to write high-level package definitions.
These definitions refer to familiar packaging concepts, such as the name and version of a
package, its build system, and its dependencies. These definitions can then be turned into
concrete build actions.

Build actions are performed by the Guix daemon, on behalf of users. In a standard
setup, the daemon has write access to the store—the /gnu/store directory—whereas users
do not. The recommended setup also has the daemon perform builds in chroots, under
specific build users, to minimize interference with the rest of the system.

Lower-level APIs are available to interact with the daemon and the store. To instruct the
daemon to perform a build action, users actually provide it with a derivation. A derivation
is a low-level representation of the build actions to be taken, and the environment in which
they should occur—derivations are to package definitions what assembly is to C programs.
The term “derivation” comes from the fact that build results derive from them.

This chapter describes all these APIs in turn, starting from high-level package definitions.
See Section 22.7 [Source Tree Structure], page 707, for a more general overview of the source
code.

8.1 Package Modules

From a programming viewpoint, the package definitions of the GNU distribution are pro-
vided by Guile modules in the (gnu packages ...) name space1 (see Section “Modules” in
GNU Guile Reference Manual). For instance, the (gnu packages emacs) module exports
a variable named emacs, which is bound to a <package> object (see Section 8.2 [Defining
Packages], page 98).

The (gnu packages ...) module name space is automatically scanned for packages by
the command-line tools. For instance, when running guix install emacs, all the (gnu

packages ...) modules are scanned until one that exports a package object whose name is
emacs is found. This package search facility is implemented in the (gnu packages) module.

Users can store package definitions in modules with different names—e.g., (my-packages
emacs)2. There are two ways to make these package definitions visible to the user interfaces:

1. By adding the directory containing your package modules to the search path with the -L
flag of guix package and other commands (see Section 9.1.1 [Common Build Options],
page 173), or by setting the GUIX_PACKAGE_PATH environment variable described below.

2. By defining a channel and configuring guix pull so that it pulls from it. A channel
is essentially a Git repository containing package modules. See Chapter 6 [Channels],
page 66, for more information on how to define and use channels.

1 Note that packages under the (gnu packages ...) module name space are not necessarily “GNU pack-
ages”. This module naming scheme follows the usual Guile module naming convention: gnu means that
these modules are distributed as part of the GNU system, and packages identifies modules that define
packages.

2 Note that the file name and module name must match. For instance, the (my-packages emacs) module
must be stored in a my-packages/emacs.scm file relative to the load path specified with --load-path or
GUIX_PACKAGE_PATH. See Section “Modules and the File System” in GNU Guile Reference Manual, for
details.

Chapter 8: Programming Interface 98

GUIX_PACKAGE_PATH works similarly to other search path variables:

[Environment Variable]GUIX_PACKAGE_PATH
This is a colon-separated list of directories to search for additional package mod-
ules. Directories listed in this variable take precedence over the own modules of the
distribution.

The distribution is fully bootstrapped and self-contained: each package is built based
solely on other packages in the distribution. The root of this dependency graph is a small
set of bootstrap binaries, provided by the (gnu packages bootstrap) module. For more
information on bootstrapping, see Chapter 20 [Bootstrapping], page 690.

8.2 Defining Packages

The high-level interface to package definitions is implemented in the (guix packages) and
(guix build-system) modules. As an example, the package definition, or recipe, for the
GNU Hello package looks like this:

(define-module (gnu packages hello)

#:use-module (guix packages)

#:use-module (guix download)

#:use-module (guix build-system gnu)

#:use-module (guix licenses)

#:use-module (gnu packages gawk))

(define-public hello

(package

(name "hello")

(version "2.10")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"))))

(build-system gnu-build-system)

(arguments '(#:configure-flags '("--enable-silent-rules")))

(inputs (list gawk))

(synopsis "Hello, GNU world: An example GNU package")

(description "Guess what GNU Hello prints!")

(home-page "https://www.gnu.org/software/hello/")

(license gpl3+)))

Without being a Scheme expert, the reader may have guessed the meaning of the vari-
ous fields here. This expression binds the variable hello to a <package> object, which is
essentially a record (see Section “SRFI-9” in GNU Guile Reference Manual). This pack-
age object can be inspected using procedures found in the (guix packages) module; for
instance, (package-name hello) returns—surprise!—"hello".

Chapter 8: Programming Interface 99

With luck, you may be able to import part or all of the definition of the package you
are interested in from another repository, using the guix import command (see Section 9.5
[Invoking guix import], page 189).

In the example above, hello is defined in a module of its own, (gnu packages hello).
Technically, this is not strictly necessary, but it is convenient to do so: all the packages
defined in modules under (gnu packages ...) are automatically known to the command-
line tools (see Section 8.1 [Package Modules], page 97).

There are a few points worth noting in the above package definition:

• The source field of the package is an <origin> object (see Section 8.2.2 [origin Refer-
ence], page 105, for the complete reference). Here, the url-fetch method from (guix

download) is used, meaning that the source is a file to be downloaded over FTP or
HTTP.

The mirror://gnu prefix instructs url-fetch to use one of the GNU mirrors defined
in (guix download).

The sha256 field specifies the expected SHA256 hash of the file being downloaded. It is
mandatory, and allows Guix to check the integrity of the file. The (base32 ...) form
introduces the base32 representation of the hash. You can obtain this information with
guix download (see Section 9.3 [Invoking guix download], page 187) and guix hash

(see Section 9.4 [Invoking guix hash], page 188).

When needed, the origin form can also have a patches field listing patches to be
applied, and a snippet field giving a Scheme expression to modify the source code.

• The build-system field specifies the procedure to build the package (see Section 8.5
[Build Systems], page 117). Here, gnu-build-system represents the familiar GNU
Build System, where packages may be configured, built, and installed with the usual
./configure && make && make check && make install command sequence.

When you start packaging non-trivial software, you may need tools to manipulate those
build phases, manipulate files, and so on. See Section 8.7 [Build Utilities], page 140,
for more on this.

• The arguments field specifies options for the build system (see Section 8.5 [Build
Systems], page 117). Here it is interpreted by gnu-build-system as a request run
configure with the --enable-silent-rules flag.

What about these quote (') characters? They are Scheme syntax to introduce a literal
list; ' is synonymous with quote. Sometimes you’ll also see ` (a backquote, synony-
mous with quasiquote) and , (a comma, synonymous with unquote). See Section
“Expression Syntax” in GNU Guile Reference Manual, for details. Here the value of
the arguments field is a list of arguments passed to the build system down the road,
as with apply (see Section “Fly Evaluation” in GNU Guile Reference Manual).

The hash-colon (#:) sequence defines a Scheme keyword (see Section “Keywords” in
GNU Guile Reference Manual), and #:configure-flags is a keyword used to pass a
keyword argument to the build system (see Section “Coding With Keywords” in GNU
Guile Reference Manual).

• The inputs field specifies inputs to the build process—i.e., build-time or run-time
dependencies of the package. Here, we add an input, a reference to the gawk variable;
gawk is itself bound to a <package> object.

Chapter 8: Programming Interface 100

Note that GCC, Coreutils, Bash, and other essential tools do not need to be specified
as inputs here. Instead, gnu-build-system takes care of ensuring that they are present
(see Section 8.5 [Build Systems], page 117).

However, any other dependencies need to be specified in the inputs field. Any de-
pendency not specified here will simply be unavailable to the build process, possibly
leading to a build failure.

See Section 8.2.1 [package Reference], page 101, for a full description of possible fields.

Going further:

Intimidated by the Scheme language or curious about it? The Cookbook has
a short section to get started that recaps some of the things shown above and
explains the fundamentals. See Section “A Scheme Crash Course” in GNU
Guix Cookbook, for more information.

Once a package definition is in place, the package may actually be built using the guix

build command-line tool (see Section 9.1 [Invoking guix build], page 173), troubleshooting
any build failures you encounter (see Section 9.1.4 [Debugging Build Failures], page 186).
You can easily jump back to the package definition using the guix edit command (see Sec-
tion 9.2 [Invoking guix edit], page 187). See Section 22.8 [Packaging Guidelines], page 711,
for more information on how to test package definitions, and Section 9.8 [Invoking guix lint],
page 206, for information on how to check a definition for style conformance.

Lastly, see Chapter 6 [Channels], page 66, for information on how to extend the distri-
bution by adding your own package definitions in a “channel”.

Finally, updating the package definition to a new upstream version can be partly auto-
mated by the guix refresh command (see Section 9.6 [Invoking guix refresh], page 197).

Behind the scenes, a derivation corresponding to the <package> object is first computed
by the package-derivation procedure. That derivation is stored in a .drv file under
/gnu/store. The build actions it prescribes may then be realized by using the build-

derivations procedure (see Section 8.9 [The Store], page 150).

[Procedure]package-derivation store package [system]
Return the <derivation> object of package for system (see Section 8.10 [Derivations],
page 152).

package must be a valid <package> object, and system must be a string denoting the
target system type—e.g., "x86_64-linux" for an x86 64 Linux-based GNU system.
store must be a connection to the daemon, which operates on the store (see Section 8.9
[The Store], page 150).

Similarly, it is possible to compute a derivation that cross-builds a package for some
other system:

[Procedure]package-cross-derivation store package target [system]
Return the <derivation> object of package cross-built from system to target.

target must be a valid GNU triplet denoting the target hardware and operating
system, such as "aarch64-linux-gnu" (see Section “Specifying Target Triplets” in
Autoconf).

Once you have package definitions, you can easily define variants of those packages. See
Section 8.3 [Defining Package Variants], page 109, for more on that.

Chapter 8: Programming Interface 101

8.2.1 package Reference

This section summarizes all the options available in package declarations (see Section 8.2
[Defining Packages], page 98).

[Data Type]package
This is the data type representing a package recipe.

name The name of the package, as a string.

version The version of the package, as a string. See Section 22.8.3 [Version Num-
bers], page 713, for guidelines.

source An object telling how the source code for the package should be acquired.
Most of the time, this is an origin object, which denotes a file fetched
from the Internet (see Section 8.2.2 [origin Reference], page 105). It can
also be any other “file-like” object such as a local-file, which denotes a
file from the local file system (see Section 8.12 [G-Expressions], page 159).

build-system

The build system that should be used to build the package (see Section 8.5
[Build Systems], page 117).

arguments (default: '())
The arguments that should be passed to the build system (see Section 8.5
[Build Systems], page 117). This is a list, typically containing sequential
keyword-value pairs, as in this example:

(package

(name "example")

;; several fields omitted

(arguments

(list #:tests? #f ;skip tests

#:make-flags #~'("VERBOSE=1") ;pass flags to 'make'

#:configure-flags #~'("--enable-frobbing"))))

The exact set of supported keywords depends on the build system (see
Section 8.5 [Build Systems], page 117), but you will find that almost
all of them honor #:configure-flags, #:make-flags, #:tests?, and
#:phases. The #:phases keyword in particular lets you modify the set
of build phases for your package (see Section 8.6 [Build Phases], page 137).

The REPL has dedicated commands to interactively inspect values of
some of these arguments, as a convenient debugging aid (see Section 8.14
[Using Guix Interactively], page 170).

Compatibility Note: Until version 1.3.0, the arguments field
would typically use quote (') or quasiquote (`) and no G-
expressions, like so:

(package

;; several fields omitted

(arguments ;old-style quoted arguments

'(#:tests? #f

#:configure-flags '("--enable-frobbing"))))

Chapter 8: Programming Interface 102

To convert from that style to the one shown above, you can
run guix style -S arguments package (see Section 9.7 [In-
voking guix style], page 204).

inputs (default: '())
native-inputs (default: '())
propagated-inputs (default: '())

These fields list dependencies of the package. Each element of these lists
is either a package, origin, or other “file-like object” (see Section 8.12
[G-Expressions], page 159); to specify the output of that file-like object
that should be used, pass a two-element list where the second element is
the output (see Section 5.4 [Packages with Multiple Outputs], page 49,
for more on package outputs). For example, the list below specifies three
inputs:

(list libffi libunistring

`(,glib "bin")) ;the "bin" output of GLib

In the example above, the "out" output of libffi and libunistring is
used.

Compatibility Note: Until version 1.3.0, input lists were a
list of tuples, where each tuple has a label for the input (a
string) as its first element, a package, origin, or derivation
as its second element, and optionally the name of the output
thereof that should be used, which defaults to "out". For
example, the list below is equivalent to the one above, but
using the old input style:

;; Old input style (deprecated).

`(("libffi" ,libffi)

("libunistring" ,libunistring)

("glib:bin" ,glib "bin")) ;the "bin" output of GLib

This style is now deprecated; it is still supported but support
will be removed in a future version. It should not be used
for new package definitions. See Section 9.7 [Invoking guix
style], page 204, on how to migrate to the new style.

The distinction between native-inputs and inputs is necessary when
considering cross-compilation. When cross-compiling, dependencies listed
in inputs are built for the target architecture; conversely, dependencies
listed in native-inputs are built for the architecture of the build ma-
chine.

native-inputs is typically used to list tools needed at build time, but
not at run time, such as Autoconf, Automake, pkg-config, Gettext, or
Bison. guix lint can report likely mistakes in this area (see Section 9.8
[Invoking guix lint], page 206).

Lastly, propagated-inputs is similar to inputs, but the specified pack-
ages will be automatically installed to profiles (see Section 5.1 [Fea-
tures], page 34) alongside the package they belong to (see [package-cmd-

Chapter 8: Programming Interface 103

propagated-inputs], page 36, for information on how guix package deals
with propagated inputs).

For example this is necessary when packaging a C/C++ library that needs
headers of another library to compile, or when a pkg-config file refers to
another one via its Requires field.

Another example where propagated-inputs is useful is for languages
that lack a facility to record the run-time search path akin to the RUNPATH
of ELF files; this includes Guile, Python, Perl, and more. When packaging
libraries written in those languages, ensure they can find library code they
depend on at run time by listing run-time dependencies in propagated-

inputs rather than inputs.

outputs (default: '("out"))
The list of output names of the package. See Section 5.4 [Packages with
Multiple Outputs], page 49, for typical uses of additional outputs.

native-search-paths (default: '())
search-paths (default: '())

A list of search-path-specification objects describing search-path en-
vironment variables honored by the package. See Section 8.8 [Search
Paths], page 147, for more on search path specifications.

As for inputs, the distinction between native-search-paths and
search-paths only matters when cross-compiling. In a cross-compilation
context, native-search-paths applies exclusively to native inputs
whereas search-paths applies only to host inputs.

Packages such as cross-compilers care about target inputs—for instance,
our (modified) GCC cross-compiler has CROSS_C_INCLUDE_PATH in
search-paths, which allows it to pick .h files for the target system and
not those of native inputs. For the majority of packages though, only
native-search-paths makes sense.

replacement (default: #f)
This must be either #f or a package object that will be used as a replace-
ment for this package. See Chapter 19 [Security Updates], page 688, for
details.

synopsis A one-line description of the package.

description

A more elaborate description of the package, as a string in Texinfo syntax.

license The license of the package; a value from (guix licenses), or a list of
such values.

home-page

The URL to the home-page of the package, as a string.

supported-systems (default: %supported-systems)
The list of systems supported by the package, as strings of the form
architecture-kernel, for example "x86_64-linux".

Chapter 8: Programming Interface 104

location (default: source location of the package form)
The source location of the package. It is useful to override this when
inheriting from another package, in which case this field is not automat-
ically corrected.

[Macro]this-package
When used in the lexical scope of a package field definition, this identifier resolves to
the package being defined.

The example below shows how to add a package as a native input of itself when
cross-compiling:

(package

(name "guile")

;; ...

;; When cross-compiled, Guile, for example, depends on

;; a native version of itself. Add it here.

(native-inputs (if (%current-target-system)

(list this-package)

'())))

It is an error to refer to this-package outside a package definition.

The following helper procedures are provided to help deal with package inputs.

[Procedure]lookup-package-input package name
[Procedure]lookup-package-native-input package name
[Procedure]lookup-package-propagated-input package name
[Procedure]lookup-package-direct-input package name

Look up name among package’s inputs (or native, propagated, or direct inputs).
Return it if found, #f otherwise.

name is the name of a package depended on. Here’s how you might use it:

(use-modules (guix packages) (gnu packages base))

(lookup-package-direct-input coreutils "gmp")

⇒ #<package gmp@6.2.1 ...>

In this example we obtain the gmp package that is among the direct inputs of
coreutils.

Sometimes you will want to obtain the list of inputs needed to develop a package—all
the inputs that are visible when the package is compiled. This is what the package-

development-inputs procedure returns.

[Procedure]package-development-inputs package [system] [#:target #f]
Return the list of inputs required by package for development purposes on system.
When target is true, return the inputs needed to cross-compile package from system
to target, where target is a triplet such as "aarch64-linux-gnu".

Chapter 8: Programming Interface 105

Note that the result includes both explicit inputs and implicit inputs—inputs auto-
matically added by the build system (see Section 8.5 [Build Systems], page 117). Let
us take the hello package to illustrate that:

(use-modules (gnu packages base) (guix packages))

hello

⇒ #<package hello@2.10 gnu/packages/base.scm:79 7f585d4f6790>

(package-direct-inputs hello)

⇒ ()

(package-development-inputs hello)

⇒ (("source" ...) ("tar" #<package tar@1.32 ...>) ...)

In this example, package-direct-inputs returns the empty list, because hello has
zero explicit dependencies. Conversely, package-development-inputs includes in-
puts implicitly added by gnu-build-system that are required to build hello: tar,
gzip, GCC, libc, Bash, and more. To visualize it, guix graph hello would show you
explicit inputs, whereas guix graph -t bag hello would include implicit inputs (see
Section 9.10 [Invoking guix graph], page 211).

Because packages are regular Scheme objects that capture a complete dependency graph
and associated build procedures, it is often useful to write procedures that take a package
and return a modified version thereof according to some parameters. Below are a few
examples.

[Procedure]package-with-c-toolchain package toolchain
Return a variant of package that uses toolchain instead of the default GNU C/C++
toolchain. toolchain must be a list of inputs (label/package tuples) providing equiv-
alent functionality, such as the gcc-toolchain package.

The example below returns a variant of the hello package built with GCC 10.x and
the rest of the GNU tool chain (Binutils and the GNU C Library) instead of the
default tool chain:

(let ((toolchain (specification->package "gcc-toolchain@10")))

(package-with-c-toolchain hello `(("toolchain" ,toolchain))))

The build tool chain is part of the implicit inputs of packages—it’s usually not listed
as part of the various “inputs” fields and is instead pulled in by the build system.
Consequently, this procedure works by changing the build system of package so that
it pulls in toolchain instead of the defaults. Section 8.5 [Build Systems], page 117, for
more on build systems.

8.2.2 origin Reference

This section documents origins. An origin declaration specifies data that must be
“produced”—downloaded, usually—and whose content hash is known in advance. Origins
are primarily used to represent the source code of packages (see Section 8.2 [Defining
Packages], page 98). For that reason, the origin form allows you to declare patches to
apply to the original source code as well as code snippets to modify it.

Chapter 8: Programming Interface 106

[Data Type]origin
This is the data type representing a source code origin.

uri An object containing the URI of the source. The object type depends on
the method (see below). For example, when using the url-fetch method
of (guix download), the valid uri values are: a URL represented as a
string, or a list thereof.

method A monadic procedure that handles the given URI. The procedure must
accept at least three arguments: the value of the uri field and the hash
algorithm and hash value specified by the hash field. It must return a
store item or a derivation in the store monad (see Section 8.11 [The Store
Monad], page 155); most methods return a fixed-output derivation (see
Section 8.10 [Derivations], page 152).

Commonly used methods include url-fetch, which fetches data from
a URL, and git-fetch, which fetches data from a Git repository (see
below).

sha256 A bytevector containing the SHA-256 hash of the source. This is equiv-
alent to providing a content-hash SHA256 object in the hash field de-
scribed below.

hash The content-hash object of the source—see below for how to use
content-hash.

You can obtain this information using guix download (see Section 9.3 [In-
voking guix download], page 187) or guix hash (see Section 9.4 [Invoking
guix hash], page 188).

file-name (default: #f)
The file name under which the source code should be saved. When this
is #f, a sensible default value will be used in most cases. In case the
source is fetched from a URL, the file name from the URL will be used.
For version control checkouts, it is recommended to provide the file name
explicitly because the default is not very descriptive.

patches (default: '())
A list of file names, origins, or file-like objects (see Section 8.12 [G-
Expressions], page 159) pointing to patches to be applied to the source.

This list of patches must be unconditional. In particular, it cannot depend
on the value of %current-system or %current-target-system.

snippet (default: #f)
A G-expression (see Section 8.12 [G-Expressions], page 159) or
S-expression that will be run in the source directory. This is a convenient
way to modify the source, sometimes more convenient than a patch.

patch-flags (default: '("-p1"))
A list of command-line flags that should be passed to the patch command.

Chapter 8: Programming Interface 107

patch-inputs (default: #f)
Input packages or derivations to the patching process. When this is
#f, the usual set of inputs necessary for patching are provided, such as
GNU Patch.

modules (default: '())
A list of Guile modules that should be loaded during the patching process
and while running the code in the snippet field.

patch-guile (default: #f)
The Guile package that should be used in the patching process. When
this is #f, a sensible default is used.

[Data Type]content-hash value [algorithm]
Construct a content hash object for the given algorithm, and with value as its hash
value. When algorithm is omitted, assume it is sha256.

value can be a literal string, in which case it is base32-decoded, or it can be a bytevec-
tor.

The following forms are all equivalent:

(content-hash "05zxkyz9bv3j9h0xyid1rhvh3klhsmrpkf3bcs6frvlgyr2gwilj")

(content-hash "05zxkyz9bv3j9h0xyid1rhvh3klhsmrpkf3bcs6frvlgyr2gwilj"

sha256)

(content-hash (base32

"05zxkyz9bv3j9h0xyid1rhvh3klhsmrpkf3bcs6frvlgyr2gwilj"))

(content-hash (base64 "kkb+RPaP7uyMZmu4eXPVkM4BN8yhRd8BTHLslb6f/Rc=")

sha256)

Technically, content-hash is currently implemented as a macro. It performs sanity
checks at macro-expansion time, when possible, such as ensuring that value has the
right size for algorithm.

As we have seen above, how exactly the data an origin refers to is retrieved is determined
by its method field. The (guix download)module provides the most common method, url-
fetch, described below.

[Procedure]url-fetch url hash-algo hash [name] [#:executable? #f]
Return a fixed-output derivation that fetches data from url (a string, or a list of
strings denoting alternate URLs), which is expected to have hash hash of type hash-
algo (a symbol). By default, the file name is the base name of URL; optionally, name
can specify a different file name. When executable? is true, make the downloaded file
executable.

When one of the URL starts with mirror://, then its host part is interpreted as the
name of a mirror scheme, taken from %mirror-file.

Alternatively, when URL starts with file://, return the corresponding file name in
the store.

Likewise, the (guix git-download)module defines the git-fetch origin method, which
fetches data from a Git version control repository, and the git-reference data type to
describe the repository and revision to fetch.

Chapter 8: Programming Interface 108

[Procedure]git-fetch ref hash-algo hash
Return a fixed-output derivation that fetches ref, a <git-reference> object. The
output is expected to have recursive hash hash of type hash-algo (a symbol). Use
name as the file name, or a generic name if #f.

[Procedure]git-fetch/lfs ref hash-algo hash
This is a variant of the git-fetch procedure that supports the Git LFS (Large File
Storage) extension. This may be useful to pull some binary test data to run the test
suite of a package, for example.

[Data Type]git-reference
This data type represents a Git reference for git-fetch to retrieve.

url The URL of the Git repository to clone.

commit This string denotes either the commit to fetch (a hexadecimal string), or
the tag to fetch. You can also use a “short” commit ID or a git describe

style identifier such as v1.0.1-10-g58d7909c97.

recursive? (default: #f)
This Boolean indicates whether to recursively fetch Git sub-modules.

The example below denotes the v2.10 tag of the GNU Hello repository:

(git-reference

(url "https://git.savannah.gnu.org/git/hello.git")

(commit "v2.10"))

This is equivalent to the reference below, which explicitly names the commit:

(git-reference

(url "https://git.savannah.gnu.org/git/hello.git")

(commit "dc7dc56a00e48fe6f231a58f6537139fe2908fb9"))

For Mercurial repositories, the module (guix hg-download) defines the hg-fetch origin
method and hg-reference data type for support of the Mercurial version control system.

[Procedure]hg-fetch ref hash-algo hash [name]
Return a fixed-output derivation that fetches ref, a <hg-reference> object. The
output is expected to have recursive hash hash of type hash-algo (a symbol). Use
name as the file name, or a generic name if #f.

[Data Type]hg-reference
This data type represents a Mercurial reference for hg-fetch to retrieve.

url The URL of the Mercurial repository to clone.

revision This string denotes revision to fetch specified as a number.

For Subversion repositories, the module (guix svn-download) defines the svn-fetch

origin method and svn-reference data type for support of the Subversion version control
system.

Chapter 8: Programming Interface 109

[Procedure]svn-fetch ref hash-algo hash [name]
Return a fixed-output derivation that fetches ref, a <svn-reference> object. The
output is expected to have recursive hash hash of type hash-algo (a symbol). Use
name as the file name, or a generic name if #f.

[Data Type]svn-reference
This data type represents a Subversion reference for svn-fetch to retrieve.

url The URL of the Subversion repository to clone.

revision This string denotes revision to fetch specified as a number.

recursive? (default: #f)
This Boolean indicates whether to recursively fetch Subversion “exter-
nals”.

user-name (default: #f)
The name of an account that has read-access to the repository, if the
repository isn’t public.

password (default: #f)
Password to access the Subversion repository, if required.

For Bazaar repositories, the module (guix bzr-download) defines the bzr-fetch origin
method and bzr-reference data type for support of the Bazaar version control system.

[Procedure]bzr-fetch ref hash-algo hash [name]
Return a fixed-output derivation that fetches ref, a <bzr-reference> object. The
output is expected to have recursive hash hash of type hash-algo (a symbol). Use
name as the file name, or a generic name if #f.

[Data Type]bzr-reference
This data type represents a Bazaar reference for bzr-fetch to retrieve.

url The URL of the Bazaar repository to clone.

revision This string denotes revision to fetch specified as a number.

8.3 Defining Package Variants

One of the nice things with Guix is that, given a package definition, you can easily derive
variants of that package—for a different upstream version, with different dependencies, dif-
ferent compilation options, and so on. Some of these custom packages can be defined straight
from the command line (see Section 9.1.2 [Package Transformation Options], page 175). This
section describes how to define package variants in code. This can be useful in “manifests”
(see Section 8.4 [Writing Manifests], page 113) and in your own package collection (see
Section 6.7 [Creating a Channel], page 70), among others!

As discussed earlier, packages are first-class objects in the Scheme language. The (guix
packages) module provides the package construct to define new package objects (see Sec-
tion 8.2.1 [package Reference], page 101). The easiest way to define a package variant
is using the inherit keyword together with package. This allows you to inherit from a
package definition while overriding the fields you want.

Chapter 8: Programming Interface 110

For example, given the hello variable, which contains a definition for the current version
of GNU Hello, here’s how you would define a variant for version 2.2 (released in 2006, it’s
vintage!):

(use-modules (gnu packages base)) ;for 'hello'

(define hello-2.2

(package

(inherit hello)

(version "2.2")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0lappv4slgb5spyqbh6yl5r013zv72yqg2pcl30mginf3wdqd8k9"))))))

The example above corresponds to what the --with-version or --with-source package
transformations option do. Essentially hello-2.2 preserves all the fields of hello, except
version and source, which it overrides. Note that the original hello variable is still there,
in the (gnu packages base) module, unchanged. When you define a custom package like
this, you are really adding a new package definition; the original one remains available.

You can just as well define variants with a different set of dependencies than the original
package. For example, the default gdb package depends on guile, but since that is an
optional dependency, you can define a variant that removes that dependency like so:

(use-modules (gnu packages gdb)) ;for 'gdb'

(define gdb-sans-guile

(package

(inherit gdb)

(inputs (modify-inputs (package-inputs gdb)

(delete "guile")))))

The modify-inputs form above removes the "guile" package from the inputs field of
gdb. The modify-inputs macro is a helper that can prove useful anytime you want to
remove, add, or replace package inputs.

[Macro]modify-inputs inputs clauses
Modify the given package inputs, as returned by package-inputs & co., according
to the given clauses. Each clause must have one of the following forms:

(delete name...)

Delete from the inputs packages with the given names (strings).

(prepend package...)

Add packages to the front of the input list.

(append package...)

Add packages to the end of the input list.

Chapter 8: Programming Interface 111

(replace name replacement)

Replace the package called name with replacement.

The example below removes the GMP and ACL inputs of Coreutils and adds libcap
to the front of the input list:

(modify-inputs (package-inputs coreutils)

(delete "gmp" "acl")

(prepend libcap))

The example below replaces the guile package from the inputs of guile-redis with
guile-2.2:

(modify-inputs (package-inputs guile-redis)

(replace "guile" guile-2.2))

The last type of clause is append, to add inputs at the back of the list.

In some cases, you may find it useful to write functions (“procedures”, in Scheme
parlance) that return a package based on some parameters. For example, consider the
luasocket library for the Lua programming language. We want to create luasocket pack-
ages for major versions of Lua. One way to do that is to define a procedure that takes a
Lua package and returns a luasocket package that depends on it:

(define (make-lua-socket name lua)

;; Return a luasocket package built with LUA.

(package

(name name)

(version "3.0")

;; several fields omitted

(inputs (list lua))

(synopsis "Socket library for Lua")))

(define-public lua5.1-socket

(make-lua-socket "lua5.1-socket" lua-5.1))

(define-public lua5.2-socket

(make-lua-socket "lua5.2-socket" lua-5.2))

Here we have defined packages lua5.1-socket and lua5.2-socket by calling make-

lua-socket with different arguments. See Section “Procedures” in GNU Guile Reference
Manual, for more info on procedures. Having top-level public definitions for these two
packages means that they can be referred to from the command line (see Section 8.1 [Package
Modules], page 97).

These are pretty simple package variants. As a convenience, the (guix

transformations) module provides a high-level interface that directly maps to the more
sophisticated package transformation options (see Section 9.1.2 [Package Transformation
Options], page 175):

[Procedure]options->transformation opts
Return a procedure that, when passed an object to build (package, derivation, etc.),
applies the transformations specified by opts and returns the resulting objects. opts
must be a list of symbol/string pairs such as:

Chapter 8: Programming Interface 112

((with-branch . "guile-gcrypt=master")

(without-tests . "libgcrypt"))

Each symbol names a transformation and the corresponding string is an argument to
that transformation.

For instance, a manifest equivalent to this command:

guix build guix \

--with-branch=guile-gcrypt=master \

--with-debug-info=zlib

... would look like this:

(use-modules (guix transformations))

(define transform

;; The package transformation procedure.

(options->transformation

'((with-branch . "guile-gcrypt=master")

(with-debug-info . "zlib"))))

(packages->manifest

(list (transform (specification->package "guix"))))

The options->transformation procedure is convenient, but it’s perhaps also not as
flexible as you may like. How is it implemented? The astute reader probably noticed that
most package transformation options go beyond the superficial changes shown in the first
examples of this section: they involve input rewriting, whereby the dependency graph of a
package is rewritten by replacing specific inputs by others.

Dependency graph rewriting, for the purposes of swapping packages in the graph, is
what the package-input-rewriting procedure in (guix packages) implements.

[Procedure]package-input-rewriting replacements [rewrite-name] [#:deep?
#t]

Return a procedure that, when passed a package, replaces its direct and indirect
dependencies, including implicit inputs when deep? is true, according to replacements.
replacements is a list of package pairs; the first element of each pair is the package to
replace, and the second one is the replacement.

Optionally, rewrite-name is a one-argument procedure that takes the name of a pack-
age and returns its new name after rewrite.

Consider this example:

(define libressl-instead-of-openssl

;; This is a procedure to replace OPENSSL by LIBRESSL,

;; recursively.

(package-input-rewriting `((,openssl . ,libressl))))

(define git-with-libressl

(libressl-instead-of-openssl git))

Chapter 8: Programming Interface 113

Here we first define a rewriting procedure that replaces openssl with libressl. Then we
use it to define a variant of the git package that uses libressl instead of openssl. This
is exactly what the --with-input command-line option does (see Section 9.1.2 [Package
Transformation Options], page 175).

The following variant of package-input-rewriting can match packages to be replaced
by name rather than by identity.

[Procedure]package-input-rewriting/spec replacements [#:deep? #t]
Return a procedure that, given a package, applies the given replacements to all the
package graph, including implicit inputs unless deep? is false.

replacements is a list of spec/procedures pair; each spec is a package specification such
as "gcc" or "guile@2", and each procedure takes a matching package and returns
a replacement for that package. Matching packages that have the hidden? property
set are not replaced.

The example above could be rewritten this way:

(define libressl-instead-of-openssl

;; Replace all the packages called "openssl" with LibreSSL.

(package-input-rewriting/spec `(("openssl" . ,(const libressl)))))

The key difference here is that, this time, packages are matched by spec and not by
identity. In other words, any package in the graph that is called openssl will be replaced.

A more generic procedure to rewrite a package dependency graph is package-mapping:
it supports arbitrary changes to nodes in the graph.

[Procedure]package-mapping proc [cut?] [#:deep? #f]
Return a procedure that, given a package, applies proc to all the packages depended on
and returns the resulting package. The procedure stops recursion when cut? returns
true for a given package. When deep? is true, proc is applied to implicit inputs as
well.

Tips: Understanding what a variant really looks like can be difficult as one
starts combining the tools shown above. There are several ways to inspect a
package before attempting to build it that can prove handy:

• You can inspect the package interactively at the REPL, for instance to
view its inputs, the code of its build phases, or its configure flags (see
Section 8.14 [Using Guix Interactively], page 170).

• When rewriting dependencies, guix graph can often help visualize the
changes that are made (see Section 9.10 [Invoking guix graph], page 211).

8.4 Writing Manifests

guix commands let you specify package lists on the command line. This is convenient, but
as the command line becomes longer and less trivial, it quickly becomes more convenient
to have that package list in what we call a manifest. A manifest is some sort of a “bill of
materials” that defines a package set. You would typically come up with a code snippet
that builds the manifest, store it in a file, say manifest.scm, and then pass that file to the

Chapter 8: Programming Interface 114

-m (or --manifest) option that many guix commands support. For example, here’s what
a manifest for a simple package set might look like:

;; Manifest for three packages.

(specifications->manifest '("gcc-toolchain" "make" "git"))

Once you have that manifest, you can pass it, for example, to guix package to install
just those three packages to your profile (see [profile-manifest], page 39):

guix package -m manifest.scm

... or you can pass it to guix shell (see [shell-manifest], page 79) to spawn an ephemeral
environment:

guix shell -m manifest.scm

... or you can pass it to guix pack in pretty much the same way (see [pack-manifest],
page 93). You can store the manifest under version control, share it with others so they
can easily get set up, etc.

But how do you write your first manifest? To get started, maybe you’ll want to write a
manifest that mirrors what you already have in a profile. Rather than start from a blank
page, guix package can generate a manifest for you (see [export-manifest], page 44):

Write to 'manifest.scm' a manifest corresponding to the

default profile, ~/.guix-profile.

guix package --export-manifest > manifest.scm

Or maybe you’ll want to “translate” command-line arguments into a manifest. In that
case, guix shell can help (see [shell-export-manifest], page 79):

Write a manifest for the packages specified on the command line.

guix shell --export-manifest gcc-toolchain make git > manifest.scm

In both cases, the --export-manifest option tries hard to generate a faithful mani-
fest; in particular, it takes package transformation options into account (see Section 9.1.2
[Package Transformation Options], page 175).

Note: Manifests are symbolic: they refer to packages of the channels currently in
use (see Chapter 6 [Channels], page 66). In the example above, gcc-toolchain
might refer to version 11 today, but it might refer to version 13 two years from
now.

If you want to “pin” your software environment to specific package versions
and variants, you need an additional piece of information: the list of channel
revisions in use, as returned by guix describe. See Section 6.3 [Replicating
Guix], page 67, for more information.

Once you’ve obtained your first manifest, perhaps you’ll want to customize it. Since
your manifest is code, you now have access to all the Guix programming interfaces!

Let’s assume you want a manifest to deploy a custom variant of GDB, the GNU De-
bugger, that does not depend on Guile, together with another package. Building on the
example seen in the previous section (see Section 8.3 [Defining Package Variants], page 109),
you can write a manifest along these lines:

(use-modules (guix packages)

(gnu packages gdb) ;for 'gdb'

(gnu packages version-control)) ;for 'git'

Chapter 8: Programming Interface 115

;; Define a variant of GDB without a dependency on Guile.

(define gdb-sans-guile

(package

(inherit gdb)

(inputs (modify-inputs (package-inputs gdb)

(delete "guile")))))

;; Return a manifest containing that one package plus Git.

(packages->manifest (list gdb-sans-guile git))

Note that in this example, the manifest directly refers to the gdb and git variables,
which are bound to a package object (see Section 8.2.1 [package Reference], page 101),
instead of calling specifications->manifest to look up packages by name as we did
before. The use-modules form at the top lets us access the core package interface (see
Section 8.2 [Defining Packages], page 98) and the modules that define gdb and git (see
Section 8.1 [Package Modules], page 97). Seamlessly, we’re weaving all this together—the
possibilities are endless, unleash your creativity!

The data type for manifests as well as supporting procedures are defined in the (guix

profiles) module, which is automatically available to code passed to -m. The reference
follows.

[Data Type]manifest
Data type representing a manifest.

It currently has one field:

entries This must be a list of manifest-entry records—see below.

[Data Type]manifest-entry
Data type representing a manifest entry. A manifest entry contains essential meta-
data: a name and version string, the object (usually a package) for that entry, the
desired output (see Section 5.4 [Packages with Multiple Outputs], page 49), and a
number of optional pieces of information detailed below.

Most of the time, you won’t build a manifest entry directly; instead, you will pass
a package to package->manifest-entry, described below. In some unusual cases
though, you might want to create manifest entries for things that are not packages,
as in this example:

;; Manually build a single manifest entry for a non-package object.

(let ((hello (program-file "hello" #~(display "Hi!"))))

(manifest-entry

(name "foo")

(version "42")

(item

(computed-file "hello-directory"

#~(let ((bin (string-append #$output "/bin")))

(mkdir #$output) (mkdir bin)

(symlink #$hello

(string-append bin "/hello")))))))

Chapter 8: Programming Interface 116

The available fields are the following:

name

version Name and version string for this entry.

item A package or other file-like object (see Section 8.12 [G-Expressions],
page 159).

output (default: "out")
Output of item to use, in case item has multiple outputs (see Section 5.4
[Packages with Multiple Outputs], page 49).

dependencies (default: '())
List of manifest entries this entry depends on. When building a profile,
dependencies are added to the profile.

Typically, the propagated inputs of a package (see Section 8.2.1 [package
Reference], page 101) end up having a corresponding manifest entry in
among the dependencies of the package’s own manifest entry.

search-paths (default: '())
The list of search path specifications honored by this entry (see Section 8.8
[Search Paths], page 147).

properties (default: '())
List of symbol/value pairs. When building a profile, those properties get
serialized.

This can be used to piggyback additional metadata—e.g., the transfor-
mations applied to a package (see Section 9.1.2 [Package Transformation
Options], page 175).

parent (default: (delay #f))
A promise pointing to the “parent” manifest entry.

This is used as a hint to provide context when reporting an error related
to a manifest entry coming from a dependencies field.

[Procedure]concatenate-manifests lst
Concatenate the manifests listed in lst and return the resulting manifest.

[Procedure]package->manifest-entry package [output] [#:properties]
Return a manifest entry for the output of package package, where output defaults
to "out", and with the given properties. By default properties is the empty list
or, if one or more package transformations were applied to package, it is an associ-
ation list representing those transformations, suitable as an argument to options-

>transformation (see Section 8.3 [Defining Package Variants], page 109).

The code snippet below builds a manifest with an entry for the default output and
the send-email output of the git package:

(use-modules (gnu packages version-control))

(manifest (list (package->manifest-entry git)

(package->manifest-entry git "send-email")))

Chapter 8: Programming Interface 117

[Procedure]packages->manifest packages
Return a list of manifest entries, one for each item listed in packages. Elements of
packages can be either package objects or package/string tuples denoting a specific
output of a package.

Using this procedure, the manifest above may be rewritten more concisely:

(use-modules (gnu packages version-control))

(packages->manifest (list git `(,git "send-email")))

[Procedure]package->development-manifest package [system] [#:target]
Return a manifest for the development inputs of package for system, optionally when
cross-compiling to target. Development inputs include both explicit and implicit
inputs of package.

Like the -D option of guix shell (see [shell-development-option], page 78), the re-
sulting manifest describes the environment in which one can develop package. For
example, suppose you’re willing to set up a development environment for Inkscape,
with the addition of Git for version control; you can describe that “bill of materials”
with the following manifest:

(use-modules (gnu packages inkscape) ;for 'inkscape'

(gnu packages version-control)) ;for 'git'

(concatenate-manifests

(list (package->development-manifest inkscape)

(packages->manifest (list git))))

In this example, the development manifest that package->development-manifest

returns includes the compiler (GCC), the many supporting libraries (Boost, GLib,
GTK, etc.), and a couple of additional development tools—these are the dependencies
guix show inkscape lists.

Last, the (gnu packages) module provides higher-level facilities to build manifests. In
particular, it lets you look up packages by name—see below.

[Procedure]specifications->manifest specs
Given specs, a list of specifications such as "emacs@25.2" or "guile:debug", return
a manifest. Specs have the format that command-line tools such as guix install

and guix package understand (see Section 5.2 [Invoking guix package], page 35).

As an example, it lets you rewrite the Git manifest that we saw earlier like this:

(specifications->manifest '("git" "git:send-email"))

Notice that we do not need to worry about use-modules, importing the right set of
modules, and referring to the right variables. Instead, we directly refer to packages
in the same way as on the command line, which can often be more convenient.

8.5 Build Systems

Each package definition specifies a build system and arguments for that build system (see
Section 8.2 [Defining Packages], page 98). This build-system field represents the build
procedure of the package, as well as implicit dependencies of that build procedure.

Chapter 8: Programming Interface 118

Build systems are <build-system> objects. The interface to create and manipulate them
is provided by the (guix build-system) module, and actual build systems are exported
by specific modules.

Under the hood, build systems first compile package objects to bags. A bag is like a
package, but with less ornamentation—in other words, a bag is a lower-level representation
of a package, which includes all the inputs of that package, including some that were im-
plicitly added by the build system. This intermediate representation is then compiled to a
derivation (see Section 8.10 [Derivations], page 152). The package-with-c-toolchain is
an example of a way to change the implicit inputs that a package’s build system pulls in
(see Section 8.2.1 [package Reference], page 101).

Build systems accept an optional list of arguments. In package definitions, these are
passed via the arguments field (see Section 8.2 [Defining Packages], page 98). They are
typically keyword arguments (see Section “Optional Arguments” in GNU Guile Reference
Manual). The value of these arguments is usually evaluated in the build stratum—i.e., by
a Guile process launched by the daemon (see Section 8.10 [Derivations], page 152).

The main build system is gnu-build-system, which implements the standard build
procedure for GNU and many other packages. It is provided by the (guix build-system

gnu) module.

[Variable]gnu-build-system
gnu-build-system represents the GNU Build System, and variants thereof (see Sec-
tion “Configuration” in GNU Coding Standards).

In a nutshell, packages using it are configured, built, and installed with the usual
./configure && make && make check && make install command sequence. In prac-
tice, a few additional steps are often needed. All these steps are split up in separate
phases. See Section 8.6 [Build Phases], page 137, for more info on build phases and
ways to customize them.

In addition, this build system ensures that the “standard” environment for GNU
packages is available. This includes tools such as GCC, libc, Coreutils, Bash, Make,
Diffutils, grep, and sed (see the (guix build-system gnu) module for a complete
list). We call these the implicit inputs of a package, because package definitions do
not have to mention them.

This build system supports a number of keyword arguments, which can be passed via
the arguments field of a package. Here are some of the main parameters:

#:phases This argument specifies build-side code that evaluates to an alist of build
phases. See Section 8.6 [Build Phases], page 137, for more information.

#:configure-flags

This is a list of flags (strings) passed to the configure script. See Sec-
tion 8.2 [Defining Packages], page 98, for an example.

#:make-flags

This list of strings contains flags passed as arguments to make invocations
in the build, check, and install phases.

#:out-of-source?

This Boolean, #f by default, indicates whether to run builds in a build
directory separate from the source tree.

Chapter 8: Programming Interface 119

When it is true, the configure phase creates a separate build directory,
changes to that directory, and runs the configure script from there. This
is useful for packages that require it, such as glibc.

#:tests? This Boolean, #t by default, indicates whether the check phase should
run the package’s test suite.

#:test-target

This string, "check" by default, gives the name of the makefile target
used by the check phase.

#:parallel-build?

#:parallel-tests?

These Boolean values specify whether to build, respectively run the test
suite, in parallel, with the -j flag of make. When they are true, make
is passed -jn, where n is the number specified as the --cores option
of guix-daemon or that of the guix client command (see Section 9.1.1
[Common Build Options], page 173).

#:validate-runpath?

This Boolean, #t by default, determines whether to “validate” the
RUNPATH of ELF binaries (.so shared libraries as well as executables)
previously installed by the install phase. See [phase-validate-runpath],
page 138, for details.

#:substitutable?

This Boolean, #t by default, tells whether the package outputs should be
substitutable—i.e., whether users should be able to obtain substitutes for
them instead of building locally (see Section 5.3 [Substitutes], page 44).

#:allowed-references

#:disallowed-references

When true, these arguments must be a list of dependencies that must
not appear among the references of the build results. If, upon build
completion, some of these references are retained, the build process fails.

This is useful to ensure that a package does not erroneously keep a refer-
ence to some of it build-time inputs, in cases where doing so would, for
example, unnecessarily increase its size (see Section 9.9 [Invoking guix
size], page 209).

Most other build systems support these keyword arguments.

Other <build-system> objects are defined to support other conventions and tools used
by free software packages. They inherit most of gnu-build-system, and differ mainly in
the set of inputs implicitly added to the build process, and in the list of phases executed.
Some of these build systems are listed below.

[Variable]agda-build-system
This variable is exported by (guix build-system agda). It implements a build pro-
cedure for Agda libraries.

It adds agda to the set of inputs. A different Agda can be specified with the #:agda
key.

Chapter 8: Programming Interface 120

The #:plan key is a list of cons cells (regexp . parameters), where regexp is a
regexp that should match the .agda files to build, and parameters is an optional list
of parameters that will be passed to agda when type-checking it.

When the library uses Haskell to generate a file containing all imports, the convenience
#:gnu-and-haskell? can be set to #t to add ghc and the standard inputs of gnu-
build-system to the input list. You will still need to manually add a phase or tweak
the 'build phase, as in the definition of agda-stdlib.

[Variable]ant-build-system
This variable is exported by (guix build-system ant). It implements the build
procedure for Java packages that can be built with Ant build tool (https://ant.
apache.org/).

It adds both ant and the Java Development Kit (JDK) as provided by the icedtea

package to the set of inputs. Different packages can be specified with the #:ant and
#:jdk parameters, respectively.

When the original package does not provide a suitable Ant build file, the parameter
#:jar-name can be used to generate a minimal Ant build file build.xml with tasks
to build the specified jar archive. In this case the parameter #:source-dir can be
used to specify the source sub-directory, defaulting to “src”.

The #:main-class parameter can be used with the minimal ant buildfile to specify
the main class of the resulting jar. This makes the jar file executable. The #:test-

include parameter can be used to specify the list of junit tests to run. It defaults to
(list "**/*Test.java"). The #:test-exclude can be used to disable some tests.
It defaults to (list "**/Abstract*.java"), because abstract classes cannot be run
as tests.

The parameter #:build-target can be used to specify the Ant task that should be
run during the build phase. By default the “jar” task will be run.

[Variable]android-ndk-build-system
This variable is exported by (guix build-system android-ndk). It implements a
build procedure for Android NDK (native development kit) packages using a Guix-
specific build process.

The build system assumes that packages install their public interface (header) files
to the subdirectory include of the out output and their libraries to the subdirectory
lib the out output.

It’s also assumed that the union of all the dependencies of a package has no conflicting
files.

For the time being, cross-compilation is not supported - so right now the libraries and
header files are assumed to be host tools.

[Variable]asdf-build-system/source
[Variable]asdf-build-system/sbcl
[Variable]asdf-build-system/ecl

These variables, exported by (guix build-system asdf), implement build proce-
dures for Common Lisp packages using “ASDF” (https://common-lisp.net/

https://ant.apache.org/
https://ant.apache.org/
https://common-lisp.net/project/asdf/

Chapter 8: Programming Interface 121

project/asdf/). ASDF is a system definition facility for Common Lisp programs
and libraries.

The asdf-build-system/source system installs the packages in source form, and
can be loaded using any common lisp implementation, via ASDF. The others, such
as asdf-build-system/sbcl, install binary systems in the format which a particu-
lar implementation understands. These build systems can also be used to produce
executable programs, or lisp images which contain a set of packages pre-loaded.

The build system uses naming conventions. For binary packages, the package name
should be prefixed with the lisp implementation, such as sbcl- for asdf-build-

system/sbcl.

Additionally, the corresponding source package should be labeled using the same
convention as Python packages (see Section 22.8.8 [Python Modules], page 717), using
the cl- prefix.

In order to create executable programs and images, the build-side procedures build-
program and build-image can be used. They should be called in a build phase after
the create-asdf-configuration phase, so that the system which was just built can
be used within the resulting image. build-program requires a list of Common Lisp
expressions to be passed as the #:entry-program argument.

By default, all the .asd files present in the sources are read to find system definitions.
The #:asd-files parameter can be used to specify the list of .asd files to read.
Furthermore, if the package defines a system for its tests in a separate file, it will be
loaded before the tests are run if it is specified by the #:test-asd-file parameter.
If it is not set, the files <system>-tests.asd, <system>-test.asd, tests.asd, and
test.asd will be tried if they exist.

If for some reason the package must be named in a different way than the naming
conventions suggest, or if several systems must be compiled, the #:asd-systems

parameter can be used to specify the list of system names.

[Variable]cargo-build-system
This variable is exported by (guix build-system cargo). It supports builds of pack-
ages using Cargo, the build tool of the Rust programming language (https://www.
rust-lang.org).

It adds rustc and cargo to the set of inputs. A different Rust package can be specified
with the #:rust parameter.

Regular cargo dependencies should be added to the package definition similarly to
other packages; those needed only at build time to native-inputs, others to inputs. If
you need to add source-only crates then you should add them to via the #:cargo-

inputs parameter as a list of name and spec pairs, where the spec can be a package
or a source definition. Note that the spec must evaluate to a path to a gzipped
tarball which includes a Cargo.toml file at its root, or it will be ignored. Similarly,
cargo dev-dependencies should be added to the package definition via the #:cargo-

development-inputs parameter.

In its configure phase, this build system will make any source inputs specified in the
#:cargo-inputs and #:cargo-development-inputs parameters available to cargo.
It will also remove an included Cargo.lock file to be recreated by cargo during the

https://common-lisp.net/project/asdf/
https://common-lisp.net/project/asdf/
https://www.rust-lang.org
https://www.rust-lang.org

Chapter 8: Programming Interface 122

build phase. The package phase will run cargo package to create a source crate
for future use. The install phase installs the binaries defined by the crate. Unless
install-source? #f is defined it will also install a source crate repository of itself
and unpacked sources, to ease in future hacking on rust packages.

[Variable]chicken-build-system
This variable is exported by (guix build-system chicken). It builds CHICKEN
Scheme (https://call-cc.org/) modules, also called “eggs” or “extensions”.
CHICKEN generates C source code, which then gets compiled by a C compiler, in
this case GCC.

This build system adds chicken to the package inputs, as well as the packages of
gnu-build-system.

The build system can’t (yet) deduce the egg’s name automatically, so just like with go-

build-system and its #:import-path, you should define #:egg-name in the package’s
arguments field.

For example, if you are packaging the srfi-1 egg:

(arguments '(#:egg-name "srfi-1"))

Egg dependencies must be defined in propagated-inputs, not inputs because
CHICKEN doesn’t embed absolute references in compiled eggs. Test dependencies
should go to native-inputs, as usual.

[Variable]copy-build-system
This variable is exported by (guix build-system copy). It supports builds of simple
packages that don’t require much compiling, mostly just moving files around.

It adds much of the gnu-build-system packages to the set of inputs. Because of
this, the copy-build-system does not require all the boilerplate code often needed
for the trivial-build-system.

To further simplify the file installation process, an #:install-plan argument is ex-
posed to let the packager specify which files go where. The install plan is a list of
(source target [filters]). filters are optional.

• When source matches a file or directory without trailing slash, install it to target.

• If target has a trailing slash, install source basename beneath target.

• Otherwise install source as target.

• When source is a directory with a trailing slash, or when filters are used, the
trailing slash of target is implied with the same meaning as above.

• Without filters, install the full source content to target.

• With filters among #:include, #:include-regexp, #:exclude, #:exclude-
regexp, only select files are installed depending on the filters. Each filters
is specified by a list of strings.

• With #:include, install all the files which the path suffix matches at
least one of the elements in the given list.

• With #:include-regexp, install all the files which the subpaths match
at least one of the regular expressions in the given list.

https://call-cc.org/
https://call-cc.org/

Chapter 8: Programming Interface 123

• The #:exclude and #:exclude-regexp filters are the complement of
their inclusion counterpart. Without #:include flags, install all files but
those matching the exclusion filters. If both inclusions and exclusions
are specified, the exclusions are done on top of the inclusions.

In all cases, the paths relative to source are preserved within target.

Examples:

• ("foo/bar" "share/my-app/"): Install bar to share/my-app/bar.

• ("foo/bar" "share/my-app/baz"): Install bar to share/my-app/baz.

• ("foo/" "share/my-app"): Install the content of foo inside share/my-app, e.g.,
install foo/sub/file to share/my-app/sub/file.

• ("foo/" "share/my-app" #:include ("sub/file")): Install only
foo/sub/file to share/my-app/sub/file.

• ("foo/sub" "share/my-app" #:include ("file")): Install foo/sub/file to
share/my-app/file.

[Variable]vim-build-system
This variable is exported by (guix build-system vim). It is an extension of the
copy-build-system, installing Vim and Neovim plugins into locations where these
two text editors know to find their plugins, using their packpaths.

Packages which are prefixed with vim- will be installed in Vim’s packpath, while
those prefixed with neovim- will be installed in Neovim’s packpath. If there is a doc

directory with the plugin then helptags will be generated automatically.

There are a couple of keywords added with the vim-build-system:

• With plugin-name it is possible to set the name of the plugin. While by default
this is set to the name and version of the package, it is often more helpful to set
this to name which the upstream author calls their plugin. This is the name used
for :packadd from inside Vim.

• With install-plan it is possible to augment the built-in install-plan of the
vim-build-system. This is particularly helpful if you have files which should be
installed in other locations. For more information about using the install-plan,
see the copy-build-system (see Section 8.5 [Build Systems], page 117).

• With #:vim it is possible to add this package to Vim’s packpath, in addition to
if it is added automatically because of the vim- prefix in the package’s name.

• With #:neovim it is possible to add this package to Neovim’s packpath, in addi-
tion to if it is added automatically because of the neovim- prefix in the package’s
name.

• With #:mode it is possible to adjust the path which the plugin is installed into.
By default the plugin is installed into start and other options are available,
including opt. Adding a plugin into opt will mean you will need to run, for
example, :packadd foo to load the foo plugin from inside of Vim.

[Variable]clojure-build-system
This variable is exported by (guix build-system clojure). It implements a sim-
ple build procedure for Clojure (https://clojure.org/) packages using plain old
compile in Clojure. Cross-compilation is not supported yet.

https://clojure.org/

Chapter 8: Programming Interface 124

It adds clojure, icedtea and zip to the set of inputs. Different packages can be
specified with the #:clojure, #:jdk and #:zip parameters, respectively.

A list of source directories, test directories and jar names can be specified with the
#:source-dirs, #:test-dirs and #:jar-names parameters, respectively. Compile
directory and main class can be specified with the #:compile-dir and #:main-class

parameters, respectively. Other parameters are documented below.

This build system is an extension of ant-build-system, but with the following phases
changed:

build This phase calls compile in Clojure to compile source files and runs
jar to create jars from both source files and compiled files according to
the include list and exclude list specified in #:aot-include and #:aot-

exclude, respectively. The exclude list has priority over the include list.
These lists consist of symbols representing Clojure libraries or the special
keyword #:all representing all Clojure libraries found under the source
directories. The parameter #:omit-source? decides if source should be
included into the jars.

check This phase runs tests according to the include list and exclude list speci-
fied in #:test-include and #:test-exclude, respectively. Their mean-
ings are analogous to that of #:aot-include and #:aot-exclude, except
that the special keyword #:all now stands for all Clojure libraries found
under the test directories. The parameter #:tests? decides if tests should
be run.

install This phase installs all jars built previously.

Apart from the above, this build system also contains an additional phase:

install-doc

This phase installs all top-level files with base name matching %doc-

regex. A different regex can be specified with the #:doc-regex param-
eter. All files (recursively) inside the documentation directories specified
in #:doc-dirs are installed as well.

[Variable]cmake-build-system
This variable is exported by (guix build-system cmake). It implements the build
procedure for packages using the CMake build tool (https://www.cmake.org).

It automatically adds the cmake package to the set of inputs. Which package is used
can be specified with the #:cmake parameter.

The #:configure-flags parameter is taken as a list of flags passed to the cmake

command. The #:build-type parameter specifies in abstract terms the flags passed
to the compiler; it defaults to "RelWithDebInfo" (short for “release mode with de-
bugging information”), which roughly means that code is compiled with -O2 -g, as is
the case for Autoconf-based packages by default.

[Variable]composer-build-system
This variable is exported by (guix build-system composer). It implements the
build procedure for packages using Composer (https://getcomposer.org/), the
PHP package manager.

https://www.cmake.org
https://getcomposer.org/

Chapter 8: Programming Interface 125

It automatically adds the php package to the set of inputs. Which package is used
can be specified with the #:php parameter.

The #:test-target parameter is used to control which script is run for the tests.
By default, the test script is run if it exists. If the script does not exist, the build
system will run phpunit from the source directory, assuming there is a phpunit.xml

file.

[Variable]dune-build-system
This variable is exported by (guix build-system dune). It supports builds of pack-
ages using Dune (https://dune.build/), a build tool for the OCaml programming
language. It is implemented as an extension of the ocaml-build-system which is
described below. As such, the #:ocaml and #:findlib parameters can be passed to
this build system.

It automatically adds the dune package to the set of inputs. Which package is used
can be specified with the #:dune parameter.

There is no configure phase because dune packages typically don’t need to be con-
figured. The #:build-flags parameter is taken as a list of flags passed to the dune

command during the build.

The #:jbuild? parameter can be passed to use the jbuild command instead of the
more recent dune command while building a package. Its default value is #f.

The #:package parameter can be passed to specify a package name, which is useful
when a package contains multiple packages and you want to build only one of them.
This is equivalent to passing the -p argument to dune.

[Variable]elm-build-system
This variable is exported by (guix build-system elm). It implements a build pro-
cedure for Elm (https://elm-lang.org) packages similar to ‘elm install’.

The build system adds an Elm compiler package to the set of inputs. The default
compiler package (currently elm-sans-reactor) can be overridden using the #:elm

argument. Additionally, Elm packages needed by the build system itself are added
as implicit inputs if they are not already present: to suppress this behavior, use the
#:implicit-elm-package-inputs? argument, which is primarily useful for boot-
strapping.

The "dependencies" and "test-dependencies" in an Elm package’s elm.json file
correspond to propagated-inputs and inputs, respectively.

Elm requires a particular structure for package names: see Section 22.8.12 [Elm Pack-
ages], page 719, for more details, including utilities provided by (guix build-system

elm).

There are currently a few noteworthy limitations to elm-build-system:

• The build system is focused on packages in the Elm sense of the word: Elm
projects which declare { "type": "package" } in their elm.json files. Using
elm-build-system to build Elm applications (which declare { "type":

"application" }) is possible, but requires ad-hoc modifications to the
build phases. For examples, see the definitions of the elm-todomvc example
application and the elm package itself (because the front-end for the ‘elm
reactor’ command is an Elm application).

https://dune.build/
https://elm-lang.org

Chapter 8: Programming Interface 126

• Elm supports multiple versions of a package coexisting simultaneously under
ELM_HOME, but this does not yet work well with elm-build-system. This lim-
itation primarily affects Elm applications, because they specify exact versions
for their dependencies, whereas Elm packages specify supported version ranges.
As a workaround, the example applications mentioned above use the patch-

application-dependencies procedure provided by (guix build elm-build-

system) to rewrite their elm.json files to refer to the package versions actually
present in the build environment. Alternatively, Guix package transformations
(see Section 8.3 [Defining Package Variants], page 109) could be used to rewrite
an application’s entire dependency graph.

• We are not yet able to run tests for Elm projects because neither elm-test-rs
(https://github.com/mpizenberg/elm-test-rs) nor the Node.js-based elm-

test (https://github.com/rtfeldman/node-test-runner) runner has been
packaged for Guix yet.

[Variable]go-build-system
This variable is exported by (guix build-system go). It implements a build pro-
cedure for Go packages using the standard Go build mechanisms (https://golang.
org/cmd/go/#hdr-Compile_packages_and_dependencies).

The user is expected to provide a value for the key #:import-path and, in some
cases, #:unpack-path. The import path (https://golang.org/doc/code.html#
ImportPaths) corresponds to the file system path expected by the package’s build
scripts and any referring packages, and provides a unique way to refer to a Go package.
It is typically based on a combination of the package source code’s remote URI and
file system hierarchy structure. In some cases, you will need to unpack the package’s
source code to a different directory structure than the one indicated by the import
path, and #:unpack-path should be used in such cases.

Packages that provide Go libraries should install their source code into the built
output. The key #:install-source?, which defaults to #t, controls whether or
not the source code is installed. It can be set to #f for packages that only provide
executable files.

Packages can be cross-built, and if a specific architecture or operating system is de-
sired then the keywords #:goarch and #:goos can be used to force the package to
be built for that architecture and operating system. The combinations known to Go
can be found in their documentation (https://golang.org/doc/install/source#
environment).

The key #:go can be used to specify the Go compiler package with which to build
the package.

[Variable]glib-or-gtk-build-system
This variable is exported by (guix build-system glib-or-gtk). It is intended for
use with packages making use of GLib or GTK+.

This build system adds the following two phases to the ones defined by gnu-build-

system:

https://github.com/mpizenberg/elm-test-rs
https://github.com/mpizenberg/elm-test-rs
https://github.com/rtfeldman/node-test-runner
https://github.com/rtfeldman/node-test-runner
https://golang.org/cmd/go/#hdr-Compile_packages_and_dependencies
https://golang.org/cmd/go/#hdr-Compile_packages_and_dependencies
https://golang.org/doc/code.html#ImportPaths
https://golang.org/doc/code.html#ImportPaths
https://golang.org/doc/install/source#environment
https://golang.org/doc/install/source#environment

Chapter 8: Programming Interface 127

glib-or-gtk-wrap

The phase glib-or-gtk-wrap ensures that programs in bin/ are able to
find GLib “schemas” and GTK+ modules (https://developer.gnome.
org/gtk3/stable/gtk-running.html). This is achieved by wrapping
the programs in launch scripts that appropriately set the XDG_DATA_DIRS
and GTK_PATH environment variables.

It is possible to exclude specific package outputs from that wrapping
process by listing their names in the #:glib-or-gtk-wrap-excluded-

outputs parameter. This is useful when an output is known not to con-
tain any GLib or GTK+ binaries, and where wrapping would gratuitously
add a dependency of that output on GLib and GTK+.

glib-or-gtk-compile-schemas

The phase glib-or-gtk-compile-schemas makes sure that all
GSettings schemas (https://developer.gnome.org/gio/stable/
glib-compile-schemas.html) of GLib are compiled. Compilation is
performed by the glib-compile-schemas program. It is provided by
the package glib:bin which is automatically imported by the build
system. The glib package providing glib-compile-schemas can be
specified with the #:glib parameter.

Both phases are executed after the install phase.

[Variable]guile-build-system
This build system is for Guile packages that consist exclusively of Scheme code and
that are so lean that they don’t even have a makefile, let alone a configure script.
It compiles Scheme code using guild compile (see Section “Compilation” in GNU
Guile Reference Manual) and installs the .scm and .go files in the right place. It also
installs documentation.

This build system supports cross-compilation by using the --target option of ‘guild
compile’.

Packages built with guile-build-system must provide a Guile package in their
native-inputs field.

[Variable]julia-build-system
This variable is exported by (guix build-system julia). It implements the build
procedure used by julia (https://julialang.org/) packages, which essentially is
similar to running ‘julia -e 'using Pkg; Pkg.add(package)'’ in an environment
where JULIA_LOAD_PATH contains the paths to all Julia package inputs. Tests are run
by calling /test/runtests.jl.

The Julia package name and uuid is read from the file Project.toml. These values
can be overridden by passing the argument #:julia-package-name (which must be
correctly capitalized) or #:julia-package-uuid.

Julia packages usually manage their binary dependencies via JLLWrappers.jl, a Julia
package that creates a module (named after the wrapped library followed by _jll.jl.

To add the binary path _jll.jl packages, you need to patch the files under
src/wrappers/, replacing the call to the macro JLLWrappers.@generate_

https://developer.gnome.org/gtk3/stable/gtk-running.html
https://developer.gnome.org/gtk3/stable/gtk-running.html
https://developer.gnome.org/gio/stable/glib-compile-schemas.html
https://developer.gnome.org/gio/stable/glib-compile-schemas.html
https://julialang.org/

Chapter 8: Programming Interface 128

wrapper_header, adding as a second argument containing the store path the
binary.

As an example, in the MbedTLS Julia package, we add a build phase (see Section 8.6
[Build Phases], page 137) to insert the absolute file name of the wrapped MbedTLS
package:

(add-after 'unpack 'override-binary-path

(lambda* (#:key inputs #:allow-other-keys)

(for-each (lambda (wrapper)

(substitute* wrapper

(("generate_wrapper_header.*")

(string-append

"generate_wrapper_header(\"MbedTLS\", \""

(assoc-ref inputs "mbedtls") "\")\n"))))

;; There's a Julia file for each platform, override them all.

(find-files "src/wrappers/" "\\.jl$"))))

Some older packages that aren’t using Project.toml yet, will require this file to
be created, too. It is internally done if the arguments #:julia-package-name and
#:julia-package-uuid are provided.

[Variable]maven-build-system
This variable is exported by (guix build-system maven). It implements a build pro-
cedure for Maven (https://maven.apache.org) packages. Maven is a dependency
and lifecycle management tool for Java. A user of Maven specifies dependencies and
plugins in a pom.xml file that Maven reads. When Maven does not have one of the
dependencies or plugins in its repository, it will download them and use them to build
the package.

The maven build system ensures that maven will not try to download any dependency
by running in offline mode. Maven will fail if a dependency is missing. Before running
Maven, the pom.xml (and subprojects) are modified to specify the version of depen-
dencies and plugins that match the versions available in the guix build environment.
Dependencies and plugins must be installed in the fake maven repository at lib/m2,
and are symlinked into a proper repository before maven is run. Maven is instructed
to use that repository for the build and installs built artifacts there. Changed files
are copied to the lib/m2 directory of the package output.

You can specify a pom.xml file with the #:pom-file argument, or let the build system
use the default pom.xml file in the sources.

In case you need to specify a dependency’s version manually, you can use the #:local-
packages argument. It takes an association list where the key is the groupId of the
package and its value is an association list where the key is the artifactId of the
package and its value is the version you want to override in the pom.xml.

Some packages use dependencies or plugins that are not useful at runtime nor at build
time in Guix. You can alter the pom.xml file to remove them using the #:exclude

argument. Its value is an association list where the key is the groupId of the plugin
or dependency you want to remove, and the value is a list of artifactId you want to
remove.

https://maven.apache.org

Chapter 8: Programming Interface 129

You can override the default jdk and maven packages with the corresponding argu-
ment, #:jdk and #:maven.

The #:maven-plugins argument is a list of maven plugins used during the build, with
the same format as the inputs fields of the package declaration. Its default value is
(default-maven-plugins) which is also exported.

[Variable]minetest-mod-build-system
This variable is exported by (guix build-system minetest). It implements a build
procedure for Minetest (https://www.minetest.net) mods, which consists of copy-
ing Lua code, images and other resources to the location Minetest searches for mods.
The build system also minimises PNG images and verifies that Minetest can load the
mod without errors.

[Variable]minify-build-system
This variable is exported by (guix build-system minify). It implements a minifi-
cation procedure for simple JavaScript packages.

It adds uglify-js to the set of inputs and uses it to compress all JavaScript files in
the src directory. A different minifier package can be specified with the #:uglify-

js parameter, but it is expected that the package writes the minified code to the
standard output.

When the input JavaScript files are not all located in the src directory, the parameter
#:javascript-files can be used to specify a list of file names to feed to the minifier.

[Variable]mozilla-build-system
This variable is exported by (guix build-system mozilla). It sets the --target

and --host configuration flags to what software developed by Mozilla expects – due
to historical reasons, Mozilla software expects --host to be the system that is cross-
compiled from and --target to be the system that is cross-compiled to, contrary to
the standard Autotools conventions.

[Variable]ocaml-build-system
This variable is exported by (guix build-system ocaml). It implements a build
procedure for OCaml (https://ocaml.org) packages, which consists of choosing the
correct set of commands to run for each package. OCaml packages can expect many
different commands to be run. This build system will try some of them.

When the package has a setup.ml file present at the top-level, it will run ocaml

setup.ml -configure, ocaml setup.ml -build and ocaml setup.ml -install.
The build system will assume that this file was generated by OASIS (http://
oasis.forge.ocamlcore.org/) and will take care of setting the prefix and enabling
tests if they are not disabled. You can pass configure and build flags with the
#:configure-flags and #:build-flags. The #:test-flags key can be passed to
change the set of flags used to enable tests. The #:use-make? key can be used to
bypass this system in the build and install phases.

When the package has a configure file, it is assumed that it is a hand-made configure
script that requires a different argument format than in the gnu-build-system. You
can add more flags with the #:configure-flags key.

https://www.minetest.net
https://ocaml.org
http://oasis.forge.ocamlcore.org/
http://oasis.forge.ocamlcore.org/

Chapter 8: Programming Interface 130

When the package has a Makefile file (or #:use-make? is #t), it will be used and
more flags can be passed to the build and install phases with the #:make-flags key.

Finally, some packages do not have these files and use a somewhat standard loca-
tion for its build system. In that case, the build system will run ocaml pkg/pkg.ml

or ocaml pkg/build.ml and take care of providing the path to the required findlib
module. Additional flags can be passed via the #:build-flags key. Install is taken
care of by opam-installer. In this case, the opam package must be added to the
native-inputs field of the package definition.

Note that most OCaml packages assume they will be installed in the same directory
as OCaml, which is not what we want in guix. In particular, they will install .so
files in their module’s directory, which is usually fine because it is in the OCaml
compiler directory. In guix though, these libraries cannot be found and we use CAML_
LD_LIBRARY_PATH. This variable points to lib/ocaml/site-lib/stubslibs and this
is where .so libraries should be installed.

[Variable]python-build-system
This variable is exported by (guix build-system python). It implements
the more or less standard build procedure used by Python packages, which
consists in running python setup.py build and then python setup.py install

--prefix=/gnu/store/....

For packages that install stand-alone Python programs under bin/, it takes care of
wrapping these programs so that their GUIX_PYTHONPATH environment variable points
to all the Python libraries they depend on.

Which Python package is used to perform the build can be specified with the #:python
parameter. This is a useful way to force a package to be built for a specific version of
the Python interpreter, which might be necessary if the package is only compatible
with a single interpreter version.

By default guix calls setup.py under control of setuptools, much like pip does.
Some packages are not compatible with setuptools (and pip), thus you can disable
this by setting the #:use-setuptools? parameter to #f.

If a "python" output is available, the package is installed into it instead of the default
"out" output. This is useful for packages that include a Python package as only a
part of the software, and thus want to combine the phases of python-build-system
with another build system. Python bindings are a common usecase.

[Variable]pyproject-build-system
This is a variable exported by guix build-system pyproject. It is based on python-
build-system, and adds support for pyproject.toml and PEP 517 (https://peps.
python.org/pep-0517/). It also supports a variety of build backends and test frame-
works.

The API is slightly different from python-build-system:

• #:use-setuptools? and #:test-target is removed.

• #:build-backend is added. It defaults to #false and will try to guess the
appropriate backend based on pyproject.toml.

• #:test-backend is added. It defaults to #false and will guess an appropriate
test backend based on what is available in package inputs.

https://peps.python.org/pep-0517/
https://peps.python.org/pep-0517/

Chapter 8: Programming Interface 131

• #:test-flags is added. The default is '(). These flags are passed as arguments
to the test command. Note that flags for verbose output is always enabled on
supported backends.

It is considered “experimental” in that the implementation details are not set in stone
yet, however users are encouraged to try it for new Python projects (even those using
setup.py). The API is subject to change, but any breaking changes in the Guix
channel will be dealt with.

Eventually this build system will be deprecated and merged back into python-build-
system, probably some time in 2024.

[Variable]perl-build-system
This variable is exported by (guix build-system perl). It implements the standard
build procedure for Perl packages, which either consists in running perl Build.PL

--prefix=/gnu/store/..., followed by Build and Build install; or in running
perl Makefile.PL PREFIX=/gnu/store/..., followed by make and make install,
depending on which of Build.PL or Makefile.PL is present in the package distribu-
tion. Preference is given to the former if both Build.PL and Makefile.PL exist in
the package distribution. This preference can be reversed by specifying #t for the
#:make-maker? parameter.

The initial perl Makefile.PL or perl Build.PL invocation passes flags specified by
the #:make-maker-flags or #:module-build-flags parameter, respectively.

Which Perl package is used can be specified with #:perl.

[Variable]renpy-build-system
This variable is exported by (guix build-system renpy). It implements the more
or less standard build procedure used by Ren’py games, which consists of loading
#:game once, thereby creating bytecode for it.

It further creates a wrapper script in bin/ and a desktop entry in
share/applications, both of which can be used to launch the game.

Which Ren’py package is used can be specified with #:renpy. Games can also be
installed in outputs other than “out” by using #:output.

[Variable]qt-build-system
This variable is exported by (guix build-system qt). It is intended for use with
applications using Qt or KDE.

This build system adds the following two phases to the ones defined by cmake-build-

system:

check-setup

The phase check-setup prepares the environment for running the
checks as commonly used by Qt test programs. For now this only
sets some environment variables: QT_QPA_PLATFORM=offscreen,
DBUS_FATAL_WARNINGS=0 and CTEST_OUTPUT_ON_FAILURE=1.

This phase is added before the check phase. It’s a separate phase to ease
adjusting if necessary.

Chapter 8: Programming Interface 132

qt-wrap The phase qt-wrap searches for Qt5 plugin paths, QML paths and some
XDG in the inputs and output. In case some path is found, all programs
in the output’s bin/, sbin/, libexec/ and lib/libexec/ directories are
wrapped in scripts defining the necessary environment variables.

It is possible to exclude specific package outputs from that wrapping
process by listing their names in the #:qt-wrap-excluded-outputs pa-
rameter. This is useful when an output is known not to contain any Qt
binaries, and where wrapping would gratuitously add a dependency of
that output on Qt, KDE, or such.

This phase is added after the install phase.

[Variable]r-build-system
This variable is exported by (guix build-system r). It implements the build proce-
dure used by R (https://r-project.org) packages, which essentially is little more
than running ‘R CMD INSTALL --library=/gnu/store/...’ in an environment where
R_LIBS_SITE contains the paths to all R package inputs. Tests are run after instal-
lation using the R function tools::testInstalledPackage.

[Variable]rakudo-build-system
This variable is exported by (guix build-system rakudo). It implements the build
procedure used by Rakudo (https://rakudo.org/) for Perl6 (https://perl6.org/
) packages. It installs the package to /gnu/store/.../NAME-VERSION/share/perl6

and installs the binaries, library files and the resources, as well as wrap the files under
the bin/ directory. Tests can be skipped by passing #f to the tests? parameter.

Which rakudo package is used can be specified with rakudo. Which perl6-tap-harness
package used for the tests can be specified with #:prove6 or removed by passing #f to
the with-prove6? parameter. Which perl6-zef package used for tests and installing
can be specified with #:zef or removed by passing #f to the with-zef? parameter.

[Variable]rebar-build-system
This variable is exported by (guix build-system rebar). It implements a build pro-
cedure around rebar3 (https://rebar3.org), a build system for programs written
in the Erlang language.

It adds both rebar3 and the erlang to the set of inputs. Different packages can be
specified with the #:rebar and #:erlang parameters, respectively.

This build system is based on gnu-build-system, but with the following phases
changed:

unpack This phase, after unpacking the source like the gnu-build-system does,
checks for a file contents.tar.gz at the top-level of the source. If this
file exists, it will be unpacked, too. This eases handling of package hosted
at https://hex.pm/, the Erlang and Elixir package repository.

bootstrap

configure

There are no bootstrap and configure phase because erlang packages
typically don’t need to be configured.

build This phase runs rebar3 compile with the flags listed in #:rebar-flags.

https://r-project.org
https://rakudo.org/
https://perl6.org/
https://perl6.org/
https://rebar3.org
https://hex.pm/

Chapter 8: Programming Interface 133

check Unless #:tests? #f is passed, this phase runs rebar3 eunit, or some
other target specified with #:test-target, with the flags listed in
#:rebar-flags,

install This installs the files created in the default profile, or some other profile
specified with #:install-profile.

[Variable]texlive-build-system
This variable is exported by (guix build-system texlive). It is used to build TeX
packages in batch mode with a specified engine. The build system sets the TEXINPUTS
variable to find all TeX source files in the inputs.

By default it tries to run luatex on all .ins files, and if it fails to find any, on all .dtx
files. A different engine and format can be specified with, respectively, the #:tex-

engine and #:tex-format arguments. Different build targets can be specified with
the #:build-targets argument, which expects a list of file names.

It also generates font metrics (i.e., .tfm files) out of Metafont files whenever possible.
Likewise, it can also create TeX formats (i.e., .fmt files) listed in the #:create-

formats argument, and generate a symbolic link from bin/ directory to any script
located in texmf-dist/scripts/, provided its file name is listed in #:link-scripts

argument.

The build system adds texlive-bin from (gnu packages tex) to the native inputs.
It can be overridden with the #:texlive-bin argument.

The package texlive-latex-bin, from the same module, contains most of the tools
for building TeX Live packages; for convenience, it is also added by default to the
native inputs. However, this can be troublesome when building a dependency of
texlive-latex-bin itself. In this particular situation, the #:texlive-latex-bin?

argument should be set to #f.

[Variable]ruby-build-system
This variable is exported by (guix build-system ruby). It implements the
RubyGems build procedure used by Ruby packages, which involves running gem

build followed by gem install.

The source field of a package that uses this build system typically references a gem
archive, since this is the format that Ruby developers use when releasing their soft-
ware. The build system unpacks the gem archive, potentially patches the source,
runs the test suite, repackages the gem, and installs it. Additionally, directories and
tarballs may be referenced to allow building unreleased gems from Git or a traditional
source release tarball.

Which Ruby package is used can be specified with the #:ruby parameter. A list of
additional flags to be passed to the gem command can be specified with the #:gem-

flags parameter.

[Variable]waf-build-system
This variable is exported by (guix build-system waf). It implements a build proce-
dure around the waf script. The common phases—configure, build, and install—
are implemented by passing their names as arguments to the waf script.

The waf script is executed by the Python interpreter. Which Python package is used
to run the script can be specified with the #:python parameter.

Chapter 8: Programming Interface 134

[Variable]zig-build-system
This variable is exported by (guix build-system zig). It implements the build pro-
cedures for the Zig (https://ziglang.org/) build system (zig build command).

Selecting this build system adds zig to the package inputs, in addition to the packages
of gnu-build-system.

There is no configure phase because Zig packages typically do not need to be config-
ured. The #:zig-build-flags parameter is a list of flags that are passed to the zig
command during the build. The #:zig-test-flags parameter is a list of flags that
are passed to the zig test command during the check phase. The default compiler
package can be overridden with the #:zig argument.

The optional zig-release-type parameter declares the type of release. Possible
values are: safe, fast, or small. The default value is #f, which causes the release
flag to be omitted from the zig command. That results in a debug build.

[Variable]scons-build-system
This variable is exported by (guix build-system scons). It implements the build
procedure used by the SCons software construction tool. This build system runs
scons to build the package, scons test to run tests, and then scons install to
install the package.

Additional flags to be passed to scons can be specified with the #:scons-flags

parameter. The default build and install targets can be overridden with #:build-

targets and #:install-targets respectively. The version of Python used to run
SCons can be specified by selecting the appropriate SCons package with the #:scons
parameter.

[Variable]haskell-build-system
This variable is exported by (guix build-system haskell). It implements the
Cabal build procedure used by Haskell packages, which involves running runhaskell

Setup.hs configure --prefix=/gnu/store/... and runhaskell Setup.hs build.
Instead of installing the package by running runhaskell Setup.hs install, to
avoid trying to register libraries in the read-only compiler store directory, the
build system uses runhaskell Setup.hs copy, followed by runhaskell Setup.hs

register. In addition, the build system generates the package documentation
by running runhaskell Setup.hs haddock, unless #:haddock? #f is passed.
Optional Haddock parameters can be passed with the help of the #:haddock-flags

parameter. If the file Setup.hs is not found, the build system looks for Setup.lhs
instead.

Which Haskell compiler is used can be specified with the #:haskell parameter which
defaults to ghc.

[Variable]dub-build-system
This variable is exported by (guix build-system dub). It implements the Dub build
procedure used by D packages, which involves running dub build and dub run. In-
stallation is done by copying the files manually.

Which D compiler is used can be specified with the #:ldc parameter which defaults
to ldc.

https://ziglang.org/

Chapter 8: Programming Interface 135

[Variable]emacs-build-system
This variable is exported by (guix build-system emacs). It implements an installa-
tion procedure similar to the packaging system of Emacs itself (see Section “Packages”
in The GNU Emacs Manual).

It first creates the package-autoloads.el file, then it byte compiles all Emacs Lisp
files. Differently from the Emacs packaging system, the Info documentation files are
moved to the standard documentation directory and the dir file is deleted. The Elisp
package files are installed directly under share/emacs/site-lisp.

[Variable]font-build-system
This variable is exported by (guix build-system font). It implements an instal-
lation procedure for font packages where upstream provides pre-compiled TrueType,
OpenType, etc. font files that merely need to be copied into place. It copies font files
to standard locations in the output directory.

[Variable]meson-build-system
This variable is exported by (guix build-system meson). It implements the build
procedure for packages that use Meson (https://mesonbuild.com) as their build
system.

It adds both Meson and Ninja (https://ninja-build.org/) to the set of inputs,
and they can be changed with the parameters #:meson and #:ninja if needed.

This build system is an extension of gnu-build-system, but with the following phases
changed to some specific for Meson:

configure

The phase runs meson with the flags specified in #:configure-flags.
The flag --buildtype is always set to debugoptimized unless something
else is specified in #:build-type.

build The phase runs ninja to build the package in parallel by default, but this
can be changed with #:parallel-build?.

check The phase runs ‘meson test’ with a base set of options that cannot be
overridden. This base set of options can be extended via the #:test-

options argument, for example to select or skip a specific test suite.

install The phase runs ninja install and can not be changed.

Apart from that, the build system also adds the following phases:

fix-runpath

This phase ensures that all binaries can find the libraries they need. It
searches for required libraries in subdirectories of the package being built,
and adds those to RUNPATH where needed. It also removes references to li-
braries left over from the build phase by meson, such as test dependencies,
that aren’t actually required for the program to run.

glib-or-gtk-wrap

This phase is the phase provided by glib-or-gtk-build-system, and it
is not enabled by default. It can be enabled with #:glib-or-gtk?.

https://mesonbuild.com
https://ninja-build.org/

Chapter 8: Programming Interface 136

glib-or-gtk-compile-schemas

This phase is the phase provided by glib-or-gtk-build-system, and it
is not enabled by default. It can be enabled with #:glib-or-gtk?.

[Variable]linux-module-build-system
linux-module-build-system allows building Linux kernel modules.

This build system is an extension of gnu-build-system, but with the following phases
changed:

configure

This phase configures the environment so that the Linux kernel’s Makefile
can be used to build the external kernel module.

build This phase uses the Linux kernel’s Makefile in order to build the external
kernel module.

install This phase uses the Linux kernel’s Makefile in order to install the external
kernel module.

It is possible and useful to specify the Linux kernel to use for building the module
(in the arguments form of a package using the linux-module-build-system, use the
key #:linux to specify it).

[Variable]node-build-system
This variable is exported by (guix build-system node). It implements the build
procedure used by Node.js (https://nodejs.org), which implements an approxima-
tion of the npm install command, followed by an npm test command.

Which Node.js package is used to interpret the npm commands can be specified with
the #:node parameter which defaults to node.

[Variable]tree-sitter-build-system
This variable is exported by (guix build-system tree-sitter). It implements pro-
cedures to compile grammars for the Tree-sitter (https://tree-sitter.github.io/
tree-sitter/) parsing library. It essentially runs tree-sitter generate to trans-
late grammar.js grammars to JSON and then to C. Which it then compiles to native
code.

Tree-sitter packages may support multiple grammars, so this build system supports a
#:grammar-directories keyword to specify a list of locations where a grammar.js

file may be found.

Grammars sometimes depend on each other, such as C++ depending on C and Type-
Script depending on JavaScript. You may use inputs to declare such dependencies.

Lastly, for packages that do not need anything as sophisticated, a “trivial” build system
is provided. It is trivial in the sense that it provides basically no support: it does not pull
any implicit inputs, and does not have a notion of build phases.

[Variable]trivial-build-system
This variable is exported by (guix build-system trivial).

This build system requires a #:builder argument. This argument must be a
Scheme expression that builds the package output(s)—as with build-expression-

>derivation (see Section 8.10 [Derivations], page 152).

https://nodejs.org
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/

Chapter 8: Programming Interface 137

[Variable]channel-build-system
This variable is exported by (guix build-system channel).

This build system is meant primarily for internal use. A package using this build
system must have a channel specification as its source field (see Chapter 6 [Chan-
nels], page 66); alternatively, its source can be a directory name, in which case an
additional #:commit argument must be supplied to specify the commit being built (a
hexadecimal string).

Optionally, a #:channels argument specifying additional channels can be provided.

The resulting package is a Guix instance of the given channel(s), similar to how guix

time-machine would build it.

8.6 Build Phases

Almost all package build systems implement a notion build phases: a sequence of ac-
tions that the build system executes, when you build the package, leading to the installed
byproducts in the store. A notable exception is the “bare-bones” trivial-build-system

(see Section 8.5 [Build Systems], page 117).

As discussed in the previous section, those build systems provide a standard list of
phases. For gnu-build-system, the main build phases are the following:

set-paths

Define search path environment variables for all the input packages, including
PATH (see Section 8.8 [Search Paths], page 147).

unpack Unpack the source tarball, and change the current directory to the extracted
source tree. If the source is actually a directory, copy it to the build tree, and
enter that directory.

patch-source-shebangs

Patch shebangs encountered in source files so they refer to the right store file
names. For instance, this changes #!/bin/sh to #!/gnu/store/...-bash-

4.3/bin/sh.

configure

Run the configure script with a number of default options, such as
--prefix=/gnu/store/..., as well as the options specified by the
#:configure-flags argument.

build Run make with the list of flags specified with #:make-flags. If the #:parallel-
build? argument is true (the default), build with make -j.

check Run make check, or some other target specified with #:test-target, unless
#:tests? #f is passed. If the #:parallel-tests? argument is true (the de-
fault), run make check -j.

install Run make install with the flags listed in #:make-flags.

patch-shebangs

Patch shebangs on the installed executable files.

Chapter 8: Programming Interface 138

strip Strip debugging symbols from ELF files (unless #:strip-binaries? is false),
copying them to the debug output when available (see Chapter 17 [Installing
Debugging Files], page 683).

validate-runpath

Validate the RUNPATH of ELF binaries, unless #:validate-runpath? is false
(see Section 8.5 [Build Systems], page 117).

This validation step consists in making sure that all the shared libraries needed
by an ELF binary, which are listed as DT_NEEDED entries in its PT_DYNAMIC seg-
ment, appear in the DT_RUNPATH entry of that binary. In other words, it ensures
that running or using those binaries will not result in a “file not found” error
at run time. See Section “Options” in The GNU Linker, for more information
on RUNPATH.

Other build systems have similar phases, with some variations. For example, cmake-
build-system has same-named phases but its configure phases runs cmake instead of
./configure. Others, such as python-build-system, have a wholly different list of stan-
dard phases. All this code runs on the build side: it is evaluated when you actually build
the package, in a dedicated build process spawned by the build daemon (see Section 2.3
[Invoking guix-daemon], page 11).

Build phases are represented as association lists or “alists” (see Section “Association
Lists” inGNUGuile Reference Manual) where each key is a symbol for the name of the phase
and the associated value is a procedure that accepts an arbitrary number of arguments. By
convention, those procedures receive information about the build in the form of keyword
parameters, which they can use or ignore.

For example, here is how (guix build gnu-build-system) defines %standard-phases,
the variable holding its alist of build phases3:

;; The build phases of 'gnu-build-system'.

(define* (unpack #:key source #:allow-other-keys)

;; Extract the source tarball.

(invoke "tar" "xvf" source))

(define* (configure #:key outputs #:allow-other-keys)

;; Run the 'configure' script. Install to output "out".

(let ((out (assoc-ref outputs "out")))

(invoke "./configure"

(string-append "--prefix=" out))))

(define* (build #:allow-other-keys)

;; Compile.

(invoke "make"))

(define* (check #:key (test-target "check") (tests? #true)

3 We present a simplified view of those build phases, but do take a look at (guix build gnu-build-system)

to see all the details!

Chapter 8: Programming Interface 139

#:allow-other-keys)

;; Run the test suite.

(if tests?

(invoke "make" test-target)

(display "test suite not run\n")))

(define* (install #:allow-other-keys)

;; Install files to the prefix 'configure' specified.

(invoke "make" "install"))

(define %standard-phases

;; The list of standard phases (quite a few are omitted

;; for brevity). Each element is a symbol/procedure pair.

(list (cons 'unpack unpack)

(cons 'configure configure)

(cons 'build build)

(cons 'check check)

(cons 'install install)))

This shows how %standard-phases is defined as a list of symbol/procedure pairs (see
Section “Pairs” in GNU Guile Reference Manual). The first pair associates the unpack

procedure with the unpack symbol—a name; the second pair defines the configure phase
similarly, and so on. When building a package that uses gnu-build-system with its default
list of phases, those phases are executed sequentially. You can see the name of each phase
started and completed in the build log of packages that you build.

Let’s now look at the procedures themselves. Each one is defined with define*: #:key
lists keyword parameters the procedure accepts, possibly with a default value, and #:allow-

other-keys specifies that other keyword parameters are ignored (see Section “Optional
Arguments” in GNU Guile Reference Manual).

The unpack procedure honors the source parameter, which the build system uses to
pass the file name of the source tarball (or version control checkout), and it ignores other
parameters. The configure phase only cares about the outputs parameter, an alist map-
ping package output names to their store file name (see Section 5.4 [Packages with Multiple
Outputs], page 49). It extracts the file name of for out, the default output, and passes it to
./configure as the installation prefix, meaning that make install will eventually copy all
the files in that directory (see Section “Configuration” in GNU Coding Standards). build
and install ignore all their arguments. check honors the test-target argument, which
specifies the name of the Makefile target to run tests; it prints a message and skips tests
when tests? is false.

The list of phases used for a particular package can be changed with the #:phases

parameter of the build system. Changing the set of build phases boils down to building a
new alist of phases based on the %standard-phases alist described above. This can be done
with standard alist procedures such as alist-delete (see Section “SRFI-1 Association
Lists” in GNU Guile Reference Manual); however, it is more convenient to do so with
modify-phases (see Section 8.7 [Build Utilities], page 140).

Chapter 8: Programming Interface 140

Here is an example of a package definition that removes the configure phase
of %standard-phases and inserts a new phase before the build phase, called
set-prefix-in-makefile:

(define-public example

(package

(name "example")

;; other fields omitted

(build-system gnu-build-system)

(arguments

(list

#:phases

#~(modify-phases %standard-phases

(delete 'configure)

(add-before 'build 'set-prefix-in-makefile

(lambda* (#:key inputs #:allow-other-keys)

;; Modify the makefile so that its

;; 'PREFIX' variable points to #$output and

;; 'XMLLINT' points to the correct path.

(substitute* "Makefile"

(("PREFIX =.*")

(string-append "PREFIX = " #$output "\n"))

(("XMLLINT =.*")

(string-append "XMLLINT = "

(search-input-file inputs "/bin/xmllint")

"\n"))))))))))

The new phase that is inserted is written as an anonymous procedure, introduced with
lambda*; it looks for the xmllint executable under a /bin directory among the package’s
inputs (see Section 8.2.1 [package Reference], page 101). It also honors the outputs pa-
rameter we have seen before. See Section 8.7 [Build Utilities], page 140, for more about the
helpers used by this phase, and for more examples of modify-phases.

Tip: You can inspect the code associated with a package’s #:phases argu-
ment interactively, at the REPL (see Section 8.14 [Using Guix Interactively],
page 170).

Keep in mind that build phases are code evaluated at the time the package is actually
built. This explains why the whole modify-phases expression above is quoted (it comes
after the ' or apostrophe): it is staged for later execution. See Section 8.12 [G-Expressions],
page 159, for an explanation of code staging and the code strata involved.

8.7 Build Utilities

As soon as you start writing non-trivial package definitions (see Section 8.2 [Defining Pack-
ages], page 98) or other build actions (see Section 8.12 [G-Expressions], page 159), you will
likely start looking for helpers for “shell-like” actions—creating directories, copying and
deleting files recursively, manipulating build phases, and so on. The (guix build utils)

module provides such utility procedures.

Chapter 8: Programming Interface 141

Most build systems load (guix build utils) (see Section 8.5 [Build Systems], page 117).
Thus, when writing custom build phases for your package definitions, you can usually assume
those procedures are in scope.

When writing G-expressions, you can import (guix build utils) on the “build side”
using with-imported-modules and then put it in scope with the use-modules form (see
Section “Using Guile Modules” in GNU Guile Reference Manual):

(with-imported-modules '((guix build utils)) ;import it

(computed-file "empty-tree"

#~(begin

;; Put it in scope.

(use-modules (guix build utils))

;; Happily use its 'mkdir-p' procedure.

(mkdir-p (string-append #$output "/a/b/c")))))

The remainder of this section is the reference for most of the utility procedures provided
by (guix build utils).

8.7.1 Dealing with Store File Names

This section documents procedures that deal with store file names.

[Procedure]%store-directory
Return the directory name of the store.

[Procedure]store-file-name? file
Return true if file is in the store.

[Procedure]strip-store-file-name file
Strip the /gnu/store and hash from file, a store file name. The result is typically a
"package-version" string.

[Procedure]package-name->name+version name
Given name, a package name like "foo-0.9.1b", return two values: "foo" and
"0.9.1b". When the version part is unavailable, name and #f are returned. The
first hyphen followed by a digit is considered to introduce the version part.

8.7.2 File Types

The procedures below deal with files and file types.

[Procedure]directory-exists? dir
Return #t if dir exists and is a directory.

[Procedure]executable-file? file
Return #t if file exists and is executable.

[Procedure]symbolic-link? file
Return #t if file is a symbolic link (aka. a “symlink”).

Chapter 8: Programming Interface 142

[Procedure]elf-file? file
[Procedure]ar-file? file
[Procedure]gzip-file? file

Return #t if file is, respectively, an ELF file, an ar archive (such as a .a static library),
or a gzip file.

[Procedure]reset-gzip-timestamp file [#:keep-mtime? #t]
If file is a gzip file, reset its embedded timestamp (as with gzip --no-name) and return
true. Otherwise return #f. When keep-mtime? is true, preserve file’s modification
time.

8.7.3 File Manipulation

The following procedures and macros help create, modify, and delete files. They provide
functionality comparable to common shell utilities such as mkdir -p, cp -r, rm -r, and
sed. They complement Guile’s extensive, but low-level, file system interface (see Section
“POSIX” in GNU Guile Reference Manual).

[Macro]with-directory-excursion directory body . . .
Run body with directory as the process’s current directory.

Essentially, this macro changes the current directory to directory before evaluating
body, using chdir (see Section “Processes” in GNU Guile Reference Manual). It
changes back to the initial directory when the dynamic extent of body is left, be it
via normal procedure return or via a non-local exit such as an exception.

[Procedure]mkdir-p dir
Create directory dir and all its ancestors.

[Procedure]install-file file directory
Create directory if it does not exist and copy file in there under the same name.

[Procedure]make-file-writable file
Make file writable for its owner.

[Procedure]copy-recursively source destination [#:log (current-output-port)]
[#:follow-symlinks? #f] [#:copy-file copy-file] [#:keep-mtime? #f]
[#:keep-permissions? #t]

Copy source directory to destination. Follow symlinks if follow-symlinks? is true;
otherwise, just preserve them. Call copy-file to copy regular files. When keep-mtime?
is true, keep the modification time of the files in source on those of destination. When
keep-permissions? is true, preserve file permissions. Write verbose output to the log
port.

[Procedure]delete-file-recursively dir [#:follow-mounts? #f]
Delete dir recursively, like rm -rf, without following symlinks. Don’t follow mount
points either, unless follow-mounts? is true. Report but ignore errors.

[Macro]substitute* file ((regexp match-var. . .) body. . .) . . .
Substitute regexp in file by the string returned by body. body is evaluated with
each match-var bound to the corresponding positional regexp sub-expression. For
example:

(substitute* file

Chapter 8: Programming Interface 143

(("hello")

"good morning\n")

(("foo([a-z]+)bar(.*)$" all letters end)

(string-append "baz" letters end)))

Here, anytime a line of file contains hello, it is replaced by good morning. Anytime
a line of file matches the second regexp, all is bound to the complete match, letters
is bound to the first sub-expression, and end is bound to the last one.

When one of the match-var is _, no variable is bound to the corresponding match
substring.

Alternatively, file may be a list of file names, in which case they are all subject to the
substitutions.

Be careful about using $ to match the end of a line; by itself it won’t match the
terminating newline of a line. For example, to match a whole line ending with a
backslash, one needs a regex like "(.*)\\\\\n$".

8.7.4 File Search

This section documents procedures to search and filter files.

[Procedure]file-name-predicate regexp
Return a predicate that returns true when passed a file name whose base name
matches regexp.

[Procedure]find-files dir [pred] [#:stat lstat] [#:directories? #f]
[#:fail-on-error? #f]

Return the lexicographically sorted list of files under dir for which pred returns true.
pred is passed two arguments: the absolute file name, and its stat buffer; the default
predicate always returns true. pred can also be a regular expression, in which case
it is equivalent to (file-name-predicate pred). stat is used to obtain file informa-
tion; using lstat means that symlinks are not followed. If directories? is true, then
directories will also be included. If fail-on-error? is true, raise an exception upon
error.

Here are a few examples where we assume that the current directory is the root of the
Guix source tree:

;; List all the regular files in the current directory.

(find-files ".")

⇒ ("./.dir-locals.el" "./.gitignore" ...)

;; List all the .scm files under gnu/services.

(find-files "gnu/services" "\\.scm$")

⇒ ("gnu/services/admin.scm" "gnu/services/audio.scm" ...)

;; List ar files in the current directory.

(find-files "." (lambda (file stat) (ar-file? file)))

⇒ ("./libformat.a" "./libstore.a" ...)

Chapter 8: Programming Interface 144

[Procedure]which program
Return the complete file name for program as found in $PATH, or #f if program could
not be found.

[Procedure]search-input-file inputs name
[Procedure]search-input-directory inputs name

Return the complete file name for name as found in inputs; search-input-file

searches for a regular file and search-input-directory searches for a directory. If
name could not be found, an exception is raised.

Here, inputs must be an association list like inputs and native-inputs as available
to build phases (see Section 8.6 [Build Phases], page 137).

Here is a (simplified) example of how search-input-file is used in a build phase of
the wireguard-tools package:

(add-after 'install 'wrap-wg-quick

(lambda* (#:key inputs outputs #:allow-other-keys)

(let ((coreutils (string-append (assoc-ref inputs "coreutils")

"/bin")))

(wrap-program (search-input-file outputs "bin/wg-quick")

#:sh (search-input-file inputs "bin/bash")

`("PATH" ":" prefix ,(list coreutils))))))

8.7.5 Program Invocation

You’ll find handy procedures to spawn processes in this module, essentially convenient wrap-
pers around Guile’s system* (see Section “Processes” in GNU Guile Reference Manual).

[Procedure]invoke program args. . .
Invoke program with the given args. Raise an &invoke-error exception if the exit
code is non-zero; otherwise return #t.

The advantage compared to system* is that you do not need to check the return
value. This reduces boilerplate in shell-script-like snippets for instance in package
build phases.

[Procedure]invoke-error? c
Return true if c is an &invoke-error condition.

[Procedure]invoke-error-program c
[Procedure]invoke-error-arguments c
[Procedure]invoke-error-exit-status c
[Procedure]invoke-error-term-signal c
[Procedure]invoke-error-stop-signal c

Access specific fields of c, an &invoke-error condition.

[Procedure]report-invoke-error c [port]
Report to port (by default the current error port) about c, an &invoke-error con-
dition, in a human-friendly way.

Typical usage would look like this:

(use-modules (srfi srfi-34) ;for 'guard'

Chapter 8: Programming Interface 145

(guix build utils))

(guard (c ((invoke-error? c)

(report-invoke-error c)))

(invoke "date" "--imaginary-option"))

a command "date" "--imaginary-option" failed with status 1

[Procedure]invoke/quiet program args. . .
Invoke program with args and capture program’s standard output and standard error.
If program succeeds, print nothing and return the unspecified value; otherwise, raise
a &message error condition that includes the status code and the output of program.

Here’s an example:

(use-modules (srfi srfi-34) ;for 'guard'

(srfi srfi-35) ;for 'message-condition?'

(guix build utils))

(guard (c ((message-condition? c)

(display (condition-message c))))

(invoke/quiet "date") ;all is fine

(invoke/quiet "date" "--imaginary-option"))

a 'date --imaginary-option' exited with status 1; output follows:

date: unrecognized option '--imaginary-option'

Try 'date --help' for more information.

8.7.6 Build Phases

The (guix build utils) also contains tools to manipulate build phases as used by build
systems (see Section 8.5 [Build Systems], page 117). Build phases are represented as asso-
ciation lists or “alists” (see Section “Association Lists” in GNU Guile Reference Manual)
where each key is a symbol naming the phase and the associated value is a procedure (see
Section 8.6 [Build Phases], page 137).

Guile core and the (srfi srfi-1) module both provide tools to manipulate alists. The
(guix build utils) module complements those with tools written with build phases in
mind.

[Macro]modify-phases phases clause. . .
Modify phases sequentially as per each clause, which may have one of the following
forms:

(delete old-phase-name)

(replace old-phase-name new-phase)

(add-before old-phase-name new-phase-name new-phase)

(add-after old-phase-name new-phase-name new-phase)

Where every phase-name above is an expression evaluating to a symbol, and new-
phase an expression evaluating to a procedure.

Chapter 8: Programming Interface 146

The example below is taken from the definition of the grep package. It adds a phase
to run after the install phase, called fix-egrep-and-fgrep. That phase is a procedure
(lambda* is for anonymous procedures) that takes a #:outputs keyword argument and
ignores extra keyword arguments (see Section “Optional Arguments” in GNU Guile Refer-
ence Manual, for more on lambda* and optional and keyword arguments.) The phase uses
substitute* to modify the installed egrep and fgrep scripts so that they refer to grep by
its absolute file name:

(modify-phases %standard-phases

(add-after 'install 'fix-egrep-and-fgrep

;; Patch 'egrep' and 'fgrep' to execute 'grep' via its

;; absolute file name instead of searching for it in $PATH.

(lambda* (#:key outputs #:allow-other-keys)

(let* ((out (assoc-ref outputs "out"))

(bin (string-append out "/bin")))

(substitute* (list (string-append bin "/egrep")

(string-append bin "/fgrep"))

(("^exec grep")

(string-append "exec " bin "/grep")))))))

In the example below, phases are modified in two ways: the standard configure phase is
deleted, presumably because the package does not have a configure script or anything sim-
ilar, and the default install phase is replaced by one that manually copies the executable
files to be installed:

(modify-phases %standard-phases

(delete 'configure) ;no 'configure' script

(replace 'install

(lambda* (#:key outputs #:allow-other-keys)

;; The package's Makefile doesn't provide an "install"

;; rule so do it by ourselves.

(let ((bin (string-append (assoc-ref outputs "out")

"/bin")))

(install-file "footswitch" bin)

(install-file "scythe" bin)))))

8.7.7 Wrappers

It is not unusual for a command to require certain environment variables to be set for proper
functioning, typically search paths (see Section 8.8 [Search Paths], page 147). Failing to do
that, the command might fail to find files or other commands it relies on, or it might pick
the “wrong” ones—depending on the environment in which it runs. Examples include:

• a shell script that assumes all the commands it uses are in PATH;

• a Guile program that assumes all its modules are in GUILE_LOAD_PATH and GUILE_

LOAD_COMPILED_PATH;

• a Qt application that expects to find certain plugins in QT_PLUGIN_PATH.

For a package writer, the goal is to make sure commands always work the same rather
than depend on some external settings. One way to achieve that is to wrap commands in
a thin script that sets those environment variables, thereby ensuring that those run-time

Chapter 8: Programming Interface 147

dependencies are always found. The wrapper would be used to set PATH, GUILE_LOAD_PATH,
or QT_PLUGIN_PATH in the examples above.

To ease that task, the (guix build utils) module provides a couple of helpers to wrap
commands.

[Procedure]wrap-program program [#:sh sh] [#:rest variables]
Make a wrapper for program. variables should look like this:

'(variable delimiter position list-of-directories)

where delimiter is optional. : will be used if delimiter is not given.

For example, this call:

(wrap-program "foo"

'("PATH" ":" = ("/gnu/.../bar/bin"))

'("CERT_PATH" suffix ("/gnu/.../baz/certs"

"/qux/certs")))

will copy foo to .foo-real and create the file foo with the following contents:

#!location/of/bin/bash

export PATH="/gnu/.../bar/bin"

export CERT_PATH="$CERT_PATH${CERT_PATH:+:}/gnu/.../baz/certs:/qux/certs"

exec -a $0 location/of/.foo-real "$@"

If program has previously been wrapped by wrap-program, the wrapper is extended
with definitions for variables. If it is not, sh will be used as the interpreter.

[Procedure]wrap-script program [#:guile guile] [#:rest variables]
Wrap the script program such that variables are set first. The format of variables
is the same as in the wrap-program procedure. This procedure differs from wrap-

program in that it does not create a separate shell script. Instead, program is modified
directly by prepending a Guile script, which is interpreted as a comment in the script’s
language.

Special encoding comments as supported by Python are recreated on the second line.

Note that this procedure can only be used once per file as Guile scripts are not
supported.

8.8 Search Paths

Many programs and libraries look for input data in a search path, a list of directories: shells
like Bash look for executables in the command search path, a C compiler looks for .h files
in its header search path, the Python interpreter looks for .py files in its search path, the
spell checker has a search path for dictionaries, and so on.

Search paths can usually be defined or overridden via environment variables (see Section
“Environment Variables” in The GNU C Library Reference Manual). For example, the
search paths mentioned above can be changed by defining the PATH, C_INCLUDE_PATH,
PYTHONPATH (or GUIX_PYTHONPATH), and DICPATH environment variables—you know, all
these something-PATH variables that you need to get right or things “won’t be found”.

You may have noticed from the command line that Guix “knows” which search path en-
vironment variables should be defined, and how. When you install packages in your default

Chapter 8: Programming Interface 148

profile, the file ~/.guix-profile/etc/profile is created, which you can “source” from
the shell to set those variables. Likewise, if you ask guix shell to create an environment
containing Python and NumPy, a Python library, and if you pass it the --search-paths

option, it will tell you about PATH and GUIX_PYTHONPATH (see Section 7.1 [Invoking guix
shell], page 76):

$ guix shell python python-numpy --pure --search-paths

export PATH="/gnu/store/...-profile/bin"

export GUIX_PYTHONPATH="/gnu/store/...-profile/lib/python3.9/site-packages"

When you omit --search-paths, it defines these environment variables right away, such
that Python can readily find NumPy:

$ guix shell python python-numpy -- python3

Python 3.9.6 (default, Jan 1 1970, 00:00:01)

[GCC 10.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy

>>> numpy.version.version

'1.20.3'

For this to work, the definition of the python package declares the search path it cares
about and its associated environment variable, GUIX_PYTHONPATH. It looks like this:

(package

(name "python")

(version "3.9.9")

;; some fields omitted...

(native-search-paths

(list (search-path-specification

(variable "GUIX_PYTHONPATH")

(files (list "lib/python/3.9/site-packages"))))))

What this native-search-paths field says is that, when the python package is
used, the GUIX_PYTHONPATH environment variable must be defined to include all the
lib/python/3.9/site-packages sub-directories encountered in its environment. (The
native- bit means that, if we are in a cross-compilation environment, only native inputs
may be added to the search path; see Section 8.2.1 [package Reference], page 101.)
In the NumPy example above, the profile where python appears contains exactly
one such sub-directory, and GUIX_PYTHONPATH is set to that. When there are several
lib/python/3.9/site-packages—this is the case in package build environments—they
are all added to GUIX_PYTHONPATH, separated by colons (:).

Note: Notice that GUIX_PYTHONPATH is specified as part of the definition of the
python package, and not as part of that of python-numpy. This is because this
environment variable “belongs” to Python, not NumPy: Python actually reads
the value of that variable and honors it.

Corollary: if you create a profile that does not contain python, GUIX_

PYTHONPATH will not be defined, even if it contains packages that provide .py

files:

$ guix shell python-numpy --search-paths --pure

export PATH="/gnu/store/...-profile/bin"

Chapter 8: Programming Interface 149

This makes a lot of sense if we look at this profile in isolation: no software in
this profile would read GUIX_PYTHONPATH.

Of course, there are many variations on that theme: some packages honor more than
one search path, some use separators other than colon, some accumulate several directories
in their search path, and so on. A more complex example is the search path of libxml2: the
value of the XML_CATALOG_FILES environment variable is space-separated, it must contain
a list of catalog.xml files (not directories), which are to be found in xml sub-directories—
nothing less. The search path specification looks like this:

(package

(name "libxml2")

;; some fields omitted

(native-search-paths

(list (search-path-specification

(variable "XML_CATALOG_FILES")

(separator " ")

(files '("xml"))

(file-pattern "^catalog\\.xml$")

(file-type 'regular)))))

Worry not, search path specifications are usually not this tricky.

The (guix search-paths) module defines the data type of search path specifications
and a number of helper procedures. Below is the reference of search path specifications.

[Data Type]search-path-specification
The data type for search path specifications.

variable The name of the environment variable for this search path (a string).

files The list of sub-directories (strings) that should be added to the search
path.

separator (default: ":")
The string used to separate search path components.

As a special case, a separator value of #f specifies a “single-component
search path”—in other words, a search path that cannot contain more
than one element. This is useful in some cases, such as the SSL_CERT_DIR
variable (honored by OpenSSL, cURL, and a few other packages) or the
ASPELL_DICT_DIR variable (honored by the GNU Aspell spell checker),
both of which must point to a single directory.

file-type (default: 'directory)
The type of file being matched—'directory or 'regular, though it can
be any symbol returned by stat:type (see Section “File System” in GNU
Guile Reference Manual).

In the libxml2 example above, we would match regular files; in the Python
example, we would match directories.

file-pattern (default: #f)
This must be either #f or a regular expression specifying files to be
matched within the sub-directories specified by the files field.

Chapter 8: Programming Interface 150

Again, the libxml2 example shows a situation where this is needed.

Some search paths are not tied by a single package but to many packages. To reduce
duplications, some of them are pre-defined in (guix search-paths).

[Variable]$SSL_CERT_DIR
[Variable]$SSL_CERT_FILE

These two search paths indicate where X.509 certificates can be found (see Sec-
tion 11.12 [X.509 Certificates], page 589).

These pre-defined search paths can be used as in the following example:

(package

(name "curl")

;; some fields omitted ...

(native-search-paths (list $SSL_CERT_DIR $SSL_CERT_FILE)))

How do you turn search path specifications on one hand and a bunch of directories on
the other hand in a set of environment variable definitions? That’s the job of evaluate-
search-paths.

[Procedure]evaluate-search-paths search-paths directories [getenv]
Evaluate search-paths, a list of search-path specifications, for directories, a list of di-
rectory names, and return a list of specification/value pairs. Use getenv to determine
the current settings and report only settings not already effective.

The (guix profiles) provides a higher-level helper procedure, load-profile, that sets
the environment variables of a profile.

8.9 The Store

Conceptually, the store is the place where derivations that have been built successfully are
stored—by default, /gnu/store. Sub-directories in the store are referred to as store items or
sometimes store paths. The store has an associated database that contains information such
as the store paths referred to by each store path, and the list of valid store items—results
of successful builds. This database resides in localstatedir/guix/db, where localstatedir
is the state directory specified via --localstatedir at configure time, usually /var.

The store is always accessed by the daemon on behalf of its clients (see Section 2.3
[Invoking guix-daemon], page 11). To manipulate the store, clients connect to the daemon
over a Unix-domain socket, send requests to it, and read the result—these are remote
procedure calls, or RPCs.

Note: Users must never modify files under /gnu/store directly. This would
lead to inconsistencies and break the immutability assumptions of Guix’s func-
tional model (see Chapter 1 [Introduction], page 1).

See Section 5.6 [Invoking guix gc], page 51, for information on how to check the
integrity of the store and attempt recovery from accidental modifications.

The (guix store)module provides procedures to connect to the daemon, and to perform
RPCs. These are described below. By default, open-connection, and thus all the guix

commands, connect to the local daemon or to the URI specified by the GUIX_DAEMON_SOCKET
environment variable.

Chapter 8: Programming Interface 151

[Environment Variable]GUIX_DAEMON_SOCKET
When set, the value of this variable should be a file name or a URI designating the
daemon endpoint. When it is a file name, it denotes a Unix-domain socket to connect
to. In addition to file names, the supported URI schemes are:

file

unix These are for Unix-domain sockets. file:///var/guix/daemon-

socket/socket is equivalent to /var/guix/daemon-socket/socket.

guix These URIs denote connections over TCP/IP, without encryption nor
authentication of the remote host. The URI must specify the host name
and optionally a port number (by default port 44146 is used):

guix://master.guix.example.org:1234

This setup is suitable on local networks, such as clusters,
where only trusted nodes may connect to the build daemon at
master.guix.example.org.

The --listen option of guix-daemon can be used to instruct it to listen
for TCP connections (see Section 2.3 [Invoking guix-daemon], page 11).

ssh These URIs allow you to connect to a remote daemon over SSH. This
feature requires Guile-SSH (see Section 22.1 [Requirements], page 698)
and a working guile binary in PATH on the destination machine. It
supports public key and GSSAPI authentication. A typical URL might
look like this:

ssh://charlie@guix.example.org:22

As for guix copy, the usual OpenSSH client configuration files are hon-
ored (see Section 9.13 [Invoking guix copy], page 222).

Additional URI schemes may be supported in the future.

Note: The ability to connect to remote build daemons is considered exper-
imental as of db86261. Please get in touch with us to share any problems
or suggestions you may have (see Chapter 22 [Contributing], page 698).

[Procedure]open-connection [uri] [#:reserve-space? #t]
Connect to the daemon over the Unix-domain socket at uri (a string). When reserve-
space? is true, instruct it to reserve a little bit of extra space on the file system so
that the garbage collector can still operate should the disk become full. Return a
server object.

file defaults to %default-socket-path, which is the normal location given the options
that were passed to configure.

[Procedure]close-connection server
Close the connection to server.

[Variable]current-build-output-port
This variable is bound to a SRFI-39 parameter, which refers to the port where build
and error logs sent by the daemon should be written.

Procedures that make RPCs all take a server object as their first argument.

Chapter 8: Programming Interface 152

[Procedure]valid-path? server path
Return #t when path designates a valid store item and #f otherwise (an invalid item
may exist on disk but still be invalid, for instance because it is the result of an aborted
or failed build).

A &store-protocol-error condition is raised if path is not prefixed by the store
directory (/gnu/store).

[Procedure]add-text-to-store server name text [references]
Add text under file name in the store, and return its store path. references is the list
of store paths referred to by the resulting store path.

[Procedure]build-derivations store derivations [mode]
Build derivations, a list of <derivation> objects, .drv file names, or
derivation/output pairs, using the specified mode—(build-mode normal) by
default.

Note that the (guix monads) module provides a monad as well as monadic versions of
the above procedures, with the goal of making it more convenient to work with code that
accesses the store (see Section 8.11 [The Store Monad], page 155).

This section is currently incomplete.

8.10 Derivations

Low-level build actions and the environment in which they are performed are represented
by derivations. A derivation contains the following pieces of information:

• The outputs of the derivation—derivations produce at least one file or directory in the
store, but may produce more.

• The inputs of the derivation—i.e., its build-time dependencies—which may be other
derivations or plain files in the store (patches, build scripts, etc.).

• The system type targeted by the derivation—e.g., x86_64-linux.

• The file name of a build script in the store, along with the arguments to be passed.

• A list of environment variables to be defined.

Derivations allow clients of the daemon to communicate build actions to the store. They
exist in two forms: as an in-memory representation, both on the client- and daemon-side,
and as files in the store whose name end in .drv—these files are referred to as derivation
paths. Derivations paths can be passed to the build-derivations procedure to perform
the build actions they prescribe (see Section 8.9 [The Store], page 150).

Operations such as file downloads and version-control checkouts for which the expected
content hash is known in advance are modeled as fixed-output derivations. Unlike regular
derivations, the outputs of a fixed-output derivation are independent of its inputs—e.g.,
a source code download produces the same result regardless of the download method and
tools being used.

The outputs of derivations—i.e., the build results—have a set of references, as reported
by the references RPC or the guix gc --references command (see Section 5.6 [Invoking
guix gc], page 51). References are the set of run-time dependencies of the build results.

Chapter 8: Programming Interface 153

References are a subset of the inputs of the derivation; this subset is automatically computed
by the build daemon by scanning all the files in the outputs.

The (guix derivations) module provides a representation of derivations as Scheme
objects, along with procedures to create and otherwise manipulate derivations. The lowest-
level primitive to create a derivation is the derivation procedure:

[Procedure]derivation store name builder args [#:outputs ’("out")] [#:hash
#f] [#:hash-algo #f] [#:recursive? #f] [#:inputs ’()] [#:env-vars ’()]
[#:system (%current-system)] [#:references-graphs #f]
[#:allowed-references #f] [#:disallowed-references #f] [#:leaked-env-vars
#f] [#:local-build? #f] [#:substitutable? #t] [#:properties ’()]

Build a derivation with the given arguments, and return the resulting <derivation>

object.

When hash and hash-algo are given, a fixed-output derivation is created—i.e., one
whose result is known in advance, such as a file download. If, in addition, recursive?
is true, then that fixed output may be an executable file or a directory and hash must
be the hash of an archive containing this output.

When references-graphs is true, it must be a list of file name/store path pairs. In
that case, the reference graph of each store path is exported in the build environment
in the corresponding file, in a simple text format.

When allowed-references is true, it must be a list of store items or outputs that the
derivation’s output may refer to. Likewise, disallowed-references, if true, must be a
list of things the outputs may not refer to.

When leaked-env-vars is true, it must be a list of strings denoting environment vari-
ables that are allowed to “leak” from the daemon’s environment to the build envi-
ronment. This is only applicable to fixed-output derivations—i.e., when hash is true.
The main use is to allow variables such as http_proxy to be passed to derivations
that download files.

When local-build? is true, declare that the derivation is not a good candidate for
offloading and should rather be built locally (see Section 2.2.2 [Daemon Offload Setup],
page 7). This is the case for small derivations where the costs of data transfers would
outweigh the benefits.

When substitutable? is false, declare that substitutes of the derivation’s output should
not be used (see Section 5.3 [Substitutes], page 44). This is useful, for instance, when
building packages that capture details of the host CPU instruction set.

properties must be an association list describing “properties” of the derivation. It is
kept as-is, uninterpreted, in the derivation.

Here’s an example with a shell script as its builder, assuming store is an open connection
to the daemon, and bash points to a Bash executable in the store:

(use-modules (guix utils)

(guix store)

(guix derivations))

(let ((builder ; add the Bash script to the store

Chapter 8: Programming Interface 154

(add-text-to-store store "my-builder.sh"

"echo hello world > $out\n" '())))

(derivation store "foo"

bash `("-e" ,builder)

#:inputs `((,bash) (,builder))

#:env-vars '(("HOME" . "/homeless"))))

⇒ #<derivation /gnu/store/...-foo.drv => /gnu/store/...-foo>

As can be guessed, this primitive is cumbersome to use directly. A better approach is to
write build scripts in Scheme, of course! The best course of action for that is to write the
build code as a “G-expression”, and to pass it to gexp->derivation. For more information,
see Section 8.12 [G-Expressions], page 159.

Once upon a time, gexp->derivation did not exist and constructing derivations with
build code written in Scheme was achieved with build-expression->derivation, doc-
umented below. This procedure is now deprecated in favor of the much nicer gexp-

>derivation.

[Procedure]build-expression->derivation store name exp [#:system
(%current-system)] [#:inputs ’()] [#:outputs ’("out")] [#:hash #f]
[#:hash-algo #f] [#:recursive? #f] [#:env-vars ’()] [#:modules ’()]
[#:references-graphs #f] [#:allowed-references #f]
[#:disallowed-references #f] [#:local-build? #f] [#:substitutable? #t]
[#:guile-for-build #f]

Return a derivation that executes Scheme expression exp as a builder for derivation
name. inputs must be a list of (name drv-path sub-drv) tuples; when sub-drv is
omitted, "out" is assumed. modules is a list of names of Guile modules from the
current search path to be copied in the store, compiled, and made available in the
load path during the execution of exp—e.g., ((guix build utils) (guix build gnu-

build-system)).

exp is evaluated in an environment where %outputs is bound to a list of output/path
pairs, and where %build-inputs is bound to a list of string/output-path pairs made
from inputs. Optionally, env-vars is a list of string pairs specifying the name and value
of environment variables visible to the builder. The builder terminates by passing the
result of exp to exit; thus, when exp returns #f, the build is considered to have
failed.

exp is built using guile-for-build (a derivation). When guile-for-build is omitted or is
#f, the value of the %guile-for-build fluid is used instead.

See the derivation procedure for the meaning of references-graphs, allowed-
references, disallowed-references, local-build?, and substitutable?.

Here’s an example of a single-output derivation that creates a directory containing one file:

(let ((builder '(let ((out (assoc-ref %outputs "out")))

(mkdir out) ; create /gnu/store/...-goo

(call-with-output-file (string-append out "/test")

(lambda (p)

(display '(hello guix) p))))))

(build-expression->derivation store "goo" builder))

Chapter 8: Programming Interface 155

⇒ #<derivation /gnu/store/...-goo.drv => ...>

8.11 The Store Monad

The procedures that operate on the store described in the previous sections all take an open
connection to the build daemon as their first argument. Although the underlying model is
functional, they either have side effects or depend on the current state of the store.

The former is inconvenient: the connection to the build daemon has to be carried around
in all those functions, making it impossible to compose functions that do not take that
parameter with functions that do. The latter can be problematic: since store operations
have side effects and/or depend on external state, they have to be properly sequenced.

This is where the (guix monads) module comes in. This module provides a framework
for working with monads, and a particularly useful monad for our uses, the store monad.
Monads are a construct that allows two things: associating “context” with values (in our
case, the context is the store), and building sequences of computations (here computa-
tions include accesses to the store). Values in a monad—values that carry this additional
context—are called monadic values; procedures that return such values are called monadic
procedures.

Consider this “normal” procedure:

(define (sh-symlink store)

;; Return a derivation that symlinks the 'bash' executable.

(let* ((drv (package-derivation store bash))

(out (derivation->output-path drv))

(sh (string-append out "/bin/bash")))

(build-expression->derivation store "sh"

`(symlink ,sh %output))))

Using (guix monads) and (guix gexp), it may be rewritten as a monadic function:

(define (sh-symlink)

;; Same, but return a monadic value.

(mlet %store-monad ((drv (package->derivation bash)))

(gexp->derivation "sh"

#~(symlink (string-append #$drv "/bin/bash")

#$output))))

There are several things to note in the second version: the store parameter is now
implicit and is “threaded” in the calls to the package->derivation and gexp->derivation

monadic procedures, and the monadic value returned by package->derivation is bound
using mlet instead of plain let.

As it turns out, the call to package->derivation can even be omitted since it will take
place implicitly, as we will see later (see Section 8.12 [G-Expressions], page 159):

(define (sh-symlink)

(gexp->derivation "sh"

#~(symlink (string-append #$bash "/bin/bash")

#$output)))

Chapter 8: Programming Interface 156

Calling the monadic sh-symlink has no effect. As someone once said, “you exit a monad
like you exit a building on fire: by running”. So, to exit the monad and get the desired
effect, one must use run-with-store:

(run-with-store (open-connection) (sh-symlink))

⇒ /gnu/store/...-sh-symlink

Note that the (guix monad-repl) module extends the Guile REPL with new “com-
mands” to make it easier to deal with monadic procedures: run-in-store, and enter-

store-monad (see Section 8.14 [Using Guix Interactively], page 170). The former is used to
“run” a single monadic value through the store:

scheme@(guile-user)> ,run-in-store (package->derivation hello)

$1 = #<derivation /gnu/store/...-hello-2.9.drv => ...>

The latter enters a recursive REPL, where all the return values are automatically run
through the store:

scheme@(guile-user)> ,enter-store-monad

store-monad@(guile-user) [1]> (package->derivation hello)

$2 = #<derivation /gnu/store/...-hello-2.9.drv => ...>

store-monad@(guile-user) [1]> (text-file "foo" "Hello!")

$3 = "/gnu/store/...-foo"

store-monad@(guile-user) [1]> ,q

scheme@(guile-user)>

Note that non-monadic values cannot be returned in the store-monad REPL.

Other meta-commands are available at the REPL, such as ,build to build a file-like
object (see Section 8.14 [Using Guix Interactively], page 170).

The main syntactic forms to deal with monads in general are provided by the (guix

monads) module and are described below.

[Macro]with-monad monad body . . .
Evaluate any >>= or return forms in body as being in monad.

[Macro]return val
Return a monadic value that encapsulates val.

[Macro]>>= mval mproc . . .
Bind monadic value mval, passing its “contents” to monadic procedures mproc . . . 4.
There can be one mproc or several of them, as in this example:

(run-with-state

(with-monad %state-monad

(>>= (return 1)

(lambda (x) (return (+ 1 x)))

(lambda (x) (return (* 2 x)))))

'some-state)

⇒ 4

⇒ some-state

4 This operation is commonly referred to as “bind”, but that name denotes an unrelated procedure in
Guile. Thus we use this somewhat cryptic symbol inherited from the Haskell language.

Chapter 8: Programming Interface 157

[Macro]mlet monad ((var mval) . . .) body . . .
[Macro]mlet* monad ((var mval) . . .) body . . .

Bind the variables var to the monadic values mval in body, which is a sequence of
expressions. As with the bind operator, this can be thought of as “unpacking” the
raw, non-monadic value “contained” in mval and making var refer to that raw, non-
monadic value within the scope of the body. The form (var -> val) binds var to the
“normal” value val, as per let. The binding operations occur in sequence from left
to right. The last expression of body must be a monadic expression, and its result
will become the result of the mlet or mlet* when run in the monad.

mlet* is to mlet what let* is to let (see Section “Local Bindings” in GNU Guile
Reference Manual).

[Macro]mbegin monad mexp . . .
Bind mexp and the following monadic expressions in sequence, returning the result of
the last expression. Every expression in the sequence must be a monadic expression.

This is akin to mlet, except that the return values of the monadic expressions are
ignored. In that sense, it is analogous to begin, but applied to monadic expressions.

[Macro]mwhen condition mexp0 mexp* . . .
When condition is true, evaluate the sequence of monadic expressions mexp0..mexp*
as in an mbegin. When condition is false, return *unspecified* in the current
monad. Every expression in the sequence must be a monadic expression.

[Macro]munless condition mexp0 mexp* . . .
When condition is false, evaluate the sequence of monadic expressions mexp0..mexp*
as in an mbegin. When condition is true, return *unspecified* in the current monad.
Every expression in the sequence must be a monadic expression.

The (guix monads) module provides the state monad, which allows an additional
value—the state—to be threaded through monadic procedure calls.

[Variable]%state-monad
The state monad. Procedures in the state monad can access and change the state
that is threaded.

Consider the example below. The square procedure returns a value in the state
monad. It returns the square of its argument, but also increments the current state
value:

(define (square x)

(mlet %state-monad ((count (current-state)))

(mbegin %state-monad

(set-current-state (+ 1 count))

(return (* x x)))))

(run-with-state (sequence %state-monad (map square (iota 3))) 0)

⇒ (0 1 4)

⇒ 3

When “run” through %state-monad, we obtain that additional state value, which is
the number of square calls.

Chapter 8: Programming Interface 158

[Monadic Procedure]current-state
Return the current state as a monadic value.

[Monadic Procedure]set-current-state value
Set the current state to value and return the previous state as a monadic value.

[Monadic Procedure]state-push value
Push value to the current state, which is assumed to be a list, and return the previous
state as a monadic value.

[Monadic Procedure]state-pop
Pop a value from the current state and return it as a monadic value. The state is
assumed to be a list.

[Procedure]run-with-state mval [state]
Run monadic value mval starting with state as the initial state. Return two values:
the resulting value, and the resulting state.

The main interface to the store monad, provided by the (guix store) module, is as
follows.

[Variable]%store-monad
The store monad—an alias for %state-monad.

Values in the store monad encapsulate accesses to the store. When its effect is needed,
a value of the store monad must be “evaluated” by passing it to the run-with-store
procedure (see below).

[Procedure]run-with-store store mval [#:guile-for-build] [#:system
(%current-system)]

Run mval, a monadic value in the store monad, in store, an open store connection.

[Monadic Procedure]text-file name text [references]
Return as a monadic value the absolute file name in the store of the file containing
text, a string. references is a list of store items that the resulting text file refers to;
it defaults to the empty list.

[Monadic Procedure]binary-file name data [references]
Return as a monadic value the absolute file name in the store of the file containing
data, a bytevector. references is a list of store items that the resulting binary file
refers to; it defaults to the empty list.

[Monadic Procedure]interned-file file [name] [#:recursive? #t] [#:select?
(const #t)]

Return the name of file once interned in the store. Use name as its store name, or
the basename of file if name is omitted.

When recursive? is true, the contents of file are added recursively; if file designates
a flat file and recursive? is true, its contents are added, and its permission bits are
kept.

Chapter 8: Programming Interface 159

When recursive? is true, call (select? file stat) for each directory entry, where
file is the entry’s absolute file name and stat is the result of lstat; exclude entries
for which select? does not return true.

The example below adds a file to the store, under two different names:

(run-with-store (open-connection)

(mlet %store-monad ((a (interned-file "README"))

(b (interned-file "README" "LEGU-MIN")))

(return (list a b))))

⇒ ("/gnu/store/rwm...-README" "/gnu/store/44i...-LEGU-MIN")

The (guix packages) module exports the following package-related monadic proce-
dures:

[Monadic Procedure]package-file package [file] [#:system
(%current-system)] [#:target #f] [#:output "out"]

Return as a monadic value in the absolute file name of file within the output directory
of package. When file is omitted, return the name of the output directory of package.
When target is true, use it as a cross-compilation target triplet.

Note that this procedure does not build package. Thus, the result might or might not
designate an existing file. We recommend not using this procedure unless you know
what you are doing.

[Monadic Procedure]package->derivation package [system]
[Monadic Procedure]package->cross-derivation package target [system]

Monadic version of package-derivation and package-cross-derivation (see Sec-
tion 8.2 [Defining Packages], page 98).

8.12 G-Expressions

So we have “derivations”, which represent a sequence of build actions to be performed to
produce an item in the store (see Section 8.10 [Derivations], page 152). These build actions
are performed when asking the daemon to actually build the derivations; they are run by
the daemon in a container (see Section 2.3 [Invoking guix-daemon], page 11).

It should come as no surprise that we like to write these build actions in Scheme. When
we do that, we end up with two strata of Scheme code5: the “host code”—code that defines
packages, talks to the daemon, etc.—and the “build code”—code that actually performs
build actions, such as making directories, invoking make, and so on (see Section 8.6 [Build
Phases], page 137).

To describe a derivation and its build actions, one typically needs to embed build code
inside host code. It boils down to manipulating build code as data, and the homoiconicity
of Scheme—code has a direct representation as data—comes in handy for that. But we need
more than the normal quasiquote mechanism in Scheme to construct build expressions.

5 The term stratum in this context was coined by Manuel Serrano et al. in the context of their work on
Hop. Oleg Kiselyov, who has written insightful essays and code on this topic (http://okmij.org/ftp/
meta-programming/#meta-scheme), refers to this kind of code generation as staging.

http://okmij.org/ftp/meta-programming/#meta-scheme
http://okmij.org/ftp/meta-programming/#meta-scheme

Chapter 8: Programming Interface 160

The (guix gexp) module implements G-expressions, a form of S-expressions adapted
to build expressions. G-expressions, or gexps, consist essentially of three syntactic forms:
gexp, ungexp, and ungexp-splicing (or simply: #~, #$, and #$@), which are comparable
to quasiquote, unquote, and unquote-splicing, respectively (see Section “Expression
Syntax” in GNU Guile Reference Manual). However, there are major differences:

• Gexps are meant to be written to a file and run or manipulated by other processes.

• When a high-level object such as a package or derivation is unquoted inside a gexp,
the result is as if its output file name had been introduced.

• Gexps carry information about the packages or derivations they refer to, and these
dependencies are automatically added as inputs to the build processes that use them.

This mechanism is not limited to package and derivation objects: compilers able to
“lower” other high-level objects to derivations or files in the store can be defined, such
that these objects can also be inserted into gexps. For example, a useful type of high-level
objects that can be inserted in a gexp is “file-like objects”, which make it easy to add files
to the store and to refer to them in derivations and such (see local-file and plain-file

below).

To illustrate the idea, here is an example of a gexp:

(define build-exp

#~(begin

(mkdir #$output)

(chdir #$output)

(symlink (string-append #$coreutils "/bin/ls")

"list-files")))

This gexp can be passed to gexp->derivation; we obtain a derivation that builds a
directory containing exactly one symlink to /gnu/store/...-coreutils-8.22/bin/ls:

(gexp->derivation "the-thing" build-exp)

As one would expect, the "/gnu/store/...-coreutils-8.22" string is substituted to
the reference to the coreutils package in the actual build code, and coreutils is automatically
made an input to the derivation. Likewise, #$output (equivalent to (ungexp output)) is
replaced by a string containing the directory name of the output of the derivation.

In a cross-compilation context, it is useful to distinguish between references to the native
build of a package—that can run on the host—versus references to cross builds of a package.
To that end, the #+ plays the same role as #$, but is a reference to a native package build:

(gexp->derivation "vi"

#~(begin

(mkdir #$output)

(mkdir (string-append #$output "/bin"))

(system* (string-append #+coreutils "/bin/ln")

"-s"

(string-append #$emacs "/bin/emacs")

(string-append #$output "/bin/vi")))

#:target "aarch64-linux-gnu")

In the example above, the native build of coreutils is used, so that ln can actually run on
the host; but then the cross-compiled build of emacs is referenced.

Chapter 8: Programming Interface 161

Another gexp feature is imported modules: sometimes you want to be able to use cer-
tain Guile modules from the “host environment” in the gexp, so those modules should be
imported in the “build environment”. The with-imported-modules form allows you to
express that:

(let ((build (with-imported-modules '((guix build utils))

#~(begin

(use-modules (guix build utils))

(mkdir-p (string-append #$output "/bin"))))))

(gexp->derivation "empty-dir"

#~(begin

#$build

(display "success!\n")

#t)))

In this example, the (guix build utils) module is automatically pulled into the isolated
build environment of our gexp, such that (use-modules (guix build utils)) works as
expected.

Usually you want the closure of the module to be imported—i.e., the module itself and
all the modules it depends on—rather than just the module; failing to do that, attempts
to use the module will fail because of missing dependent modules. The source-module-

closure procedure computes the closure of a module by looking at its source file headers,
which comes in handy in this case:

(use-modules (guix modules)) ;for 'source-module-closure'

(with-imported-modules (source-module-closure

'((guix build utils)

(gnu build image)))

(gexp->derivation "something-with-vms"

#~(begin

(use-modules (guix build utils)

(gnu build image))

...)))

In the same vein, sometimes you want to import not just pure-Scheme modules, but also
“extensions” such as Guile bindings to C libraries or other “full-blown” packages. Say you
need the guile-json package available on the build side, here’s how you would do it:

(use-modules (gnu packages guile)) ;for 'guile-json'

(with-extensions (list guile-json)

(gexp->derivation "something-with-json"

#~(begin

(use-modules (json))

...)))

The syntactic form to construct gexps is summarized below.

Chapter 8: Programming Interface 162

[Macro]#~exp
[Macro](gexp exp)

Return a G-expression containing exp. exp may contain one or more of the following
forms:

#$obj

(ungexp obj)

Introduce a reference to obj. obj may have one of the supported types,
for example a package or a derivation, in which case the ungexp form
is replaced by its output file name—e.g., "/gnu/store/...-coreutils-
8.22.

If obj is a list, it is traversed and references to supported objects are
substituted similarly.

If obj is another gexp, its contents are inserted and its dependencies are
added to those of the containing gexp.

If obj is another kind of object, it is inserted as is.

#$obj:output

(ungexp obj output)

This is like the form above, but referring explicitly to the output of obj—
this is useful when obj produces multiple outputs (see Section 5.4 [Pack-
ages with Multiple Outputs], page 49).

Sometimes a gexp unconditionally refers to the "out" output, but the user
of that gexp would still like to insert a reference to another output. The
gexp-input procedure aims to address that. See [gexp-input], page 167.

#+obj

#+obj:output

(ungexp-native obj)

(ungexp-native obj output)

Same as ungexp, but produces a reference to the native build of obj when
used in a cross compilation context.

#$output[:output]

(ungexp output [output])

Insert a reference to derivation output output, or to the main output
when output is omitted.

This only makes sense for gexps passed to gexp->derivation.

#$@lst

(ungexp-splicing lst)

Like the above, but splices the contents of lst inside the containing list.

#+@lst

(ungexp-native-splicing lst)

Like the above, but refers to native builds of the objects listed in lst.

G-expressions created by gexp or #~ are run-time objects of the gexp? type (see
below).

Chapter 8: Programming Interface 163

[Macro]with-imported-modules modules body. . .
Mark the gexps defined in body . . . as requiring modules in their execution environ-
ment.

Each item in modules can be the name of a module, such as (guix build utils), or
it can be a module name, followed by an arrow, followed by a file-like object:

`((guix build utils)

(guix gcrypt)

((guix config) => ,(scheme-file "config.scm"

#~(define-module ...))))

In the example above, the first two modules are taken from the search path, and the
last one is created from the given file-like object.

This form has lexical scope: it has an effect on the gexps directly defined in body . . . ,
but not on those defined, say, in procedures called from body

[Macro]with-extensions extensions body. . .
Mark the gexps defined in body . . . as requiring extensions in their build and exe-
cution environment. extensions is typically a list of package objects such as those
defined in the (gnu packages guile) module.

Concretely, the packages listed in extensions are added to the load path while compil-
ing imported modules in body . . . ; they are also added to the load path of the gexp
returned by body

[Procedure]gexp? obj
Return #t if obj is a G-expression.

G-expressions are meant to be written to disk, either as code building some derivation,
or as plain files in the store. The monadic procedures below allow you to do that (see
Section 8.11 [The Store Monad], page 155, for more information about monads).

[Monadic Procedure]gexp->derivation name exp [#:system (%current-system)]
[#:target #f] [#:graft? #t] [#:hash #f] [#:hash-algo #f] [#:recursive?
#f] [#:env-vars ’()] [#:modules ’()] [#:module-path %load-path]
[#:effective-version "2.2"] [#:references-graphs #f] [#:allowed-references
#f] [#:disallowed-references #f] [#:leaked-env-vars #f] [#:script-name
(string-append name "-builder")] [#:deprecation-warnings #f]
[#:local-build? #f] [#:substitutable? #t] [#:properties ’()]
[#:guile-for-build #f]

Return a derivation name that runs exp (a gexp) with guile-for-build (a derivation)
on system; exp is stored in a file called script-name. When target is true, it is used
as the cross-compilation target triplet for packages referred to by exp.

modules is deprecated in favor of with-imported-modules. Its meaning is to make
modules available in the evaluation context of exp; modules is a list of names of
Guile modules searched in module-path to be copied in the store, compiled, and
made available in the load path during the execution of exp—e.g., ((guix build

utils) (guix build gnu-build-system)).

effective-version determines the string to use when adding extensions of exp (see
with-extensions) to the search path—e.g., "2.2".

Chapter 8: Programming Interface 164

graft? determines whether packages referred to by exp should be grafted when appli-
cable.

When references-graphs is true, it must be a list of tuples of one of the following
forms:

(file-name obj)

(file-name obj output)

(file-name gexp-input)

(file-name store-item)

The right-hand-side of each element of references-graphs is automatically made an
input of the build process of exp. In the build environment, each file-name contains
the reference graph of the corresponding item, in a simple text format.

allowed-references must be either #f or a list of output names and packages. In the
latter case, the list denotes store items that the result is allowed to refer to. Any
reference to another store item will lead to a build error. Similarly for disallowed-
references, which can list items that must not be referenced by the outputs.

deprecation-warnings determines whether to show deprecation warnings while com-
piling modules. It can be #f, #t, or 'detailed.

The other arguments are as for derivation (see Section 8.10 [Derivations], page 152).

The local-file, plain-file, computed-file, program-file, and scheme-file pro-
cedures below return file-like objects. That is, when unquoted in a G-expression, these
objects lead to a file in the store. Consider this G-expression:

#~(system* #$(file-append glibc "/sbin/nscd") "-f"

#$(local-file "/tmp/my-nscd.conf"))

The effect here is to “intern” /tmp/my-nscd.conf by copying it to the store. Once
expanded, for instance via gexp->derivation, the G-expression refers to that copy under
/gnu/store; thus, modifying or removing the file in /tmp does not have any effect on what
the G-expression does. plain-file can be used similarly; it differs in that the file content
is directly passed as a string.

[Procedure]local-file file [name] [#:recursive? #f] [#:select? (const #t)]
Return an object representing local file file to add to the store; this object can be
used in a gexp. If file is a literal string denoting a relative file name, it is looked up
relative to the source file where it appears; if file is not a literal string, it is looked up
relative to the current working directory at run time. file will be added to the store
under name–by default the base name of file.

When recursive? is true, the contents of file are added recursively; if file designates
a flat file and recursive? is true, its contents are added, and its permission bits are
kept.

When recursive? is true, call (select? file stat) for each directory entry, where
file is the entry’s absolute file name and stat is the result of lstat; exclude entries
for which select? does not return true.

This is the declarative counterpart of the interned-file monadic procedure (see
Section 8.11 [The Store Monad], page 155).

Chapter 8: Programming Interface 165

[Procedure]plain-file name content
Return an object representing a text file called name with the given content (a string
or a bytevector) to be added to the store.

This is the declarative counterpart of text-file.

[Procedure]computed-file name gexp [#:local-build? #t] [#:options ’()]
Return an object representing the store item name, a file or directory computed by
gexp. When local-build? is true (the default), the derivation is built locally. options
is a list of additional arguments to pass to gexp->derivation.

This is the declarative counterpart of gexp->derivation.

[Monadic Procedure]gexp->script name exp [#:guile (default-guile)]
[#:module-path %load-path] [#:system (%current-system)] [#:target #f]

Return an executable script name that runs exp using guile, with exp’s imported
modules in its search path. Look up exp’s modules in module-path.

The example below builds a script that simply invokes the ls command:

(use-modules (guix gexp) (gnu packages base))

(gexp->script "list-files"

#~(execl #$(file-append coreutils "/bin/ls")

"ls"))

When “running” it through the store (see Section 8.11 [The Store Monad], page 155),
we obtain a derivation that produces an executable file /gnu/store/...-list-files
along these lines:

#!/gnu/store/...-guile-2.0.11/bin/guile -ds

!#

(execl "/gnu/store/...-coreutils-8.22"/bin/ls" "ls")

[Procedure]program-file name exp [#:guile #f] [#:module-path %load-path]
Return an object representing the executable store item name that runs gexp. guile
is the Guile package used to execute that script. Imported modules of gexp are looked
up in module-path.

This is the declarative counterpart of gexp->script.

[Monadic Procedure]gexp->file name exp [#:set-load-path? #t]
[#:module-path %load-path] [#:splice? #f] [#:guile (default-guile)]

Return a derivation that builds a file name containing exp. When splice? is true, exp
is considered to be a list of expressions that will be spliced in the resulting file.

When set-load-path? is true, emit code in the resulting file to set %load-path and
%load-compiled-path to honor exp’s imported modules. Look up exp’s modules in
module-path.

The resulting file holds references to all the dependencies of exp or a subset thereof.

[Procedure]scheme-file name exp [#:splice? #f] [#:guile #f]
[#:set-load-path? #t]

Return an object representing the Scheme file name that contains exp. guile is the
Guile package used to produce that file.

This is the declarative counterpart of gexp->file.

Chapter 8: Programming Interface 166

[Monadic Procedure]text-file* name text . . .
Return as a monadic value a derivation that builds a text file containing all of text.
text may list, in addition to strings, objects of any type that can be used in a gexp:
packages, derivations, local file objects, etc. The resulting store file holds references
to all these.

This variant should be preferred over text-file anytime the file to create will ref-
erence items from the store. This is typically the case when building a configuration
file that embeds store file names, like this:

(define (profile.sh)

;; Return the name of a shell script in the store that

;; initializes the 'PATH' environment variable.

(text-file* "profile.sh"

"export PATH=" coreutils "/bin:"

grep "/bin:" sed "/bin\n"))

In this example, the resulting /gnu/store/...-profile.sh file will reference
coreutils, grep, and sed, thereby preventing them from being garbage-collected
during its lifetime.

[Procedure]mixed-text-file name text . . .
Return an object representing store file name containing text. text is a sequence of
strings and file-like objects, as in:

(mixed-text-file "profile"

"export PATH=" coreutils "/bin:" grep "/bin")

This is the declarative counterpart of text-file*.

[Procedure]file-union name files
Return a <computed-file> that builds a directory containing all of files. Each item
in files must be a two-element list where the first element is the file name to use in
the new directory, and the second element is a gexp denoting the target file. Here’s
an example:

(file-union "etc"

`(("hosts" ,(plain-file "hosts"

"127.0.0.1 localhost"))

("bashrc" ,(plain-file "bashrc"

"alias ls='ls --color=auto'"))))

This yields an etc directory containing these two files.

[Procedure]directory-union name things
Return a directory that is the union of things, where things is a list of file-like objects
denoting directories. For example:

(directory-union "guile+emacs" (list guile emacs))

yields a directory that is the union of the guile and emacs packages.

[Procedure]file-append obj suffix . . .
Return a file-like object that expands to the concatenation of obj and suffix, where
obj is a lowerable object and each suffix is a string.

Chapter 8: Programming Interface 167

As an example, consider this gexp:

(gexp->script "run-uname"

#~(system* #$(file-append coreutils

"/bin/uname")))

The same effect could be achieved with:

(gexp->script "run-uname"

#~(system* (string-append #$coreutils

"/bin/uname")))

There is one difference though: in the file-append case, the resulting script contains
the absolute file name as a string, whereas in the second case, the resulting script
contains a (string-append ...) expression to construct the file name at run time.

[Macro]let-system system body. . .
[Macro]let-system (system target) body. . .

Bind system to the currently targeted system—e.g., "x86_64-linux"—within body.

In the second case, additionally bind target to the current cross-compilation target—a
GNU triplet such as "arm-linux-gnueabihf"—or #f if we are not cross-compiling.

let-system is useful in the occasional case where the object spliced into the gexp
depends on the target system, as in this example:

#~(system*

#+(let-system system

(cond ((string-prefix? "armhf-" system)

(file-append qemu "/bin/qemu-system-arm"))

((string-prefix? "x86_64-" system)

(file-append qemu "/bin/qemu-system-x86_64"))

(else

(error "dunno!"))))

"-net" "user" #$image)

[Macro]with-parameters ((parameter value) . . .) exp
This macro is similar to the parameterize form for dynamically-bound parameters
(see Section “Parameters” in GNU Guile Reference Manual). The key difference is
that it takes effect when the file-like object returned by exp is lowered to a derivation
or store item.

A typical use of with-parameters is to force the system in effect for a given object:

(with-parameters ((%current-system "i686-linux"))

coreutils)

The example above returns an object that corresponds to the i686 build of Coreutils,
regardless of the current value of %current-system.

[Procedure]gexp-input obj [output] [#:native? #f]
Return a gexp input record for the given output of file-like object obj, with #:native?

determining whether this is a native reference (as with ungexp-native) or not.

This procedure is helpful when you want to pass a reference to a specific output of
an object to some procedure that may not know about that output. For example,
assume you have this procedure, which takes one file-like object:

Chapter 8: Programming Interface 168

(define (make-symlink target)

(computed-file "the-symlink"

#~(symlink #$target #$output)))

Here make-symlink can only ever refer to the default output of target—the "out"

output (see Section 5.4 [Packages with Multiple Outputs], page 49). To have it refer
to, say, the "lib" output of the hwloc package, you can call it like so:

(make-symlink (gexp-input hwloc "lib"))

You can also compose it like any other file-like object:

(make-symlink

(file-append (gexp-input hwloc "lib") "/lib/libhwloc.so"))

Of course, in addition to gexps embedded in “host” code, there are also modules con-
taining build tools. To make it clear that they are meant to be used in the build stratum,
these modules are kept in the (guix build ...) name space.

Internally, high-level objects are lowered, using their compiler, to either derivations or
store items. For instance, lowering a package yields a derivation, and lowering a plain-file
yields a store item. This is achieved using the lower-object monadic procedure.

[Monadic Procedure]lower-object obj [system] [#:target #f]
Return as a value in %store-monad the derivation or store item corresponding to obj
for system, cross-compiling for target if target is true. obj must be an object that
has an associated gexp compiler, such as a <package>.

[Procedure]gexp->approximate-sexp gexp
Sometimes, it may be useful to convert a G-exp into a S-exp. For example, some
linters (see Section 9.8 [Invoking guix lint], page 206) peek into the build phases of
a package to detect potential problems. This conversion can be achieved with this
procedure. However, some information can be lost in the process. More specifically,
lowerable objects will be silently replaced with some arbitrary object – currently the
list (*approximate*), but this may change.

8.13 Invoking guix repl

The guix repl command makes it easier to program Guix in Guile by launching a Guile
read-eval-print loop (REPL) for interactive programming (see Section “Using Guile Interac-
tively” in GNU Guile Reference Manual), or by running Guile scripts (see Section “Running
Guile Scripts” in GNU Guile Reference Manual). Compared to just launching the guile

command, guix repl guarantees that all the Guix modules and all its dependencies are
available in the search path.

The general syntax is:

guix repl options [file args]

When a file argument is provided, file is executed as a Guile scripts:

guix repl my-script.scm

To pass arguments to the script, use -- to prevent them from being interpreted as
arguments to guix repl itself:

guix repl -- my-script.scm --input=foo.txt

Chapter 8: Programming Interface 169

To make a script executable directly from the shell, using the guix executable that is on
the user’s search path, add the following two lines at the top of the script:

#!/usr/bin/env -S guix repl --

!#

To make a script that launches an interactive REPL directly from the shell, use the
--interactive flag:

#!/usr/bin/env -S guix repl --interactive

!#

Without a file name argument, a Guile REPL is started, allowing for interactive use (see
Section 8.14 [Using Guix Interactively], page 170):

$ guix repl

scheme@(guile-user)> ,use (gnu packages base)

scheme@(guile-user)> coreutils

$1 = #<package coreutils@8.29 gnu/packages/base.scm:327 3e28300>

In addition, guix repl implements a simple machine-readable REPL protocol for use
by (guix inferior), a facility to interact with inferiors, separate processes running a po-
tentially different revision of Guix.

The available options are as follows:

--list-types

Display the TYPE options for guix repl --type=TYPE and exit.

--type=type

-t type Start a REPL of the given TYPE, which can be one of the following:

guile This is default, and it spawns a standard full-featured Guile REPL.

machine Spawn a REPL that uses the machine-readable protocol. This is
the protocol that the (guix inferior) module speaks.

--listen=endpoint

By default, guix repl reads from standard input and writes to standard output.
When this option is passed, it will instead listen for connections on endpoint.
Here are examples of valid options:

--listen=tcp:37146

Accept connections on localhost on port 37146.

--listen=unix:/tmp/socket

Accept connections on the Unix-domain socket /tmp/socket.

--interactive

-i Launch the interactive REPL after file is executed.

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

This allows users to define their own packages and make them visible to the
script or REPL.

Chapter 8: Programming Interface 170

-q Inhibit loading of the ~/.guile file. By default, that configuration file is loaded
when spawning a guile REPL.

8.14 Using Guix Interactively

The guix repl command gives you access to a warm and friendly read-eval-print loop
(REPL) (see Section 8.13 [Invoking guix repl], page 168). If you’re getting into Guix
programming—defining your own packages, writing manifests, defining services for Guix
System or Guix Home, etc.—you will surely find it convenient to toy with ideas at the
REPL.

If you use Emacs, the most convenient way to do that is with Geiser (see Section 22.5
[The Perfect Setup], page 703), but you do not have to use Emacs to enjoy the REPL. When
using guix repl or guile in the terminal, we recommend using Readline for completion
and Colorized to get colorful output. To do that, you can run:

guix install guile guile-readline guile-colorized

... and then create a .guile file in your home directory containing this:

(use-modules (ice-9 readline) (ice-9 colorized))

(activate-readline)

(activate-colorized)

The REPL lets you evaluate Scheme code; you type a Scheme expression at the prompt,
and the REPL prints what it evaluates to:

$ guix repl

scheme@(guix-user)> (+ 2 3)

$1 = 5

scheme@(guix-user)> (string-append "a" "b")

$2 = "ab"

It becomes interesting when you start fiddling with Guix at the REPL. The first thing
you’ll want to do is to “import” the (guix) module, which gives access to the main part
of the programming interface, and perhaps a bunch of useful Guix modules. You could
type (use-modules (guix)), which is valid Scheme code to import a module (see Section
“Using Guile Modules” in GNU Guile Reference Manual), but the REPL provides the use
command as a shorthand notation (see Section “REPL Commands” inGNUGuile Reference
Manual):

scheme@(guix-user)> ,use (guix)

scheme@(guix-user)> ,use (gnu packages base)

Notice that REPL commands are introduced by a leading comma. A REPL command
like use is not valid Scheme code; it’s interpreted specially by the REPL.

Guix extends the Guile REPL with additional commands for convenience. Among
those, the build command comes in handy: it ensures that the given file-like object is
built, building it if needed, and returns its output file name(s). In the example below, we
build the coreutils and grep packages, as well as a “computed file” (see Section 8.12
[G-Expressions], page 159), and we use the scandir procedure to list the files in Grep’s
/bin directory:

scheme@(guix-user)> ,build coreutils

Chapter 8: Programming Interface 171

$1 = "/gnu/store/...-coreutils-8.32-debug"

$2 = "/gnu/store/...-coreutils-8.32"

scheme@(guix-user)> ,build grep

$3 = "/gnu/store/...-grep-3.6"

scheme@(guix-user)> ,build (computed-file "x" #~(mkdir #$output))

building /gnu/store/...-x.drv...

$4 = "/gnu/store/...-x"

scheme@(guix-user)> ,use(ice-9 ftw)

scheme@(guix-user)> (scandir (string-append $3 "/bin"))

$5 = ("." ".." "egrep" "fgrep" "grep")

As a packager, you may be willing to inspect the build phases or flags of a given package;
this is particularly useful when relying a lot on inheritance to define package variants (see
Section 8.3 [Defining Package Variants], page 109) or when package arguments are a result
of some computation, both of which can make it harder to foresee what ends up in the
package arguments. Additional commands let you inspect those package arguments:

scheme@(guix-user)> ,phases grep

$1 = (modify-phases %standard-phases

(add-after 'install 'fix-egrep-and-fgrep

(lambda* (#:key outputs #:allow-other-keys)

(let* ((out (assoc-ref outputs "out"))

(bin (string-append out "/bin")))

(substitute* (list (string-append bin "/egrep")

(string-append bin "/fgrep"))

(("^exec grep")

(string-append "exec " bin "/grep")))))))

scheme@(guix-user)> ,configure-flags findutils

$2 = (list "--localstatedir=/var")

scheme@(guix-user)> ,make-flags binutils

$3 = '("MAKEINFO=true")

At a lower-level, a useful command is lower: it takes a file-like object and “lowers” it
into a derivation (see Section 8.10 [Derivations], page 152) or a store file:

scheme@(guix-user)> ,lower grep

$6 = #<derivation /gnu/store/...-grep-3.6.drv => /gnu/store/...-grep-3.6 7f0e639115f0>

scheme@(guix-user)> ,lower (plain-file "x" "Hello!")

$7 = "/gnu/store/...-x"

The full list of REPL commands can be seen by typing ,help guix and is given below
for reference.

[REPL command]build object
Lower object and build it if it’s not already built, returning its output file name(s).

[REPL command]lower object
Lower object into a derivation or store file name and return it.

[REPL command]verbosity level
Change build verbosity to level.

Chapter 8: Programming Interface 172

This is similar to the --verbosity command-line option (see Section 9.1.1 [Common
Build Options], page 173): level 0 means total silence, level 1 shows build events only,
and higher levels print build logs.

[REPL command]phases package
[REPL command]configure-flags package
[REPL command]make-flags package

These REPL commands return the value of one element of the arguments field of
package (see Section 8.2.1 [package Reference], page 101): the first one show the
staged code associated with #:phases (see Section 8.6 [Build Phases], page 137), the
second shows the code for #:configure-flags, and ,make-flags returns the code
for #:make-flags.

[REPL command]run-in-store exp
Run exp, a monadic expression, through the store monad. See Section 8.11 [The Store
Monad], page 155, for more information.

[REPL command]enter-store-monad
Enter a new REPL to evaluate monadic expressions (see Section 8.11 [The Store
Monad], page 155). You can quit this “inner” REPL by typing ,q.

173

9 Utilities

This section describes Guix command-line utilities. Some of them are primarily targeted
at developers and users who write new package definitions, while others are more generally
useful. They complement the Scheme programming interface of Guix in a convenient way.

9.1 Invoking guix build

The guix build command builds packages or derivations and their dependencies, and prints
the resulting store paths. Note that it does not modify the user’s profile—this is the job of
the guix package command (see Section 5.2 [Invoking guix package], page 35). Thus, it is
mainly useful for distribution developers.

The general syntax is:

guix build options package-or-derivation...

As an example, the following command builds the latest versions of Emacs and of Guile,
displays their build logs, and finally displays the resulting directories:

guix build emacs guile

Similarly, the following command builds all the available packages:

guix build --quiet --keep-going \

$(guix package -A | awk '{ print $1 "@" $2 }')

package-or-derivation may be either the name of a package found in the software distri-
bution such as coreutils or coreutils@8.20, or a derivation such as /gnu/store/...-
coreutils-8.19.drv. In the former case, a package with the corresponding name (and
optionally version) is searched for among the GNU distribution modules (see Section 8.1
[Package Modules], page 97).

Alternatively, the --expression option may be used to specify a Scheme expression
that evaluates to a package; this is useful when disambiguating among several same-named
packages or package variants is needed.

There may be zero or more options. The available options are described in the subsec-
tions below.

9.1.1 Common Build Options

A number of options that control the build process are common to guix build and other
commands that can spawn builds, such as guix package or guix archive. These are the
following:

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

This allows users to define their own packages and make them visible to the
command-line tools.

--keep-failed

-K Keep the build tree of failed builds. Thus, if a build fails, its build tree is kept
under /tmp, in a directory whose name is shown at the end of the build log.

Chapter 9: Utilities 174

This is useful when debugging build issues. See Section 9.1.4 [Debugging Build
Failures], page 186, for tips and tricks on how to debug build issues.

This option implies --no-offload, and it has no effect when connecting to a
remote daemon with a guix:// URI (see Section 8.9 [The Store], page 150).

--keep-going

-k Keep going when some of the derivations fail to build; return only once all the
builds have either completed or failed.

The default behavior is to stop as soon as one of the specified derivations has
failed.

--dry-run

-n Do not build the derivations.

--fallback

When substituting a pre-built binary fails, fall back to building packages locally
(see Section 5.3.6 [Substitution Failure], page 48).

--substitute-urls=urls

Consider urls the whitespace-separated list of substitute source URLs, overrid-
ing the default list of URLs of guix-daemon (see [guix-daemon URLs], page 12).

This means that substitutes may be downloaded from urls, provided they are
signed by a key authorized by the system administrator (see Section 5.3 [Sub-
stitutes], page 44).

When urls is the empty string, substitutes are effectively disabled.

--no-substitutes

Do not use substitutes for build products. That is, always build things locally
instead of allowing downloads of pre-built binaries (see Section 5.3 [Substitutes],
page 44).

--no-grafts

Do not “graft” packages. In practice, this means that package updates available
as grafts are not applied. See Chapter 19 [Security Updates], page 688, for more
information on grafts.

--rounds=n

Build each derivation n times in a row, and raise an error if consecutive build
results are not bit-for-bit identical.

This is a useful way to detect non-deterministic builds processes. Non-
deterministic build processes are a problem because they make it practically
impossible for users to verify whether third-party binaries are genuine. See
Section 9.12 [Invoking guix challenge], page 220, for more.

When used in conjunction with --keep-failed, the differing output is kept
in the store, under /gnu/store/...-check. This makes it easy to look for
differences between the two results.

--no-offload

Do not use offload builds to other machines (see Section 2.2.2 [Daemon Offload
Setup], page 7). That is, always build things locally instead of offloading builds
to remote machines.

Chapter 9: Utilities 175

--max-silent-time=seconds

When the build or substitution process remains silent for more than seconds,
terminate it and report a build failure.

By default, the daemon’s setting is honored (see Section 2.3 [Invoking guix-
daemon], page 11).

--timeout=seconds

Likewise, when the build or substitution process lasts for more than seconds,
terminate it and report a build failure.

By default, the daemon’s setting is honored (see Section 2.3 [Invoking guix-
daemon], page 11).

-v level

--verbosity=level

Use the given verbosity level, an integer. Choosing 0 means that no output is
produced, 1 is for quiet output; 2 is similar to 1 but it additionally displays
download URLs; 3 shows all the build log output on standard error.

--cores=n

-c n Allow the use of up to n CPU cores for the build. The special value 0 means
to use as many CPU cores as available.

--max-jobs=n

-M n Allow at most n build jobs in parallel. See Section 2.3 [Invoking guix-daemon],
page 11, for details about this option and the equivalent guix-daemon option.

--debug=level

Produce debugging output coming from the build daemon. level must be an
integer between 0 and 5; higher means more verbose output. Setting a level of
4 or more may be helpful when debugging setup issues with the build daemon.

Behind the scenes, guix build is essentially an interface to the package-derivation

procedure of the (guix packages) module, and to the build-derivations procedure of
the (guix derivations) module.

In addition to options explicitly passed on the command line, guix build and other guix
commands that support building honor the GUIX_BUILD_OPTIONS environment variable.

[Environment Variable]GUIX_BUILD_OPTIONS
Users can define this variable to a list of command line options that will automatically
be used by guix build and other guix commands that can perform builds, as in the
example below:

$ export GUIX_BUILD_OPTIONS="--no-substitutes -c 2 -L /foo/bar"

These options are parsed independently, and the result is appended to the parsed
command-line options.

9.1.2 Package Transformation Options

Another set of command-line options supported by guix build and also guix package are
package transformation options. These are options that make it possible to define package
variants—for instance, packages built from different source code. This is a convenient way

Chapter 9: Utilities 176

to create customized packages on the fly without having to type in the definitions of package
variants (see Section 8.2 [Defining Packages], page 98).

Package transformation options are preserved across upgrades: guix upgrade attempts
to apply transformation options initially used when creating the profile to the upgraded
packages.

The available options are listed below. Most commands support them and also support
a --help-transform option that lists all the available options and a synopsis (these options
are not shown in the --help output for brevity).

--tune[=cpu]

Use versions of the packages marked as “tunable” optimized for cpu. When cpu
is native, or when it is omitted, tune for the CPU on which the guix command
is running.

Valid cpu names are those recognized by the underlying compiler, by default
the GNU Compiler Collection. On x86 64 processors, this includes CPU names
such as nehalem, haswell, and skylake (see Section “x86 Options” in Using
the GNU Compiler Collection (GCC)).

As new generations of CPUs come out, they augment the standard instruction
set architecture (ISA) with additional instructions, in particular instructions
for single-instruction/multiple-data (SIMD) parallel processing. For example,
while Core2 and Skylake CPUs both implement the x86 64 ISA, only the latter
supports AVX2 SIMD instructions.

The primary gain one can expect from --tune is for programs that can make
use of those SIMD capabilities and that do not already have a mechanism to
select the right optimized code at run time. Packages that have the tunable?

property set are considered tunable packages by the --tune option; a package
definition with the property set looks like this:

(package

(name "hello-simd")

;; ...

;; This package may benefit from SIMD extensions so

;; mark it as "tunable".

(properties '((tunable? . #t))))

Other packages are not considered tunable. This allows Guix to use generic
binaries in the cases where tuning for a specific CPU is unlikely to provide any
gain.

Tuned packages are built with -march=CPU; under the hood, the -march option
is passed to the actual wrapper by a compiler wrapper. Since the build machine
may not be able to run code for the target CPU micro-architecture, the test
suite is not run when building a tuned package.

To reduce rebuilds to the minimum, tuned packages are grafted onto packages
that depend on them (see Chapter 19 [Security Updates], page 688). Thus,
using --no-grafts cancels the effect of --tune.

We call this technique package multi-versioning : several variants of tunable
packages may be built, one for each CPU variant. It is the coarse-grain coun-

Chapter 9: Utilities 177

terpart of function multi-versioning as implemented by the GNU tool chain
(see Section “Function Multiversioning” in Using the GNU Compiler Collec-
tion (GCC)).

--with-source=source

--with-source=package=source

--with-source=package@version=source

Use source as the source of package, and version as its version number. source
must be a file name or a URL, as for guix download (see Section 9.3 [Invoking
guix download], page 187).

When package is omitted, it is taken to be the package name specified on the
command line that matches the base of source—e.g., if source is /src/guile-
2.0.10.tar.gz, the corresponding package is guile.

Likewise, when version is omitted, the version string is inferred from source; in
the previous example, it is 2.0.10.

This option allows users to try out versions of packages other than the one
provided by the distribution. The example below downloads ed-1.7.tar.gz

from a GNU mirror and uses that as the source for the ed package:

guix build ed --with-source=mirror://gnu/ed/ed-1.4.tar.gz

As a developer, --with-source makes it easy to test release candidates, and
even to test their impact on packages that depend on them:

guix build elogind --with-source=.../shepherd-0.9.0rc1.tar.gz

. . . or to build from a checkout in a pristine environment:

$ git clone git://git.sv.gnu.org/guix.git

$ guix build guix --with-source=guix@1.0=./guix

--with-input=package=replacement

Replace dependency on package by a dependency on replacement. package
must be a package name, and replacement must be a package specification such
as guile or guile@1.8.

For instance, the following command builds Guix, but replaces its dependency
on the current stable version of Guile with a dependency on the legacy version
of Guile, guile@2.2:

guix build --with-input=guile=guile@2.2 guix

This is a recursive, deep replacement. So in this example, both guix and its
dependency guile-json (which also depends on guile) get rebuilt against
guile@2.2.

This is implemented using the package-input-rewriting/spec Scheme pro-
cedure (see Section 8.2 [Defining Packages], page 98).

--with-graft=package=replacement

This is similar to --with-input but with an important difference: instead of
rebuilding the whole dependency chain, replacement is built and then grafted
onto the binaries that were initially referring to package. See Chapter 19 [Se-
curity Updates], page 688, for more information on grafts.

Chapter 9: Utilities 178

For example, the command below grafts version 3.5.4 of GnuTLS onto Wget
and all its dependencies, replacing references to the version of GnuTLS they
currently refer to:

guix build --with-graft=gnutls=gnutls@3.5.4 wget

This has the advantage of being much faster than rebuilding everything. But
there is a caveat: it works if and only if package and replacement are strictly
compatible—for example, if they provide a library, the application binary in-
terface (ABI) of those libraries must be compatible. If replacement is somehow
incompatible with package, then the resulting package may be unusable. Use
with care!

--with-debug-info=package

Build package in a way that preserves its debugging info and graft it onto
packages that depend on it. This is useful if package does not already provide
debugging info as a debug output (see Chapter 17 [Installing Debugging Files],
page 683).

For example, suppose you’re experiencing a crash in Inkscape and would like
to see what’s up in GLib, a library deep down in Inkscape’s dependency graph.
GLib lacks a debug output, so debugging is tough. Fortunately, you rebuild
GLib with debugging info and tack it on Inkscape:

guix install inkscape --with-debug-info=glib

Only GLib needs to be recompiled so this takes a reasonable amount of time.
See Chapter 17 [Installing Debugging Files], page 683, for more info.

Note: Under the hood, this option works by passing the
‘#:strip-binaries? #f’ to the build system of the package of
interest (see Section 8.5 [Build Systems], page 117). Most build
systems support that option but some do not. In that case, an
error is raised.

Likewise, if a C/C++ package is built without -g (which is rarely the
case), debugging info will remain unavailable even when #:strip-

binaries? is false.

--with-c-toolchain=package=toolchain

This option changes the compilation of package and everything that depends
on it so that they get built with toolchain instead of the default GNU tool chain
for C/C++.

Consider this example:

guix build octave-cli \

--with-c-toolchain=fftw=gcc-toolchain@10 \

--with-c-toolchain=fftwf=gcc-toolchain@10

The command above builds a variant of the fftw and fftwf packages using
version 10 of gcc-toolchain instead of the default tool chain, and then builds
a variant of the GNU Octave command-line interface using them. GNU Octave
itself is also built with gcc-toolchain@10.

This other example builds the Hardware Locality (hwloc) library and its de-
pendents up to intel-mpi-benchmarks with the Clang C compiler:

Chapter 9: Utilities 179

guix build --with-c-toolchain=hwloc=clang-toolchain \

intel-mpi-benchmarks

Note: There can be application binary interface (ABI) incompat-
ibilities among tool chains. This is particularly true of the C++
standard library and run-time support libraries such as that of
OpenMP. By rebuilding all dependents with the same tool chain,
--with-c-toolchain minimizes the risks of incompatibility but
cannot entirely eliminate them. Choose package wisely.

--with-git-url=package=url

Build package from the latest commit of the master branch of the Git repository
at url. Git sub-modules of the repository are fetched, recursively.

For example, the following command builds the NumPy Python library against
the latest commit of the master branch of Python itself:

guix build python-numpy \

--with-git-url=python=https://github.com/python/cpython

This option can also be combined with --with-branch or --with-commit (see
below).

Obviously, since it uses the latest commit of the given branch, the result of such
a command varies over time. Nevertheless it is a convenient way to rebuild
entire software stacks against the latest commit of one or more packages. This
is particularly useful in the context of continuous integration (CI).

Checkouts are kept in a cache under ~/.cache/guix/checkouts to speed up
consecutive accesses to the same repository. You may want to clean it up once
in a while to save disk space.

--with-branch=package=branch

Build package from the latest commit of branch. If the source field of package
is an origin with the git-fetch method (see Section 8.2.2 [origin Reference],
page 105) or a git-checkout object, the repository URL is taken from that
source. Otherwise you have to use --with-git-url to specify the URL of the
Git repository.

For instance, the following command builds guile-sqlite3 from the latest
commit of its master branch, and then builds guix (which depends on it) and
cuirass (which depends on guix) against this specific guile-sqlite3 build:

guix build --with-branch=guile-sqlite3=master cuirass

--with-commit=package=commit

This is similar to --with-branch, except that it builds from commit rather
than the tip of a branch. commit must be a valid Git commit SHA1 identifier,
a tag, or a git describe style identifier such as 1.0-3-gabc123.

--with-patch=package=file

Add file to the list of patches applied to package, where package is a spec
such as python@3.8 or glibc. file must contain a patch; it is applied with the
flags specified in the origin of package (see Section 8.2.2 [origin Reference],
page 105), which by default includes -p1 (see Section “patch Directories” in
Comparing and Merging Files).

Chapter 9: Utilities 180

As an example, the command below rebuilds Coreutils with the GNU C Library
(glibc) patched with the given patch:

guix build coreutils --with-patch=glibc=./glibc-frob.patch

In this example, glibc itself as well as everything that leads to Coreutils in the
dependency graph is rebuilt.

--with-configure-flag=package=flag

Append flag to the configure flags of package, where package is a spec such
as guile@3.0 or glibc. The build system of package must support the
#:configure-flags argument.

For example, the command below builds GNU Hello with the configure flag
--disable-nls:

guix build hello --with-configure-flag=hello=--disable-nls

The following command passes an extra flag to cmake as it builds lapack:

guix build lapack \

--with-configure-flag=lapack=-DBUILD_SHARED_LIBS=OFF

Note: Under the hood, this option works by passing the
‘#:configure-flags’ argument to the build system of the package
of interest (see Section 8.5 [Build Systems], page 117). Most build
systems support that option but some do not. In that case, an
error is raised.

--with-latest=package

--with-version=package=version

So you like living on the bleeding edge? The --with-latest option is for
you! It replaces occurrences of package in the dependency graph with its latest
upstream version, as reported by guix refresh (see Section 9.6 [Invoking guix
refresh], page 197).

It does so by determining the latest upstream release of package (if possible),
downloading it, and authenticating it if it comes with an OpenPGP signature.

As an example, the command below builds Guix against the latest version of
Guile-JSON:

guix build guix --with-latest=guile-json

The --with-version works similarly except that it lets you specify that you
want precisely version, assuming that version exists upstream. For example, to
spawn a development environment with SciPy built against version 1.22.4 of
NumPy (skipping its test suite because hey, we’re not gonna wait this long),
you would run:

guix shell python python-scipy --with-version=python-numpy=1.22.4

Warning: Because they depend on source code published at a
given point in time on upstream servers, deployments made with
--with-latest and --with-version may be non-reproducible:
source might disappear or be modified in place on the servers.

To deploy old software versions without compromising on repro-
ducibility, see Section 5.8 [Invoking guix time-machine], page 58.

Chapter 9: Utilities 181

There are limitations. First, in cases where the tool cannot or does not know
how to authenticate source code, you are at risk of running malicious code; a
warning is emitted in this case. Second, this option simply changes the source
used in the existing package definitions, which is not always sufficient: there
might be additional dependencies that need to be added, patches to apply, and
more generally the quality assurance work that Guix developers normally do
will be missing.

You’ve been warned! When those limitations are acceptable, it’s a snappy way
to stay on top. We encourage you to submit patches updating the actual package
definitions once you have successfully tested an upgrade with --with-latest

(see Chapter 22 [Contributing], page 698).

--without-tests=package

Build package without running its tests. This can be useful in situations where
you want to skip the lengthy test suite of a intermediate package, or if a pack-
age’s test suite fails in a non-deterministic fashion. It should be used with care
because running the test suite is a good way to ensure a package is working as
intended.

Turning off tests leads to a different store item. Consequently, when using this
option, anything that depends on package must be rebuilt, as in this example:

guix install --without-tests=python python-notebook

The command above installs python-notebook on top of python built without
running its test suite. To do so, it also rebuilds everything that depends on
python, including python-notebook itself.

Internally, --without-tests relies on changing the #:tests? option of a pack-
age’s check phase (see Section 8.5 [Build Systems], page 117). Note that some
packages use a customized check phase that does not respect a #:tests? #f

setting. Therefore, --without-tests has no effect on these packages.

Wondering how to achieve the same effect using Scheme code, for example in your
manifest, or how to write your own package transformation? See Section 8.3 [Defining
Package Variants], page 109, for an overview of the programming interfaces available.

9.1.3 Additional Build Options

The command-line options presented below are specific to guix build.

--quiet

-q Build quietly, without displaying the build log; this is equivalent to
--verbosity=0. Upon completion, the build log is kept in /var (or similar)
and can always be retrieved using the --log-file option.

--file=file

-f file Build the package, derivation, or other file-like object that the code within file
evaluates to (see Section 8.12 [G-Expressions], page 159).

As an example, file might contain a package definition like this (see Section 8.2
[Defining Packages], page 98):

(use-modules (guix)

Chapter 9: Utilities 182

(guix build-system gnu)

(guix licenses))

(package

(name "hello")

(version "2.10")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"))))

(build-system gnu-build-system)

(synopsis "Hello, GNU world: An example GNU package")

(description "Guess what GNU Hello prints!")

(home-page "http://www.gnu.org/software/hello/")

(license gpl3+))

The file may also contain a JSON representation of one or more package def-
initions. Running guix build -f on hello.json with the following contents
would result in building the packages myhello and greeter:

[

{

"name": "myhello",

"version": "2.10",

"source": "mirror://gnu/hello/hello-2.10.tar.gz",

"build-system": "gnu",

"arguments": {

"tests?": false

},

"home-page": "https://www.gnu.org/software/hello/",

"synopsis": "Hello, GNU world: An example GNU package",

"description": "GNU Hello prints a greeting.",

"license": "GPL-3.0+",

"native-inputs": ["gettext"]

},

{

"name": "greeter",

"version": "1.0",

"source": "mirror://gnu/hello/hello-2.10.tar.gz",

"build-system": "gnu",

"arguments": {

"test-target": "foo",

"parallel-build?": false

},

"home-page": "https://example.com/",

Chapter 9: Utilities 183

"synopsis": "Greeter using GNU Hello",

"description": "This is a wrapper around GNU Hello.",

"license": "GPL-3.0+",

"inputs": ["myhello", "hello"]

}

]

--manifest=manifest

-m manifest

Build all packages listed in the given manifest (see [profile-manifest], page 39).

--expression=expr

-e expr Build the package or derivation expr evaluates to.

For example, expr may be (@ (gnu packages guile) guile-1.8), which un-
ambiguously designates this specific variant of version 1.8 of Guile.

Alternatively, expr may be a G-expression, in which case it is used as a build
program passed to gexp->derivation (see Section 8.12 [G-Expressions],
page 159).

Lastly, expr may refer to a zero-argument monadic procedure (see Section 8.11
[The Store Monad], page 155). The procedure must return a derivation as a
monadic value, which is then passed through run-with-store.

--source

-S Build the source derivations of the packages, rather than the packages them-
selves.

For instance, guix build -S gcc returns something like /gnu/store/...-gcc-
4.7.2.tar.bz2, which is the GCC source tarball.

The returned source tarball is the result of applying any patches and code
snippets specified in the package origin (see Section 8.2 [Defining Packages],
page 98).

As with other derivations, the result of building a source derivation can be
verified using the --check option (see [build-check], page 185). This is useful
to validate that a (potentially already built or substituted, thus cached) package
source matches against its declared hash.

Note that guix build -S compiles the sources only of the specified packages.
They do not include the sources of statically linked dependencies and by them-
selves are insufficient for reproducing the packages.

--sources

Fetch and return the source of package-or-derivation and all their dependencies,
recursively. This is a handy way to obtain a local copy of all the source code
needed to build packages, allowing you to eventually build them even without
network access. It is an extension of the --source option and can accept one
of the following optional argument values:

package This value causes the --sources option to behave in the same way
as the --source option.

Chapter 9: Utilities 184

all Build the source derivations of all packages, including any source
that might be listed as inputs. This is the default value.

$ guix build --sources tzdata

The following derivations will be built:

/gnu/store/...-tzdata2015b.tar.gz.drv

/gnu/store/...-tzcode2015b.tar.gz.drv

transitive

Build the source derivations of all packages, as well of all transitive
inputs to the packages. This can be used e.g. to prefetch package
source for later offline building.

$ guix build --sources=transitive tzdata

The following derivations will be built:

/gnu/store/...-tzcode2015b.tar.gz.drv

/gnu/store/...-findutils-4.4.2.tar.xz.drv

/gnu/store/...-grep-2.21.tar.xz.drv

/gnu/store/...-coreutils-8.23.tar.xz.drv

/gnu/store/...-make-4.1.tar.xz.drv

/gnu/store/...-bash-4.3.tar.xz.drv

...

--system=system

-s system Attempt to build for system—e.g., i686-linux—instead of the system type of
the build host. The guix build command allows you to repeat this option sev-
eral times, in which case it builds for all the specified systems; other commands
ignore extraneous -s options.

Note: The --system flag is for native compilation and must not
be confused with cross-compilation. See --target below for infor-
mation on cross-compilation.

An example use of this is on Linux-based systems, which can emulate differ-
ent personalities. For instance, passing --system=i686-linux on an x86_64-

linux system or --system=armhf-linux on an aarch64-linux system allows
you to build packages in a complete 32-bit environment.

Note: Building for an armhf-linux system is unconditionally
enabled on aarch64-linux machines, although certain aarch64
chipsets do not allow for this functionality, notably the ThunderX.

Similarly, when transparent emulation with QEMU and binfmt_misc is enabled
(see Section 11.10.30 [Virtualization Services], page 512), you can build for any
system for which a QEMU binfmt_misc handler is installed.

Builds for a system other than that of the machine you are using can also
be offloaded to a remote machine of the right architecture. See Section 2.2.2
[Daemon Offload Setup], page 7, for more information on offloading.

--target=triplet

Cross-build for triplet, which must be a valid GNU triplet, such as "aarch64-
linux-gnu" (see Section “Specifying Target Triplets” in Autoconf).

Chapter 9: Utilities 185

--list-systems

List all the supported systems, that can be passed as an argument to --system.

--list-targets

List all the supported targets, that can be passed as an argument to --target.

--check Rebuild package-or-derivation, which are already available in the store, and
raise an error if the build results are not bit-for-bit identical.

This mechanism allows you to check whether previously installed substitutes are
genuine (see Section 5.3 [Substitutes], page 44), or whether the build result of a
package is deterministic. See Section 9.12 [Invoking guix challenge], page 220,
for more background information and tools.

When used in conjunction with --keep-failed, the differing output is kept
in the store, under /gnu/store/...-check. This makes it easy to look for
differences between the two results.

--repair Attempt to repair the specified store items, if they are corrupt, by
re-downloading or rebuilding them.

This operation is not atomic and thus restricted to root.

--derivations

-d Return the derivation paths, not the output paths, of the given packages.

--root=file

-r file Make file a symlink to the result, and register it as a garbage collector root.

Consequently, the results of this guix build invocation are protected from
garbage collection until file is removed. When that option is omitted, build
results are eligible for garbage collection as soon as the build completes. See
Section 5.6 [Invoking guix gc], page 51, for more on GC roots.

--log-file

Return the build log file names or URLs for the given package-or-derivation, or
raise an error if build logs are missing.

This works regardless of how packages or derivations are specified. For instance,
the following invocations are equivalent:

guix build --log-file $(guix build -d guile)

guix build --log-file $(guix build guile)

guix build --log-file guile

guix build --log-file -e '(@ (gnu packages guile) guile-2.0)'

If a log is unavailable locally, and unless --no-substitutes is passed, the
command looks for a corresponding log on one of the substitute servers (as
specified with --substitute-urls).

So for instance, imagine you want to see the build log of GDB on aarch64, but
you are actually on an x86_64 machine:

$ guix build --log-file gdb -s aarch64-linux

https://bordeaux.guix.gnu.org/log/...-gdb-7.10

You can freely access a huge library of build logs!

Chapter 9: Utilities 186

9.1.4 Debugging Build Failures

When defining a new package (see Section 8.2 [Defining Packages], page 98), you will prob-
ably find yourself spending some time debugging and tweaking the build until it succeeds.
To do that, you need to operate the build commands yourself in an environment as close as
possible to the one the build daemon uses.

To that end, the first thing to do is to use the --keep-failed or -K option of guix
build, which will keep the failed build tree in /tmp or whatever directory you specified as
TMPDIR (see Section 9.1.1 [Common Build Options], page 173).

From there on, you can cd to the failed build tree and source the environment-

variables file, which contains all the environment variable definitions that were in place
when the build failed. So let’s say you’re debugging a build failure in package foo; a
typical session would look like this:

$ guix build foo -K

... build fails

$ cd /tmp/guix-build-foo.drv-0

$ source ./environment-variables

$ cd foo-1.2

Now, you can invoke commands as if you were the daemon (almost) and troubleshoot
your build process.

Sometimes it happens that, for example, a package’s tests pass when you run them
manually but they fail when the daemon runs them. This can happen because the daemon
runs builds in containers where, unlike in our environment above, network access is missing,
/bin/sh does not exist, etc. (see Section 2.2.1 [Build Environment Setup], page 5).

In such cases, you may need to inspect the build process from within a container similar
to the one the build daemon creates:

$ guix build -K foo

...

$ cd /tmp/guix-build-foo.drv-0

$ guix shell --no-grafts -C -D foo strace gdb

[env]# source ./environment-variables

[env]# cd foo-1.2

Here, guix shell -C creates a container and spawns a new shell in it (see Section 7.1
[Invoking guix shell], page 76). The strace gdb part adds the strace and gdb commands
to the container, which you may find handy while debugging. The --no-grafts option
makes sure we get the exact same environment, with ungrafted packages (see Chapter 19
[Security Updates], page 688, for more info on grafts).

To get closer to a container like that used by the build daemon, we can remove /bin/sh:

[env]# rm /bin/sh

(Don’t worry, this is harmless: this is all happening in the throw-away container created
by guix shell.)

The strace command is probably not in the search path, but we can run:

[env]# $GUIX_ENVIRONMENT/bin/strace -f -o log make check

Chapter 9: Utilities 187

In this way, not only you will have reproduced the environment variables the daemon
uses, you will also be running the build process in a container similar to the one the daemon
uses.

9.2 Invoking guix edit

So many packages, so many source files! The guix edit command facilitates the life of
users and packagers by pointing their editor at the source file containing the definition of
the specified packages. For instance:

guix edit gcc@4.9 vim

launches the program specified in the VISUAL or in the EDITOR environment variable to view
the recipe of GCC 4.9.3 and that of Vim.

If you are using a Guix Git checkout (see Section 22.2 [Building from Git], page 699), or
have created your own packages on GUIX_PACKAGE_PATH (see Section 8.1 [Package Modules],
page 97), you will be able to edit the package recipes. In other cases, you will be able to
examine the read-only recipes for packages currently in the store.

Instead of GUIX_PACKAGE_PATH, the command-line option --load-path=directory (or
in short -L directory) allows you to add directory to the front of the package module
search path and so make your own packages visible.

9.3 Invoking guix download

When writing a package definition, developers typically need to download a source tarball,
compute its SHA256 hash, and write that hash in the package definition (see Section 8.2
[Defining Packages], page 98). The guix download tool helps with this task: it downloads
a file from the given URI, adds it to the store, and prints both its file name in the store
and its SHA256 hash.

The fact that the downloaded file is added to the store saves bandwidth: when the
developer eventually tries to build the newly defined package with guix build, the source
tarball will not have to be downloaded again because it is already in the store. It is also a
convenient way to temporarily stash files, which may be deleted eventually (see Section 5.6
[Invoking guix gc], page 51).

The guix download command supports the same URIs as used in package definitions.
In particular, it supports mirror:// URIs. https URIs (HTTP over TLS) are supported
provided the Guile bindings for GnuTLS are available in the user’s environment; when they
are not available, an error is raised. See Section “Guile Preparations” in GnuTLS-Guile,
for more information.

guix download verifies HTTPS server certificates by loading the certificates of X.509
authorities from the directory pointed to by the SSL_CERT_DIR environment variable (see
Section 11.12 [X.509 Certificates], page 589), unless --no-check-certificate is used.

Alternatively, guix download can also retrieve a Git repository, possibly a specific com-
mit, tag, or branch.

The following options are available:

Chapter 9: Utilities 188

--hash=algorithm

-H algorithm

Compute a hash using the specified algorithm. See Section 9.4 [Invoking guix
hash], page 188, for more information.

--format=fmt

-f fmt Write the hash in the format specified by fmt. For more information on the
valid values for fmt, see Section 9.4 [Invoking guix hash], page 188.

--no-check-certificate

Do not validate the X.509 certificates of HTTPS servers.

When using this option, you have absolutely no guarantee that you are commu-
nicating with the authentic server responsible for the given URL, which makes
you vulnerable to “man-in-the-middle” attacks.

--output=file

-o file Save the downloaded file to file instead of adding it to the store.

--git

-g Checkout the Git repository at the latest commit on the default branch.

--commit=commit-or-tag

Checkout the Git repository at commit-or-tag.

commit-or-tag can be either a tag or a commit defined in the Git repository.

--branch=branch

Checkout the Git repository at branch.

The repository will be checked out at the latest commit of branch, which must
be a valid branch of the Git repository.

--recursive

-r Recursively clone the Git repository.

9.4 Invoking guix hash

The guix hash command computes the hash of a file. It is primarily a convenience tool for
anyone contributing to the distribution: it computes the cryptographic hash of one or more
files, which can be used in the definition of a package (see Section 8.2 [Defining Packages],
page 98).

The general syntax is:

guix hash option file ...

When file is - (a hyphen), guix hash computes the hash of data read from standard
input. guix hash has the following options:

--hash=algorithm

-H algorithm

Compute a hash using the specified algorithm, sha256 by default.

algorithm must be the name of a cryptographic hash algorithm supported
by Libgcrypt via Guile-Gcrypt—e.g., sha512 or sha3-256 (see Section “Hash
Functions” in Guile-Gcrypt Reference Manual).

Chapter 9: Utilities 189

--format=fmt

-f fmt Write the hash in the format specified by fmt.

Supported formats: base64, nix-base32, base32, base16 (hex and
hexadecimal can be used as well).

If the --format option is not specified, guix hash will output the hash in nix-

base32. This representation is used in the definitions of packages.

--recursive

-r The --recursive option is deprecated in favor of --serializer=nar (see be-
low); -r remains accepted as a convenient shorthand.

--serializer=type

-S type Compute the hash on file using type serialization.

type may be one of the following:

none This is the default: it computes the hash of a file’s contents.

nar Compute the hash of a “normalized archive” (or “nar”) containing
file, including its children if it is a directory. Some of the metadata
of file is part of the archive; for instance, when file is a regular file,
the hash is different depending on whether file is executable or not.
Metadata such as time stamps have no impact on the hash (see
Section 5.11 [Invoking guix archive], page 63, for more info on the
nar format).

git Compute the hash of the file or directory as a Git “tree”, following
the same method as the Git version control system.

--exclude-vcs

-x When combined with --recursive, exclude version control system directories
(.bzr, .git, .hg, etc.).

As an example, here is how you would compute the hash of a Git checkout,
which is useful when using the git-fetch method (see Section 8.2.2 [origin
Reference], page 105):

$ git clone http://example.org/foo.git

$ cd foo

$ guix hash -x --serializer=nar .

9.5 Invoking guix import

The guix import command is useful for people who would like to add a package to the
distribution with as little work as possible—a legitimate demand. The command knows of
a few repositories from which it can “import” package metadata. The result is a package
definition, or a template thereof, in the format we know (see Section 8.2 [Defining Packages],
page 98).

The general syntax is:

guix import [global-options...] importer package [options...]

importer specifies the source from which to import package metadata, and options spec-
ifies a package identifier and other options specific to importer. guix import itself has the
following global-options:

Chapter 9: Utilities 190

--insert=file

-i file Insert the package definition(s) that the importer generated into the specified
file, either in alphabetical order among existing package definitions, or at the
end of the file otherwise.

Some of the importers rely on the ability to run the gpgv command. For these, GnuPG
must be installed and in $PATH; run guix install gnupg if needed.

Currently, the available “importers” are:

gnu Import metadata for the given GNU package. This provides a template for the
latest version of that GNU package, including the hash of its source tarball,
and its canonical synopsis and description.

Additional information such as the package dependencies and its license needs
to be figured out manually.

For example, the following command returns a package definition for
GNU Hello:

guix import gnu hello

Specific command-line options are:

--key-download=policy

As for guix refresh, specify the policy to handle missing
OpenPGP keys when verifying the package signature. See
Section 9.6 [Invoking guix refresh], page 197.

pypi Import metadata from the Python Package Index (https://pypi.python.
org/). Information is taken from the JSON-formatted description available
at pypi.python.org and usually includes all the relevant information, includ-
ing package dependencies. For maximum efficiency, it is recommended to install
the unzip utility, so that the importer can unzip Python wheels and gather data
from them.

The command below imports metadata for the latest version of the
itsdangerous Python package:

guix import pypi itsdangerous

You can also ask for a specific version:

guix import pypi itsdangerous@1.1.0

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

gem Import metadata from RubyGems (https://rubygems.org/). Information is
taken from the JSON-formatted description available at rubygems.org and in-
cludes most relevant information, including runtime dependencies. There are
some caveats, however. The metadata doesn’t distinguish between synopses and
descriptions, so the same string is used for both fields. Additionally, the details
of non-Ruby dependencies required to build native extensions is unavailable
and left as an exercise to the packager.

https://pypi.python.org/
https://pypi.python.org/
https://rubygems.org/

Chapter 9: Utilities 191

The command below imports metadata for the rails Ruby package:

guix import gem rails

You can also ask for a specific version:

guix import gem rails@7.0.4

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

minetest Import metadata from ContentDB (https://content.minetest.net).
Information is taken from the JSON-formatted metadata provided through
ContentDB’s API (https://content.minetest.net/help/api/) and
includes most relevant information, including dependencies. There are some
caveats, however. The license information is often incomplete. The commit
hash is sometimes missing. The descriptions are in the Markdown format, but
Guix uses Texinfo instead. Texture packs and subgames are unsupported.

The command below imports metadata for the Mesecons mod by Jeija:

guix import minetest Jeija/mesecons

The author name can also be left out:

guix import minetest mesecons

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

cpan Import metadata from MetaCPAN (https://www.metacpan.org/).
Information is taken from the JSON-formatted metadata provided through
MetaCPAN’s API (https://fastapi.metacpan.org/) and includes most
relevant information, such as module dependencies. License information
should be checked closely. If Perl is available in the store, then the corelist

utility will be used to filter core modules out of the list of dependencies.

The command below imports metadata for the Acme::Boolean Perl module:

guix import cpan Acme::Boolean

cran Import metadata from CRAN (https://cran.r-project.org/), the central
repository for the GNU R statistical and graphical environment (https://
r-project.org).

Information is extracted from the DESCRIPTION file of the package.

The command below imports metadata for the Cairo R package:

guix import cran Cairo

You can also ask for a specific version:

guix import cran rasterVis@0.50.3

When --recursive is added, the importer will traverse the dependency graph
of the given upstream package recursively and generate package expressions for
all those packages that are not yet in Guix.

https://content.minetest.net
https://content.minetest.net/help/api/
https://www.metacpan.org/
https://fastapi.metacpan.org/
https://cran.r-project.org/
https://r-project.org
https://r-project.org

Chapter 9: Utilities 192

When --style=specification is added, the importer will generate package
definitions whose inputs are package specifications instead of references to pack-
age variables. This is useful when generated package definitions are to be ap-
pended to existing user modules, as the list of used package modules need not
be changed. The default is --style=variable.

When --prefix=license: is added, the importer will prefix license atoms with
license:, allowing a prefixed import of (guix licenses).

When --archive=bioconductor is added, metadata is imported from
Bioconductor (https://www.bioconductor.org/), a repository of R packages
for the analysis and comprehension of high-throughput genomic data in
bioinformatics.

Information is extracted from the DESCRIPTION file contained in the package
archive.

The command below imports metadata for the GenomicRanges R package:

guix import cran --archive=bioconductor GenomicRanges

Finally, you can also import R packages that have not yet been published
on CRAN or Bioconductor as long as they are in a git repository. Use
--archive=git followed by the URL of the git repository:

guix import cran --archive=git https://github.com/immunogenomics/harmony

texlive Import TeX package information from the TeX Live package database for TeX
packages that are part of the TeX Live distribution (https://www.tug.org/
texlive/).

Information about the package is obtained from the TeX Live package database,
a plain text file that is included in the texlive-scripts package. The source
code is downloaded from possibly multiple locations in the SVN repository of
the Tex Live project. Note that therefore SVN must be installed and in $PATH;
run guix install subversion if needed.

The command below imports metadata for the fontspec TeX package:

guix import texlive fontspec

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

json Import package metadata from a local JSON file. Consider the following ex-
ample package definition in JSON format:

{

"name": "hello",

"version": "2.10",

"source": "mirror://gnu/hello/hello-2.10.tar.gz",

"build-system": "gnu",

"home-page": "https://www.gnu.org/software/hello/",

"synopsis": "Hello, GNU world: An example GNU package",

https://www.bioconductor.org/
https://www.tug.org/texlive/
https://www.tug.org/texlive/

Chapter 9: Utilities 193

"description": "GNU Hello prints a greeting.",

"license": "GPL-3.0+",

"native-inputs": ["gettext"]

}

The field names are the same as for the <package> record (See Section 8.2
[Defining Packages], page 98). References to other packages are provided as
JSON lists of quoted package specification strings such as guile or guile@2.0.

The importer also supports a more explicit source definition using the common
fields for <origin> records:

{

...

"source": {

"method": "url-fetch",

"uri": "mirror://gnu/hello/hello-2.10.tar.gz",

"sha256": {

"base32": "0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"

}

}

...

}

The command below reads metadata from the JSON file hello.json and out-
puts a package expression:

guix import json hello.json

hackage Import metadata from the Haskell community’s central package archive Hackage
(https://hackage.haskell.org/). Information is taken from Cabal files and
includes all the relevant information, including package dependencies.

Specific command-line options are:

--stdin

-s Read a Cabal file from standard input.

--no-test-dependencies

-t Do not include dependencies required only by the test suites.

--cabal-environment=alist

-e alist alist is a Scheme alist defining the environment in which the Cabal
conditionals are evaluated. The accepted keys are: os, arch, impl
and a string representing the name of a flag. The value associated
with a flag has to be either the symbol true or false. The value
associated with other keys has to conform to the Cabal file format
definition. The default value associated with the keys os, arch and
impl is ‘linux’, ‘x86_64’ and ‘ghc’, respectively.

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

https://hackage.haskell.org/
https://hackage.haskell.org/

Chapter 9: Utilities 194

The command below imports metadata for the latest version of the HTTP
Haskell package without including test dependencies and specifying the value
of the flag ‘network-uri’ as false:

guix import hackage -t -e "'((\"network-uri\" . false))" HTTP

A specific package version may optionally be specified by following the package
name by an at-sign and a version number as in the following example:

guix import hackage mtl@2.1.3.1

stackage The stackage importer is a wrapper around the hackage one. It takes a pack-
age name, looks up the package version included in a long-term support (LTS)
Stackage (https://www.stackage.org) release and uses the hackage importer
to retrieve its metadata. Note that it is up to you to select an LTS release
compatible with the GHC compiler used by Guix.

Specific command-line options are:

--no-test-dependencies

-t Do not include dependencies required only by the test suites.

--lts-version=version

-l version

version is the desired LTS release version. If omitted the latest
release is used.

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

The command below imports metadata for the HTTP Haskell package included
in the LTS Stackage release version 7.18:

guix import stackage --lts-version=7.18 HTTP

elpa Import metadata from an Emacs Lisp Package Archive (ELPA) package repos-
itory (see Section “Packages” in The GNU Emacs Manual).

Specific command-line options are:

--archive=repo

-a repo repo identifies the archive repository from which to retrieve the
information. Currently the supported repositories and their iden-
tifiers are:

- GNU (https://elpa.gnu.org/packages), selected by the
gnu identifier. This is the default.

Packages from elpa.gnu.org are signed with one
of the keys contained in the GnuPG keyring at
share/emacs/25.1/etc/package-keyring.gpg (or similar)
in the emacs package (see Section “Package Installation” in
The GNU Emacs Manual).

- NonGNU (https://elpa.nongnu.org/nongnu/), selected by
the nongnu identifier.

https://www.stackage.org
https://elpa.gnu.org/packages
https://elpa.nongnu.org/nongnu/

Chapter 9: Utilities 195

- MELPA-Stable (https://stable.melpa.org/packages), se-
lected by the melpa-stable identifier.

- MELPA (https://melpa.org/packages), selected by the
melpa identifier.

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

crate Import metadata from the crates.io Rust package repository crates.io (https://
crates.io), as in this example:

guix import crate blake2-rfc

The crate importer also allows you to specify a version string:

guix import crate constant-time-eq@0.1.0

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

--recursive-dev-dependencies

If --recursive-dev-dependencies is specified, also the
recursively imported packages contain their development
dependencies, which are recursively imported as well.

--allow-yanked

If no non-yanked version of a crate is available, use the latest yanked
version instead instead of aborting.

elm Import metadata from the Elm package repository package.elm-lang.org
(https://package.elm-lang.org), as in this example:

guix import elm elm-explorations/webgl

The Elm importer also allows you to specify a version string:

guix import elm elm-explorations/webgl@1.1.3

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

opam Import metadata from the OPAM (https://opam.ocaml.org/) package repos-
itory used by the OCaml community.

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

https://stable.melpa.org/packages
https://melpa.org/packages
https://crates.io
https://crates.io
https://package.elm-lang.org
https://package.elm-lang.org
https://opam.ocaml.org/

Chapter 9: Utilities 196

composer Import metadata from the Composer (https://getcomposer.org/) package
archive used by the PHP community, as in this example:

guix import composer phpunit/phpunit

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

--repo By default, packages are searched in the official OPAM repository.
This option, which can be used more than once, lets you add other
repositories which will be searched for packages. It accepts as valid
arguments:

• the name of a known repository - can be one of opam, coq

(equivalent to coq-released), coq-core-dev, coq-extra-dev
or grew.

• the URL of a repository as expected by the opam repository

add command (for instance, the URL equivalent of the above
opam name would be https://opam.ocaml.org).

• the path to a local copy of a repository (a directory containing
a packages/ sub-directory).

Repositories are assumed to be passed to this option by order of
preference. The additional repositories will not replace the default
opam repository, which is always kept as a fallback.

Also, please note that versions are not compared across repositories.
The first repository (from left to right) that has at least one version
of a given package will prevail over any others, and the version
imported will be the latest one found in this repository only.

go Import metadata for a Go module using proxy.golang.org (https://proxy.
golang.org).

guix import go gopkg.in/yaml.v2

It is possible to use a package specification with a @VERSION suffix to import a
specific version.

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

--pin-versions

When using this option, the importer preserves the exact versions of
the Go modules dependencies instead of using their latest available
versions. This can be useful when attempting to import packages
that recursively depend on former versions of themselves to build.

https://getcomposer.org/
https://opam.ocaml.org
https://proxy.golang.org
https://proxy.golang.org

Chapter 9: Utilities 197

When using this mode, the symbol of the package is made by ap-
pending the version to its name, so that multiple versions of the
same package can coexist.

egg Import metadata for CHICKEN eggs (https://wiki.call-cc.org/eggs).
The information is taken from PACKAGE.egg files found in the eggs-5-all
(git://code.call-cc.org/eggs-5-all) Git repository. However, it does not
provide all the information that we need, there is no “description” field, and
the licenses used are not always precise (BSD is often used instead of BSD-N).

guix import egg sourcehut

You can also ask for a specific version:

guix import egg arrays@1.0

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

hexpm Import metadata from the hex.pm Erlang and Elixir package repository hex.pm
(https://hex.pm), as in this example:

guix import hexpm stun

The importer tries to determine the build system used by the package.

The hexpm importer also allows you to specify a version string:

guix import hexpm cf@0.3.0

Additional options include:

--recursive

-r Traverse the dependency graph of the given upstream package re-
cursively and generate package expressions for all those packages
that are not yet in Guix.

The structure of the guix import code is modular. It would be useful to have more
importers for other package formats, and your help is welcome here (see Chapter 22 [Con-
tributing], page 698).

9.6 Invoking guix refresh

The primary audience of the guix refresh command is packagers. As a user, you may be
interested in the --with-latest option, which can bring you package update superpowers
built upon guix refresh (see Section 9.1.2 [Package Transformation Options], page 175).
By default, guix refresh reports any packages provided by the distribution that are out-
dated compared to the latest upstream version, like this:

$ guix refresh

gnu/packages/gettext.scm:29:13: gettext would be upgraded from 0.18.1.1 to 0.18.2.1

gnu/packages/glib.scm:77:12: glib would be upgraded from 2.34.3 to 2.37.0

Alternatively, one can specify packages to consider, in which case a warning is emitted
for packages that lack an updater:

$ guix refresh coreutils guile guile-ssh

https://wiki.call-cc.org/eggs
git://code.call-cc.org/eggs-5-all
git://code.call-cc.org/eggs-5-all
https://hex.pm
https://hex.pm

Chapter 9: Utilities 198

gnu/packages/ssh.scm:205:2: warning: no updater for guile-ssh

gnu/packages/guile.scm:136:12: guile would be upgraded from 2.0.12 to 2.0.13

guix refresh browses the upstream repository of each package and determines the high-
est version number of the releases therein. The command knows how to update specific types
of packages: GNU packages, ELPA packages, etc.—see the documentation for --type be-
low. There are many packages, though, for which it lacks a method to determine whether
a new upstream release is available. However, the mechanism is extensible, so feel free to
get in touch with us to add a new method!

--recursive

Consider the packages specified, and all the packages upon which they depend.

$ guix refresh --recursive coreutils

gnu/packages/acl.scm:40:13: acl would be upgraded from 2.2.53 to 2.3.1

gnu/packages/m4.scm:30:12: 1.4.18 is already the latest version of m4

gnu/packages/xml.scm:68:2: warning: no updater for expat

gnu/packages/multiprecision.scm:40:12: 6.1.2 is already the latest version of gmp

...

If for some reason you don’t want to update to the latest version, you can update to a
specific version by appending an equal sign and the desired version number to the package
specification. Note that not all updaters support this; an error is reported when an updater
cannot refresh to the specified version.

$ guix refresh trytond-party

gnu/packages/guile.scm:392:2: guile would be upgraded from 3.0.3 to 3.0.5

$ guix refresh -u guile=3.0.4

...

gnu/packages/guile.scm:392:2: guile: updating from version 3.0.3 to version 3.0.4...

...

$ guix refresh -u guile@2.0=2.0.12

...

gnu/packages/guile.scm:147:2: guile: updating from version 2.0.10 to version 2.0.12...

...

In some specific cases, you may have many packages specified via a manifest or a module
selection which should all be updated together; for these cases, the --target-version

option can be provided to have them all refreshed to the same version, as shown in the
examples below:

$ guix refresh qtbase qtdeclarative --target-version=6.5.2

gnu/packages/qt.scm:1248:13: qtdeclarative would be upgraded from 6.3.2 to 6.5.2

gnu/packages/qt.scm:584:2: qtbase would be upgraded from 6.3.2 to 6.5.2

$ guix refresh --manifest=qt5-manifest.scm --target-version=5.15.10

gnu/packages/qt.scm:1173:13: qtxmlpatterns would be upgraded from 5.15.8 to 5.15.10

gnu/packages/qt.scm:1202:13: qtdeclarative would be upgraded from 5.15.8 to 5.15.10

gnu/packages/qt.scm:1762:13: qtserialbus would be upgraded from 5.15.8 to 5.15.10

gnu/packages/qt.scm:2070:13: qtquickcontrols2 would be upgraded from 5.15.8 to 5.15.10

...

Chapter 9: Utilities 199

Sometimes the upstream name differs from the package name used in Guix, and guix

refresh needs a little help. Most updaters honor the upstream-name property in package
definitions, which can be used to that effect:

(define-public network-manager

(package

(name "network-manager")

;; ...

(properties '((upstream-name . "NetworkManager")))))

When passed --update, it modifies distribution source files to update the version num-
bers and source code hashes of those package definitions, as well as possibly their inputs (see
Section 8.2 [Defining Packages], page 98). This is achieved by downloading each package’s
latest source tarball and its associated OpenPGP signature, authenticating the downloaded
tarball against its signature using gpgv, and finally computing its hash—note that GnuPG
must be installed and in $PATH; run guix install gnupg if needed.

When the public key used to sign the tarball is missing from the user’s keyring, an
attempt is made to automatically retrieve it from a public key server; when this is successful,
the key is added to the user’s keyring; otherwise, guix refresh reports an error.

The following options are supported:

--expression=expr

-e expr Consider the package expr evaluates to.

This is useful to precisely refer to a package, as in this example:

guix refresh -l -e '(@@ (gnu packages commencement) glibc-final)'

This command lists the dependents of the “final” libc (essentially all the pack-
ages).

--update

-u Update distribution source files (package definitions) in place. This is usually
run from a checkout of the Guix source tree (see Section 22.4 [Running Guix
Before It Is Installed], page 702):

./pre-inst-env guix refresh -s non-core -u

See Section 8.2 [Defining Packages], page 98, for more information on package
definitions. You can also run it on packages from a third-party channel:

guix refresh -L /path/to/channel -u package

See Section 6.7 [Creating a Channel], page 70, on how to create a channel.

This command updates the version and source code hash of the package. De-
pending on the updater being used, it can also update the various ‘inputs’
fields of the package. In some cases, the updater might get inputs wrong—it
might not know about an extra input that’s necessary, or it might add an input
that should be avoided.

To address that, packagers can add properties stating inputs that should be
added to those found by the updater or inputs that should be ignored: the
updater-extra-inputs and updater-ignored-inputs properties pertain
to “regular” inputs, and there are equivalent properties for ‘native’ and

Chapter 9: Utilities 200

‘propagated’ inputs. In the example below, we tell the updater that we need
‘openmpi’ as an additional input:

(define-public python-mpi4py

(package

(name "python-mpi4py")

;; ...

(inputs (list openmpi))

(properties

'((updater-extra-inputs . ("openmpi"))))))

That way, guix refresh -u python-mpi4py will leave the ‘openmpi’ input,
even if it is not among the inputs it would normally add.

--select=[subset]

-s subset Select all the packages in subset, one of core, non-core or module:name.

The core subset refers to all the packages at the core of the distribution—i.e.,
packages that are used to build “everything else”. This includes GCC, libc,
Binutils, Bash, etc. Usually, changing one of these packages in the distribution
entails a rebuild of all the others. Thus, such updates are an inconvenience to
users in terms of build time or bandwidth used to achieve the upgrade.

The non-core subset refers to the remaining packages. It is typically useful in
cases where an update of the core packages would be inconvenient.

The module:name subset refers to all the packages in a specified guile mod-
ule. The module can be specified as module:guile or module:(gnu packages

guile), the former is a shorthand for the later.

--manifest=file

-m file Select all the packages from the manifest in file. This is useful to check if any
packages of the user manifest can be updated.

--type=updater

-t updater

Select only packages handled by updater (may be a comma-separated list of
updaters). Currently, updater may be one of:

gnu the updater for GNU packages;

savannah the updater for packages hosted at Savannah (https://savannah.
gnu.org);

sourceforge

the updater for packages hosted at SourceForge (https://
sourceforge.net);

gnome the updater for GNOME packages;

kde the updater for KDE packages;

xorg the updater for X.org packages;

kernel.org

the updater for packages hosted on kernel.org;

https://savannah.gnu.org
https://savannah.gnu.org
https://sourceforge.net
https://sourceforge.net

Chapter 9: Utilities 201

egg the updater for Egg (https://wiki.call-cc.org/eggs/) pack-
ages;

elpa the updater for ELPA (https://elpa.gnu.org/) packages;

cran the updater for CRAN (https://cran.r-project.org/)
packages;

bioconductor

the updater for Bioconductor (https://www.bioconductor.org/)
R packages;

cpan the updater for CPAN (https://www.cpan.org/) packages;

pypi the updater for PyPI (https://pypi.python.org) packages.

gem the updater for RubyGems (https://rubygems.org) packages.

github the updater for GitHub (https://github.com) packages.

hackage the updater for Hackage (https://hackage.haskell.org) pack-
ages.

stackage the updater for Stackage (https://www.stackage.org) packages.

crate the updater for Crates (https://crates.io) packages.

launchpad

the updater for Launchpad (https://launchpad.net) packages.

generic-html

a generic updater that crawls the HTML page where the source
tarball of the package is hosted, when applicable, or the HTML
page specified by the release-monitoring-url property of the
package.

generic-git

a generic updater for packages hosted on Git repositories. It tries
to be smart about parsing Git tag names, but if it is not able to
parse the tag name and compare tags correctly, users can define
the following properties for a package.

• release-tag-prefix: a regular expression for matching a pre-
fix of the tag name.

• release-tag-suffix: a regular expression for matching a suf-
fix of the tag name.

• release-tag-version-delimiter: a string used as the delim-
iter in the tag name for separating the numbers of the version.

• accept-pre-releases: by default, the updater will ignore
pre-releases; to make it also look for pre-releases, set the this
property to #t.

(package

(name "foo")

;; ...

https://wiki.call-cc.org/eggs/
https://elpa.gnu.org/
https://cran.r-project.org/
https://www.bioconductor.org/
https://www.cpan.org/
https://pypi.python.org
https://rubygems.org
https://github.com
https://hackage.haskell.org
https://www.stackage.org
https://crates.io
https://launchpad.net

Chapter 9: Utilities 202

(properties

'((release-tag-prefix . "^release0-")

(release-tag-suffix . "[a-z]?$")

(release-tag-version-delimiter . ":"))))

For instance, the following command only checks for updates of Emacs packages
hosted at elpa.gnu.org and for updates of CRAN packages:

$ guix refresh --type=elpa,cran

gnu/packages/statistics.scm:819:13: r-testthat would be upgraded from 0.10.0 to 0.11.0

gnu/packages/emacs.scm:856:13: emacs-auctex would be upgraded from 11.88.6 to 11.88.9

--list-updaters

List available updaters and exit (see --type above).

For each updater, display the fraction of packages it covers; at the end, display
the fraction of packages covered by all these updaters.

In addition, guix refresh can be passed one or more package names, as in this example:

$./pre-inst-env guix refresh -u emacs idutils gcc@4.8

The command above specifically updates the emacs and idutils packages. The --select
option would have no effect in this case. You might also want to update definitions that
correspond to the packages installed in your profile:

$./pre-inst-env guix refresh -u \

$(guix package --list-installed | cut -f1)

When considering whether to upgrade a package, it is sometimes convenient to know
which packages would be affected by the upgrade and should be checked for compatibility.
For this the following option may be used when passing guix refresh one or more package
names:

--list-dependent

-l List top-level dependent packages that would need to be rebuilt as a result of
upgrading one or more packages.

See Section 9.10 [Invoking guix graph], page 211, for information on how to
visualize the list of dependents of a package.

Be aware that the --list-dependent option only approximates the rebuilds that would
be required as a result of an upgrade. More rebuilds might be required under some circum-
stances.

$ guix refresh --list-dependent flex

Building the following 120 packages would ensure 213 dependent packages are rebuilt:

hop@2.4.0 emacs-geiser@0.13 notmuch@0.18 mu@0.9.9.5 cflow@1.4 idutils@4.6 ...

The command above lists a set of packages that could be built to check for compatibility
with an upgraded flex package.

--list-transitive

-T List all the packages which one or more packages depend upon.

$ guix refresh --list-transitive flex

flex@2.6.4 depends on the following 25 packages: perl@5.28.0 help2man@1.47.6

bison@3.0.5 indent@2.2.10 tar@1.30 gzip@1.9 bzip2@1.0.6 xz@5.2.4 file@5.33 ...

Chapter 9: Utilities 203

The command above lists a set of packages which, when changed, would cause flex to
be rebuilt.

The following options can be used to customize GnuPG operation:

--gpg=command

Use command as the GnuPG 2.x command. command is searched for in $PATH.

--keyring=file

Use file as the keyring for upstream keys. file must be in the keybox format.
Keybox files usually have a name ending in .kbx and the GNU Privacy Guard
(GPG) can manipulate these files (see Section “kbxutil” in Using the GNU
Privacy Guard, for information on a tool to manipulate keybox files).

When this option is omitted, guix refresh uses ~/.config/guix/upstream/trustedkeys.kbx
as the keyring for upstream signing keys. OpenPGP signatures are checked
against keys from this keyring; missing keys are downloaded to this keyring as
well (see --key-download below).

You can export keys from your default GPG keyring into a keybox file using
commands like this one:

gpg --export rms@gnu.org | kbxutil --import-openpgp >> mykeyring.kbx

Likewise, you can fetch keys to a specific keybox file like this:

gpg --no-default-keyring --keyring mykeyring.kbx \

--recv-keys 3CE464558A84FDC69DB40CFB090B11993D9AEBB5

See Section “GPG Configuration Options” in Using the GNU Privacy Guard,
for more information on GPG’s --keyring option.

--key-download=policy

Handle missing OpenPGP keys according to policy, which may be one of:

always Always download missing OpenPGP keys from the key server, and
add them to the user’s GnuPG keyring.

never Never try to download missing OpenPGP keys. Instead just bail
out.

interactive

When a package signed with an unknown OpenPGP key is encoun-
tered, ask the user whether to download it or not. This is the
default behavior.

--key-server=host

Use host as the OpenPGP key server when importing a public key.

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

This allows users to define their own packages and make them visible to the
command-line tools.

Chapter 9: Utilities 204

The github updater uses the GitHub API (https://developer.github.com/v3/) to
query for new releases. When used repeatedly e.g. when refreshing all packages, GitHub
will eventually refuse to answer any further API requests. By default 60 API requests per
hour are allowed, and a full refresh on all GitHub packages in Guix requires more than this.
Authentication with GitHub through the use of an API token alleviates these limits. To
use an API token, set the environment variable GUIX_GITHUB_TOKEN to a token procured
from https://github.com/settings/tokens or otherwise.

9.7 Invoking guix style

The guix style command helps users and packagers alike style their package definitions
and configuration files according to the latest fashionable trends. It can either reformat
whole files, with the --whole-file option, or apply specific styling rules to individual
package definitions. The command currently provides the following styling rules:

• formatting package definitions according to the project’s conventions (see Section 22.9.4
[Formatting Code], page 722);

• rewriting package inputs to the “new style”, as explained below.

The way package inputs are written is going through a transition (see Section 8.2.1
[package Reference], page 101, for more on package inputs). Until version 1.3.0, package
inputs were written using the “old style”, where each input was given an explicit label, most
of the time the package name:

(package

;; ...

;; The "old style" (deprecated).

(inputs `(("libunistring" ,libunistring)

("libffi" ,libffi))))

Today, the old style is deprecated and the preferred style looks like this:

(package

;; ...

;; The "new style".

(inputs (list libunistring libffi)))

Likewise, uses of alist-delete and friends to manipulate inputs is now deprecated in
favor of modify-inputs (see Section 8.3 [Defining Package Variants], page 109, for more
info on modify-inputs).

In the vast majority of cases, this is a purely mechanical change on the surface syntax
that does not even incur a package rebuild. Running guix style -S inputs can do that
for you, whether you’re working on packages in Guix proper or in an external channel.

The general syntax is:

guix style [options] package...

This causes guix style to analyze and rewrite the definition of package . . . or, when
package is omitted, of all the packages. The --styling or -S option allows you to select
the style rule, the default rule being format—see below.

To reformat entire source files, the syntax is:

guix style --whole-file file...

https://developer.github.com/v3/
https://github.com/settings/tokens

Chapter 9: Utilities 205

The available options are listed below.

--dry-run

-n Show source file locations that would be edited but do not modify them.

--whole-file

-f Reformat the given files in their entirety. In that case, subsequent arguments
are interpreted as file names (rather than package names), and the --styling

option has no effect.

As an example, here is how you might reformat your operating system config-
uration (you need write permissions for the file):

guix style -f /etc/config.scm

--styling=rule

-S rule Apply rule, one of the following styling rules:

format Format the given package definition(s)—this is the default styling
rule. For example, a packager running Guix on a checkout (see
Section 22.4 [Running Guix Before It Is Installed], page 702) might
want to reformat the definition of the Coreutils package like so:

./pre-inst-env guix style coreutils

inputs Rewrite package inputs to the “new style”, as described above. This
is how you would rewrite inputs of package whatnot in your own
channel:

guix style -L ~/my/channel -S inputs whatnot

Rewriting is done in a conservative way: preserving comments and
bailing out if it cannot make sense of the code that appears in an
inputs field. The --input-simplification option described below
provides fine-grain control over when inputs should be simplified.

arguments

Rewrite package arguments to use G-expressions (see Section 8.12
[G-Expressions], page 159). For example, consider this package
definition:

(define-public my-package

(package

;; ...

(arguments ;old-style quoted arguments

'(#:make-flags '("V=1")

#:phases (modify-phases %standard-phases

(delete 'build))))))

Running guix style -S arguments on this package would rewrite
its arguments field like to:

(define-public my-package

(package

;; ...

(arguments

Chapter 9: Utilities 206

(list #:make-flags #~'("V=1")

#:phases #~(modify-phases %standard-phases

(delete 'build))))))

Note that changes made by the arguments rule do not entail a re-
build of the affected packages. Furthermore, if a package definition
happens to be using G-expressions already, guix style leaves it
unchanged.

--list-stylings

-l List and describe the available styling rules and exit.

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

--expression=expr

-e expr Style the package expr evaluates to.

For example, running:

guix style -e '(@ (gnu packages gcc) gcc-5)'

styles the gcc-5 package definition.

--input-simplification=policy

When using the inputs styling rule, with ‘-S inputs’, this option specifies
the package input simplification policy for cases where an input label does not
match the corresponding package name. policy may be one of the following:

silent Simplify inputs only when the change is “silent”, meaning that the
package does not need to be rebuilt (its derivation is unchanged).

safe Simplify inputs only when that is “safe” to do: the package might
need to be rebuilt, but the change is known to have no observable
effect.

always Simplify inputs even when input labels do not match package
names, and even if that might have an observable effect.

The default is silent, meaning that input simplifications do not trigger any
package rebuild.

9.8 Invoking guix lint

The guix lint command is meant to help package developers avoid common errors and use
a consistent style. It runs a number of checks on a given set of packages in order to find
common mistakes in their definitions. Available checkers include (see --list-checkers for
a complete list):

synopsis

description

Validate certain typographical and stylistic rules about package descriptions
and synopses.

Chapter 9: Utilities 207

inputs-should-be-native

Identify inputs that should most likely be native inputs.

source

home-page

mirror-url

github-url

source-file-name

Probe home-page and source URLs and report those that are invalid. Suggest
a mirror:// URL when applicable. If the source URL redirects to a GitHub
URL, recommend usage of the GitHub URL. Check that the source file name
is meaningful, e.g. is not just a version number or “git-checkout”, without a
declared file-name (see Section 8.2.2 [origin Reference], page 105).

source-unstable-tarball

Parse the source URL to determine if a tarball from GitHub is autogenerated
or if it is a release tarball. Unfortunately GitHub’s autogenerated tarballs are
sometimes regenerated.

derivation

Check that the derivation of the given packages can be successfully computed
for all the supported systems (see Section 8.10 [Derivations], page 152).

profile-collisions

Check whether installing the given packages in a profile would lead to collisions.
Collisions occur when several packages with the same name but a different
version or a different store file name are propagated. See Section 8.2.1 [package
Reference], page 101, for more information on propagated inputs.

archival Checks whether the package’s source code is archived at Software Heritage
(https://www.softwareheritage.org).

When the source code that is not archived comes from a version-control system
(VCS)—e.g., it’s obtained with git-fetch, send Software Heritage a “save” re-
quest so that it eventually archives it. This ensures that the source will remain
available in the long term, and that Guix can fall back to Software Heritage
should the source code disappear from its original host. The status of recent
“save” requests can be viewed on-line (https://archive.softwareheritage.
org/save/#requests).

When source code is a tarball obtained with url-fetch, simply print a message
when it is not archived. As of this writing, Software Heritage does not allow
requests to save arbitrary tarballs; we are working on ways to ensure that non-
VCS source code is also archived.

Software Heritage limits the request rate per IP address (https://archive.
softwareheritage.org/api/#rate-limiting). When the limit is reached,
guix lint prints a message and the archival checker stops doing anything
until that limit has been reset.

cve Report known vulnerabilities found in the Common Vulnerabilities and Expo-
sures (CVE) databases of the current and past year published by the US NIST
(https://nvd.nist.gov/vuln/data-feeds).

https://www.softwareheritage.org
https://www.softwareheritage.org
https://archive.softwareheritage.org/save/#requests
https://archive.softwareheritage.org/save/#requests
https://archive.softwareheritage.org/api/#rate-limiting
https://archive.softwareheritage.org/api/#rate-limiting
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Chapter 9: Utilities 208

To view information about a particular vulnerability, visit pages such as:

• ‘https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-YYYY-ABCD’

• ‘https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-YYYY-ABCD’

where CVE-YYYY-ABCD is the CVE identifier—e.g., CVE-2015-7554.

Package developers can specify in package recipes the Common Platform Enu-
meration (CPE) (https://nvd.nist.gov/products/cpe) name and version of
the package when they differ from the name or version that Guix uses, as in
this example:

(package

(name "grub")

;; ...

;; CPE calls this package "grub2".

(properties '((cpe-name . "grub2")

(cpe-version . "2.3"))))

Some entries in the CVE database do not specify which version of a package
they apply to, and would thus “stick around” forever. Package developers who
found CVE alerts and verified they can be ignored can declare them as in this
example:

(package

(name "t1lib")

;; ...

;; These CVEs no longer apply and can be safely ignored.

(properties `((lint-hidden-cve . ("CVE-2011-0433"

"CVE-2011-1553"

"CVE-2011-1554"

"CVE-2011-5244")))))

formatting

Warn about obvious source code formatting issues: trailing white space, use of
tabulations, etc.

input-labels

Report old-style input labels that do not match the name of the corresponding
package. This aims to help migrate from the “old input style”. See Section 8.2.1
[package Reference], page 101, for more information on package inputs and input
styles. See Section 9.7 [Invoking guix style], page 204, on how to migrate to the
new style.

The general syntax is:

guix lint options package...

If no package is given on the command line, then all packages are checked. The options
may be zero or more of the following:

--list-checkers

-l List and describe all the available checkers that will be run on packages and
exit.

https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe

Chapter 9: Utilities 209

--checkers

-c Only enable the checkers specified in a comma-separated list using the names
returned by --list-checkers.

--exclude

-x Only disable the checkers specified in a comma-separated list using the names
returned by --list-checkers.

--expression=expr

-e expr Consider the package expr evaluates to.

This is useful to unambiguously designate packages, as in this example:

guix lint -c archival -e '(@ (gnu packages guile) guile-3.0)'

--no-network

-n Only enable the checkers that do not depend on Internet access.

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

This allows users to define their own packages and make them visible to the
command-line tools.

9.9 Invoking guix size

The guix size command helps package developers profile the disk usage of packages. It is
easy to overlook the impact of an additional dependency added to a package, or the impact
of using a single output for a package that could easily be split (see Section 5.4 [Packages
with Multiple Outputs], page 49). Such are the typical issues that guix size can highlight.

The command can be passed one or more package specifications such as gcc@4.8 or
guile:debug, or a file name in the store. Consider this example:

$ guix size coreutils

store item total self

/gnu/store/...-gcc-5.5.0-lib 60.4 30.1 38.1%

/gnu/store/...-glibc-2.27 30.3 28.8 36.6%

/gnu/store/...-coreutils-8.28 78.9 15.0 19.0%

/gnu/store/...-gmp-6.1.2 63.1 2.7 3.4%

/gnu/store/...-bash-static-4.4.12 1.5 1.5 1.9%

/gnu/store/...-acl-2.2.52 61.1 0.4 0.5%

/gnu/store/...-attr-2.4.47 60.6 0.2 0.3%

/gnu/store/...-libcap-2.25 60.5 0.2 0.2%

total: 78.9 MiB

The store items listed here constitute the transitive closure of Coreutils—i.e., Coreutils
and all its dependencies, recursively—as would be returned by:

$ guix gc -R /gnu/store/...-coreutils-8.23

Here the output shows three columns next to store items. The first column, labeled
“total”, shows the size in mebibytes (MiB) of the closure of the store item—that is, its own
size plus the size of all its dependencies. The next column, labeled “self”, shows the size of

Chapter 9: Utilities 210

the item itself. The last column shows the ratio of the size of the item itself to the space
occupied by all the items listed here.

In this example, we see that the closure of Coreutils weighs in at 79 MiB, most of which
is taken by libc and GCC’s run-time support libraries. (That libc and GCC’s libraries
represent a large fraction of the closure is not a problem per se because they are always
available on the system anyway.)

Since the command also accepts store file names, assessing the size of a build result is
straightforward:

guix size $(guix system build config.scm)

When the package(s) passed to guix size are available in the store1, guix size queries
the daemon to determine its dependencies, and measures its size in the store, similar to du

-ms --apparent-size (see Section “du invocation” in GNU Coreutils).

When the given packages are not in the store, guix size reports information based on
the available substitutes (see Section 5.3 [Substitutes], page 44). This makes it possible to
profile the disk usage of store items that are not even on disk, only available remotely.

You can also specify several package names:

$ guix size coreutils grep sed bash

store item total self

/gnu/store/...-coreutils-8.24 77.8 13.8 13.4%

/gnu/store/...-grep-2.22 73.1 0.8 0.8%

/gnu/store/...-bash-4.3.42 72.3 4.7 4.6%

/gnu/store/...-readline-6.3 67.6 1.2 1.2%

...

total: 102.3 MiB

In this example we see that the combination of the four packages takes 102.3 MiB in total,
which is much less than the sum of each closure since they have a lot of dependencies in
common.

When looking at the profile returned by guix size, you may find yourself wondering
why a given package shows up in the profile at all. To understand it, you can use guix

graph --path -t references to display the shortest path between the two packages (see
Section 9.10 [Invoking guix graph], page 211).

The available options are:

--substitute-urls=urls

Use substitute information from urls. See [client-substitute-urls], page 174.

--sort=key

Sort lines according to key, one of the following options:

self the size of each item (the default);

closure the total size of the item’s closure.

--map-file=file

Write a graphical map of disk usage in PNG format to file.

1 More precisely, guix size looks for the ungrafted variant of the given package(s), as returned by guix

build package --no-grafts. See Chapter 19 [Security Updates], page 688, for information on grafts.

Chapter 9: Utilities 211

For the example above, the map looks like this:

This option requires that Guile-Charting (https://wingolog.org/software/
guile-charting/) be installed and visible in Guile’s module search path.
When that is not the case, guix size fails as it tries to load it.

--system=system

-s system Consider packages for system—e.g., x86_64-linux.

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

This allows users to define their own packages and make them visible to the
command-line tools.

9.10 Invoking guix graph

Packages and their dependencies form a graph, specifically a directed acyclic graph (DAG).
It can quickly become difficult to have a mental model of the package DAG, so the guix

graph command provides a visual representation of the DAG. By default, guix graph emits
a DAG representation in the input format of Graphviz (https://www.graphviz.org/), so
its output can be passed directly to the dot command of Graphviz. It can also emit an
HTML page with embedded JavaScript code to display a “chord diagram” in a Web browser,
using the d3.js (https://d3js.org/) library, or emit Cypher queries to construct a graph
in a graph database supporting the openCypher (https://www.opencypher.org/) query
language. With --path, it simply displays the shortest path between two packages. The
general syntax is:

guix graph options package...

For example, the following command generates a PDF file representing the package DAG
for the GNU Core Utilities, showing its build-time dependencies:

guix graph coreutils | dot -Tpdf > dag.pdf

The output looks like this:

https://wingolog.org/software/guile-charting/
https://wingolog.org/software/guile-charting/
https://www.graphviz.org/
https://d3js.org/
https://www.opencypher.org/

Chapter 9: Utilities 212

coreutils-8.25

perl-5.24.0

acl-2.2.52 gmp-6.1.1libcap-2.24

gettext-minimal-0.19.8.1

attr-2.4.47 m4-1.4.17

expat-2.2.0

Nice little graph, no?

You may find it more pleasant to navigate the graph interactively with xdot (from the
xdot package):

guix graph coreutils | xdot -

But there is more than one graph! The one above is concise: it is the graph of package
objects, omitting implicit inputs such as GCC, libc, grep, etc. It is often useful to have such
a concise graph, but sometimes one may want to see more details. guix graph supports
several types of graphs, allowing you to choose the level of detail:

package This is the default type used in the example above. It shows the DAG of
package objects, excluding implicit dependencies. It is concise, but filters out
many details.

reverse-package

This shows the reverse DAG of packages. For example:

guix graph --type=reverse-package ocaml

... yields the graph of packages that explicitly depend on OCaml (if you are also
interested in cases where OCaml is an implicit dependency, see reverse-bag

below).

Note that for core packages this can yield huge graphs. If all you want is to
know the number of packages that depend on a given package, use guix refresh

--list-dependent (see Section 9.6 [Invoking guix refresh], page 197).

bag-emerged

This is the package DAG, including implicit inputs.

For instance, the following command:

guix graph --type=bag-emerged coreutils

... yields this bigger graph:

Chapter 9: Utilities 213

coreutils-8.25

perl-5.24.0

tar-1.29 gzip-1.8bzip2-1.0.6 xz-5.2.2 file-5.28diffutils-3.5patch-2.7.5 sed-4.2.2 findutils-4.6.0 gawk-4.1.4grep-2.25coreutils-8.25 make-4.2.1 bash-4.4.0 ld-wrapper-0 binutils-2.27gcc-4.9.4 glibc-2.24 glibc-utf8-locales-2.24

acl-2.2.52

gmp-6.1.1

libcap-2.24

gettext-minimal-0.19.8.1

attr-2.4.47

m4-1.4.17expat-2.2.0

At the bottom of the graph, we see all the implicit inputs of gnu-build-system
(see Section 8.5 [Build Systems], page 117).

Now, note that the dependencies of these implicit inputs—that is, the bootstrap
dependencies (see Chapter 20 [Bootstrapping], page 690)—are not shown here,
for conciseness.

bag Similar to bag-emerged, but this time including all the bootstrap dependencies.

bag-with-origins

Similar to bag, but also showing origins and their dependencies.

reverse-bag

This shows the reverse DAG of packages. Unlike reverse-package, it also
takes implicit dependencies into account. For example:

guix graph -t reverse-bag dune

... yields the graph of all packages that depend on Dune, directly or indirectly.
Since Dune is an implicit dependency of many packages via dune-build-

system, this shows a large number of packages, whereas reverse-package

would show very few if any.

Chapter 9: Utilities 214

derivation

This is the most detailed representation: It shows the DAG of derivations (see
Section 8.10 [Derivations], page 152) and plain store items. Compared to the
above representation, many additional nodes are visible, including build scripts,
patches, Guile modules, etc.

For this type of graph, it is also possible to pass a .drv file name instead of a
package name, as in:

guix graph -t derivation $(guix system build -d my-config.scm)

module This is the graph of package modules (see Section 8.1 [Package Modules],
page 97). For example, the following command shows the graph for the package
module that defines the guile package:

guix graph -t module guile | xdot -

All the types above correspond to build-time dependencies. The following graph type
represents the run-time dependencies:

references

This is the graph of references of a package output, as returned by guix gc

--references (see Section 5.6 [Invoking guix gc], page 51).

If the given package output is not available in the store, guix graph attempts
to obtain dependency information from substitutes.

Here you can also pass a store file name instead of a package name. For example,
the command below produces the reference graph of your profile (which can be
big!):

guix graph -t references $(readlink -f ~/.guix-profile)

referrers

This is the graph of the referrers of a store item, as returned by guix gc

--referrers (see Section 5.6 [Invoking guix gc], page 51).

This relies exclusively on local information from your store. For instance, let us
suppose that the current Inkscape is available in 10 profiles on your machine;
guix graph -t referrers inkscape will show a graph rooted at Inkscape and
with those 10 profiles linked to it.

It can help determine what is preventing a store item from being garbage col-
lected.

Often, the graph of the package you are interested in does not fit on your screen, and
anyway all you want to know is why that package actually depends on some seemingly
unrelated package. The --path option instructs guix graph to display the shortest path
between two packages (or derivations, or store items, etc.):

$ guix graph --path emacs libunistring

emacs@26.3

mailutils@3.9

libunistring@0.9.10

$ guix graph --path -t derivation emacs libunistring

/gnu/store/...-emacs-26.3.drv

/gnu/store/...-mailutils-3.9.drv

Chapter 9: Utilities 215

/gnu/store/...-libunistring-0.9.10.drv

$ guix graph --path -t references emacs libunistring

/gnu/store/...-emacs-26.3

/gnu/store/...-libidn2-2.2.0

/gnu/store/...-libunistring-0.9.10

Sometimes you still want to visualize the graph but would like to trim it so it can actually
be displayed. One way to do it is via the --max-depth (or -M) option, which lets you specify
the maximum depth of the graph. In the example below, we visualize only libreoffice

and the nodes whose distance to libreoffice is at most 2:

guix graph -M 2 libreoffice | xdot -f fdp -

Mind you, that’s still a big ball of spaghetti, but at least dot can render it quickly and
it can be browsed somewhat.

The available options are the following:

--type=type

-t type Produce a graph output of type, where type must be one of the values listed
above.

--list-types

List the supported graph types.

--backend=backend

-b backend

Produce a graph using the selected backend.

--list-backends

List the supported graph backends.

Currently, the available backends are Graphviz and d3.js.

--path Display the shortest path between two nodes of the type specified by --type.
The example below shows the shortest path between libreoffice and llvm

according to the references of libreoffice:

$ guix graph --path -t references libreoffice llvm

/gnu/store/...-libreoffice-6.4.2.2

/gnu/store/...-libepoxy-1.5.4

/gnu/store/...-mesa-19.3.4

/gnu/store/...-llvm-9.0.1

--expression=expr

-e expr Consider the package expr evaluates to.

This is useful to precisely refer to a package, as in this example:

guix graph -e '(@@ (gnu packages commencement) gnu-make-final)'

--system=system

-s system Display the graph for system—e.g., i686-linux.

The package dependency graph is largely architecture-independent, but there
are some architecture-dependent bits that this option allows you to visualize.

Chapter 9: Utilities 216

--load-path=directory

-L directory

Add directory to the front of the package module search path (see Section 8.1
[Package Modules], page 97).

This allows users to define their own packages and make them visible to the
command-line tools.

On top of that, guix graph supports all the usual package transformation options (see
Section 9.1.2 [Package Transformation Options], page 175). This makes it easy to view
the effect of a graph-rewriting transformation such as --with-input. For example, the
command below outputs the graph of git once openssl has been replaced by libressl

everywhere in the graph:

guix graph git --with-input=openssl=libressl

So many possibilities, so much fun!

9.11 Invoking guix publish

The purpose of guix publish is to enable users to easily share their store with others, who
can then use it as a substitute server (see Section 5.3 [Substitutes], page 44).

When guix publish runs, it spawns an HTTP server which allows anyone with network
access to obtain substitutes from it. This means that any machine running Guix can also
act as if it were a build farm, since the HTTP interface is compatible with Cuirass, the
software behind the bordeaux.guix.gnu.org build farm.

For security, each substitute is signed, allowing recipients to check their authenticity and
integrity (see Section 5.3 [Substitutes], page 44). Because guix publish uses the signing
key of the system, which is only readable by the system administrator, it must be started
as root; the --user option makes it drop root privileges early on.

The signing key pair must be generated before guix publish is launched, using guix

archive --generate-key (see Section 5.11 [Invoking guix archive], page 63).

When the --advertise option is passed, the server advertises its availability on the local
network using multicast DNS (mDNS) and DNS service discovery (DNS-SD), currently via
Guile-Avahi (see Using Avahi in Guile Scheme Programs).

The general syntax is:

guix publish options...

Running guix publish without any additional arguments will spawn an HTTP server
on port 8080:

guix publish

guix publish can also be started following the systemd “socket activation” protocol
(see Section “Service De- and Constructors” in The GNU Shepherd Manual).

Once a publishing server has been authorized, the daemon may download substitutes
from it. See Section 5.3.3 [Getting Substitutes from Other Servers], page 46.

By default, guix publish compresses archives on the fly as it serves them. This “on-the-
fly” mode is convenient in that it requires no setup and is immediately available. However,
when serving lots of clients, we recommend using the --cache option, which enables caching
of the archives before they are sent to clients—see below for details. The guix weather

Chapter 9: Utilities 217

command provides a handy way to check what a server provides (see Section 9.15 [Invoking
guix weather], page 224).

As a bonus, guix publish also serves as a content-addressed mirror for source files
referenced in origin records (see Section 8.2.2 [origin Reference], page 105). For instance,
assuming guix publish is running on example.org, the following URL returns the raw
hello-2.10.tar.gz file with the given SHA256 hash (represented in nix-base32 format,
see Section 9.4 [Invoking guix hash], page 188):

http://example.org/file/hello-2.10.tar.gz/sha256/0ssi1...ndq1i

Obviously, these URLs only work for files that are in the store; in other cases, they
return 404 (“Not Found”).

Build logs are available from /log URLs like:

http://example.org/log/gwspk...-guile-2.2.3

When guix-daemon is configured to save compressed build logs, as is the case by default (see
Section 2.3 [Invoking guix-daemon], page 11), /log URLs return the compressed log as-is,
with an appropriate Content-Type and/or Content-Encoding header. We recommend run-
ning guix-daemon with --log-compression=gzip since Web browsers can automatically
decompress it, which is not the case with Bzip2 compression.

The following options are available:

--port=port

-p port Listen for HTTP requests on port.

--listen=host

Listen on the network interface for host. The default is to accept connections
from any interface.

--user=user

-u user Change privileges to user as soon as possible—i.e., once the server socket is
open and the signing key has been read.

--compression[=method[:level]]

-C [method[:level]]

Compress data using the given method and level. method is one of lzip, zstd,
and gzip; when method is omitted, gzip is used.

When level is zero, disable compression. The range 1 to 9 corresponds to
different compression levels: 1 is the fastest, and 9 is the best (CPU-intensive).
The default is 3.

Usually, lzip compresses noticeably better than gzip for a small increase in
CPU usage; see benchmarks on the lzip Web page (https://nongnu.org/lzip/
lzip_benchmark.html). However, lzip achieves low decompression through-
put (on the order of 50 MiB/s on modern hardware), which can be a bottleneck
for someone who downloads over a fast network connection.

The compression ratio of zstd is between that of lzip and that of gzip; its
main advantage is a high decompression speed (https://facebook.github.
io/zstd/).

Unless --cache is used, compression occurs on the fly and the compressed
streams are not cached. Thus, to reduce load on the machine that runs guix

https://nongnu.org/lzip/lzip_benchmark.html
https://nongnu.org/lzip/lzip_benchmark.html
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/

Chapter 9: Utilities 218

publish, it may be a good idea to choose a low compression level, to run guix

publish behind a caching proxy, or to use --cache. Using --cache has the
advantage that it allows guix publish to add Content-Length HTTP header
to its responses.

This option can be repeated, in which case every substitute gets compressed
using all the selected methods, and all of them are advertised. This is useful
when users may not support all the compression methods: they can select the
one they support.

--cache=directory

-c directory

Cache archives and meta-data (.narinfo URLs) to directory and only serve
archives that are in cache.

When this option is omitted, archives and meta-data are created on-the-fly.
This can reduce the available bandwidth, especially when compression is en-
abled, since this may become CPU-bound. Another drawback of the default
mode is that the length of archives is not known in advance, so guix publish

does not add a Content-Length HTTP header to its responses, which in turn
prevents clients from knowing the amount of data being downloaded.

Conversely, when --cache is used, the first request for a store item (via a
.narinfo URL) triggers a background process to bake the archive—computing
its .narinfo and compressing the archive, if needed. Once the archive is cached
in directory, subsequent requests succeed and are served directly from the cache,
which guarantees that clients get the best possible bandwidth.

That first .narinfo request nonetheless returns 200, provided the requested
store item is “small enough”, below the cache bypass threshold—see --cache-
bypass-threshold below. That way, clients do not have to wait until the
archive is baked. For larger store items, the first .narinfo request returns 404,
meaning that clients have to wait until the archive is baked.

The “baking” process is performed by worker threads. By default, one thread
per CPU core is created, but this can be customized. See --workers below.

When --ttl is used, cached entries are automatically deleted when they have
expired.

--workers=N

When --cache is used, request the allocation of N worker threads to “bake”
archives.

--ttl=ttl

Produce Cache-Control HTTP headers that advertise a time-to-live (TTL) of
ttl. ttl must denote a duration: 5d means 5 days, 1m means 1 month, and so
on.

This allows the user’s Guix to keep substitute information in cache for ttl.
However, note that guix publish does not itself guarantee that the store items
it provides will indeed remain available for as long as ttl.

Additionally, when --cache is used, cached entries that have not been accessed
for ttl and that no longer have a corresponding item in the store, may be deleted.

Chapter 9: Utilities 219

--negative-ttl=ttl

Similarly produce Cache-Control HTTP headers to advertise the time-to-live
(TTL) of negative lookups—missing store items, for which the HTTP 404 code
is returned. By default, no negative TTL is advertised.

This parameter can help adjust server load and substitute latency by instructing
cooperating clients to be more or less patient when a store item is missing.

--cache-bypass-threshold=size

When used in conjunction with --cache, store items smaller than size are
immediately available, even when they are not yet in cache. size is a size in
bytes, or it can be suffixed by M for megabytes and so on. The default is 10M.

“Cache bypass” allows you to reduce the publication delay for clients at the
expense of possibly additional I/O and CPU use on the server side: depending
on the client access patterns, those store items can end up being baked several
times until a copy is available in cache.

Increasing the threshold may be useful for sites that have few users, or to
guarantee that users get substitutes even for store items that are not popular.

--nar-path=path

Use path as the prefix for the URLs of “nar” files (see Section 5.11 [Invoking
guix archive], page 63).

By default, nars are served at a URL such as /nar/gzip/...-coreutils-8.25.
This option allows you to change the /nar part to path.

--public-key=file

--private-key=file

Use the specific files as the public/private key pair used to sign the store items
being published.

The files must correspond to the same key pair (the private key is used for sign-
ing and the public key is merely advertised in the signature metadata). They
must contain keys in the canonical s-expression format as produced by guix

archive --generate-key (see Section 5.11 [Invoking guix archive], page 63).
By default, /etc/guix/signing-key.pub and /etc/guix/signing-key.sec

are used.

--repl[=port]

-r [port] Spawn a Guile REPL server (see Section “REPL Servers” in GNU Guile Refer-
ence Manual) on port (37146 by default). This is used primarily for debugging
a running guix publish server.

Enabling guix publish on Guix System is a one-liner: just instantiate a guix-publish-
service-type service in the services field of the operating-system declaration (see [guix-
publish-service-type], page 278).

If you are instead running Guix on a “foreign distro”, follow these instructions:

• If your host distro uses the systemd init system:

ln -s ~root/.guix-profile/lib/systemd/system/guix-publish.service \

/etc/systemd/system/

systemctl start guix-publish && systemctl enable guix-publish

Chapter 9: Utilities 220

• If your host distro uses the Upstart init system:

ln -s ~root/.guix-profile/lib/upstart/system/guix-publish.conf /etc/init/

start guix-publish

• Otherwise, proceed similarly with your distro’s init system.

9.12 Invoking guix challenge

Do the binaries provided by this server really correspond to the source code it claims
to build? Is a package build process deterministic? These are the questions the guix

challenge command attempts to answer.

The former is obviously an important question: Before using a substitute server (see
Section 5.3 [Substitutes], page 44), one had better verify that it provides the right binaries,
and thus challenge it. The latter is what enables the former: If package builds are deter-
ministic, then independent builds of the package should yield the exact same result, bit for
bit; if a server provides a binary different from the one obtained locally, it may be either
corrupt or malicious.

We know that the hash that shows up in /gnu/store file names is the hash of all the
inputs of the process that built the file or directory—compilers, libraries, build scripts, etc.
(see Chapter 1 [Introduction], page 1). Assuming deterministic build processes, one store
file name should map to exactly one build output. guix challenge checks whether there
is, indeed, a single mapping by comparing the build outputs of several independent builds
of any given store item.

The command output looks like this:
$ guix challenge \

--substitute-urls="https://bordeaux.guix.gnu.org https://guix.example.org" \

openssl git pius coreutils grep

updating substitutes from 'https://bordeaux.guix.gnu.org'... 100.0%

updating substitutes from 'https://guix.example.org'... 100.0%

/gnu/store/...-openssl-1.0.2d contents differ:

local hash: 0725l22r5jnzazaacncwsvp9kgf42266ayyp814v7djxs7nk963q

https://bordeaux.guix.gnu.org/nar/...-openssl-1.0.2d: 0725l22r5jnzazaacncwsvp9kgf42266ayyp814v7djxs7nk963q

https://guix.example.org/nar/...-openssl-1.0.2d: 1zy4fmaaqcnjrzzajkdn3f5gmjk754b43qkq47llbyak9z0qjyim

differing files:

/lib/libcrypto.so.1.1

/lib/libssl.so.1.1

/gnu/store/...-git-2.5.0 contents differ:

local hash: 00p3bmryhjxrhpn2gxs2fy0a15lnip05l97205pgbk5ra395hyha

https://bordeaux.guix.gnu.org/nar/...-git-2.5.0: 069nb85bv4d4a6slrwjdy8v1cn4cwspm3kdbmyb81d6zckj3nq9f

https://guix.example.org/nar/...-git-2.5.0: 0mdqa9w1p6cmli6976v4wi0sw9r4p5prkj7lzfd1877wk11c9c73

differing file:

/libexec/git-core/git-fsck

/gnu/store/...-pius-2.1.1 contents differ:

local hash: 0k4v3m9z1zp8xzzizb7d8kjj72f9172xv078sq4wl73vnq9ig3ax

https://bordeaux.guix.gnu.org/nar/...-pius-2.1.1: 0k4v3m9z1zp8xzzizb7d8kjj72f9172xv078sq4wl73vnq9ig3ax

https://guix.example.org/nar/...-pius-2.1.1: 1cy25x1a4fzq5rk0pmvc8xhwyffnqz95h2bpvqsz2mpvlbccy0gs

differing file:

/share/man/man1/pius.1.gz

...

Chapter 9: Utilities 221

5 store items were analyzed:

- 2 (40.0%) were identical

- 3 (60.0%) differed

- 0 (0.0%) were inconclusive

In this example, guix challenge queries all the substitute servers for each of the fives
packages specified on the command line. It then reports those store items for which the
servers obtained a result different from the local build (if it exists) and/or different from
one another; here, the ‘local hash’ lines indicate that a local build result was available for
each of these packages and shows its hash.

As an example, guix.example.org always gets a different answer. Conversely,
bordeaux.guix.gnu.org agrees with local builds, except in the case of Git. This might
indicate that the build process of Git is non-deterministic, meaning that its output varies
as a function of various things that Guix does not fully control, in spite of building
packages in isolated environments (see Section 5.1 [Features], page 34). Most common
sources of non-determinism include the addition of timestamps in build results, the
inclusion of random numbers, and directory listings sorted by inode number. See https://
reproducible-builds.org/docs/, for more information.

To find out what is wrong with this Git binary, the easiest approach is to run:

guix challenge git \

--diff=diffoscope \

--substitute-urls="https://bordeaux.guix.gnu.org https://guix.example.org"

This automatically invokes diffoscope, which displays detailed information about files
that differ.

Alternatively, we can do something along these lines (see Section 5.11 [Invoking guix
archive], page 63):

$ wget -q -O - https://bordeaux.guix.gnu.org/nar/lzip/...-git-2.5.0 \

| lzip -d | guix archive -x /tmp/git

$ diff -ur --no-dereference /gnu/store/...-git.2.5.0 /tmp/git

This command shows the difference between the files resulting from the local build,
and the files resulting from the build on bordeaux.guix.gnu.org (see Section “Overview”
in Comparing and Merging Files). The diff command works great for text files. When
binary files differ, a better option is Diffoscope (https://diffoscope.org/), a tool that
helps visualize differences for all kinds of files.

Once you have done that work, you can tell whether the differences are due to a non-
deterministic build process or to a malicious server. We try hard to remove sources of
non-determinism in packages to make it easier to verify substitutes, but of course, this is a
process that involves not just Guix, but a large part of the free software community. In the
meantime, guix challenge is one tool to help address the problem.

If you are writing packages for Guix, you are encouraged to check whether
bordeaux.guix.gnu.org and other substitute servers obtain the same build result as you
did with:

guix challenge package

The general syntax is:

guix challenge options argument...

https://reproducible-builds.org/docs/
https://reproducible-builds.org/docs/
https://diffoscope.org/

Chapter 9: Utilities 222

where argument is a package specification such as guile@2.0 or glibc:debug or, alterna-
tively, a store file name as returned, for example, by guix build or guix gc --list-live.

When a difference is found between the hash of a locally-built item and that of a server-
provided substitute, or among substitutes provided by different servers, the command dis-
plays it as in the example above and its exit code is 2 (other non-zero exit codes denote
other kinds of errors).

The one option that matters is:

--substitute-urls=urls

Consider urls the whitespace-separated list of substitute source URLs to com-
pare to.

--diff=mode

Upon mismatches, show differences according to mode, one of:

simple (the default)
Show the list of files that differ.

diffoscope

command Invoke Diffoscope (https://diffoscope.org/), passing it two di-
rectories whose contents do not match.

When command is an absolute file name, run command instead of
Diffoscope.

none Do not show further details about the differences.

Thus, unless --diff=none is passed, guix challenge downloads the store items
from the given substitute servers so that it can compare them.

--verbose

-v Show details about matches (identical contents) in addition to information
about mismatches.

9.13 Invoking guix copy

The guix copy command copies items from the store of one machine to that of another
machine over a secure shell (SSH) connection2. For example, the following command copies
the coreutils package, the user’s profile, and all their dependencies over to host, logged
in as user:

guix copy --to=user@host \

coreutils $(readlink -f ~/.guix-profile)

If some of the items to be copied are already present on host, they are not actually sent.

The command below retrieves libreoffice and gimp from host, assuming they are
available there:

guix copy --from=host libreoffice gimp

The SSH connection is established using the Guile-SSH client, which is compatible with
OpenSSH: it honors ~/.ssh/known_hosts and ~/.ssh/config, and uses the SSH agent for
authentication.

2 This command is available only when Guile-SSH was found. See Section 22.1 [Requirements], page 698,
for details.

https://diffoscope.org/

Chapter 9: Utilities 223

The key used to sign items that are sent must be accepted by the remote machine.
Likewise, the key used by the remote machine to sign items you are retrieving must be
in /etc/guix/acl so it is accepted by your own daemon. See Section 5.11 [Invoking guix
archive], page 63, for more information about store item authentication.

The general syntax is:

guix copy [--to=spec|--from=spec] items...

You must always specify one of the following options:

--to=spec

--from=spec

Specify the host to send to or receive from. spec must be an SSH spec such as
example.org, charlie@example.org, or charlie@example.org:2222.

The items can be either package names, such as gimp, or store items, such as
/gnu/store/...-idutils-4.6.

When specifying the name of a package to send, it is first built if needed, unless --dry-
run was specified. Common build options are supported (see Section 9.1.1 [Common Build
Options], page 173).

9.14 Invoking guix container

Note: As of version db86261, this tool is experimental. The interface is subject
to radical change in the future.

The purpose of guix container is to manipulate processes running within an isolated
environment, commonly known as a “container”, typically created by the guix shell (see
Section 7.1 [Invoking guix shell], page 76) and guix system container (see Section 11.16
[Invoking guix system], page 601) commands.

The general syntax is:

guix container action options...

action specifies the operation to perform with a container, and options specifies the
context-specific arguments for the action.

The following actions are available:

exec Execute a command within the context of a running container.

The syntax is:

guix container exec pid program arguments...

pid specifies the process ID of the running container. program specifies an
executable file name within the root file system of the container. arguments
are the additional options that will be passed to program.

The following command launches an interactive login shell inside a Guix system
container, started by guix system container, and whose process ID is 9001:

guix container exec 9001 /run/current-system/profile/bin/bash --login

Note that the pid cannot be the parent process of a container. It must be PID
1 of the container or one of its child processes.

Chapter 9: Utilities 224

9.15 Invoking guix weather

Occasionally you’re grumpy because substitutes are lacking and you end up building pack-
ages by yourself (see Section 5.3 [Substitutes], page 44). The guix weather command re-
ports on substitute availability on the specified servers so you can have an idea of whether
you’ll be grumpy today. It can sometimes be useful info as a user, but it is primarily useful
to people running guix publish (see Section 9.11 [Invoking guix publish], page 216). Some-
times substitutes are available but they are not authorized on your system; guix weather

reports it so you can authorize them if you want (see Section 5.3.3 [Getting Substitutes
from Other Servers], page 46).

Here’s a sample run:

$ guix weather --substitute-urls=https://guix.example.org

computing 5,872 package derivations for x86_64-linux...

looking for 6,128 store items on https://guix.example.org..

updating substitutes from 'https://guix.example.org'... 100.0%

https://guix.example.org

43.4% substitutes available (2,658 out of 6,128)

7,032.5 MiB of nars (compressed)

19,824.2 MiB on disk (uncompressed)

0.030 seconds per request (182.9 seconds in total)

33.5 requests per second

9.8% (342 out of 3,470) of the missing items are queued

867 queued builds

x86_64-linux: 518 (59.7%)

i686-linux: 221 (25.5%)

aarch64-linux: 128 (14.8%)

build rate: 23.41 builds per hour

x86_64-linux: 11.16 builds per hour

i686-linux: 6.03 builds per hour

aarch64-linux: 6.41 builds per hour

As you can see, it reports the fraction of all the packages for which substitutes are
available on the server—regardless of whether substitutes are enabled, and regardless of
whether this server’s signing key is authorized. It also reports the size of the compressed
archives (“nars”) provided by the server, the size the corresponding store items occupy in
the store (assuming deduplication is turned off), and the server’s throughput. The second
part gives continuous integration (CI) statistics, if the server supports it. In addition, using
the --coverage option, guix weather can list “important” package substitutes missing on
the server (see below).

To achieve that, guix weather queries over HTTP(S) meta-data (narinfos) for all the
relevant store items. Like guix challenge, it ignores signatures on those substitutes, which
is innocuous since the command only gathers statistics and cannot install those substitutes.

The general syntax is:

guix weather options... [packages...]

When packages is omitted, guix weather checks the availability of substitutes for all the
packages, or for those specified with --manifest; otherwise it only considers the specified

Chapter 9: Utilities 225

packages. It is also possible to query specific system types with --system. guix weather

exits with a non-zero code when the fraction of available substitutes is below 100%.

The available options are listed below.

--substitute-urls=urls

urls is the space-separated list of substitute server URLs to query. When this
option is omitted, the URLs specified with the --substitute-urls option of
guix-daemon are used or, as a last resort, the default set of substitute URLs.

--system=system

-s system Query substitutes for system—e.g., aarch64-linux. This option can be re-
peated, in which case guix weather will query substitutes for several system
types.

--manifest=file

Instead of querying substitutes for all the packages, only ask for those specified
in file. file must contain a manifest, as with the -m option of guix package (see
Section 5.2 [Invoking guix package], page 35).

This option can be repeated several times, in which case the manifests are
concatenated.

--expression=expr

-e expr Consider the package expr evaluates to.

A typical use case for this option is specifying a package that is hidden and
thus cannot be referred to in the usual way, as in this example:

guix weather -e '(@@ (gnu packages rust) rust-bootstrap)'

This option can be repeated.

--coverage[=count]

-c [count]

Report on substitute coverage for packages: list packages with at least count
dependents (zero by default) for which substitutes are unavailable. Dependent
packages themselves are not listed: if b depends on a and a has no substitutes,
only a is listed, even though b usually lacks substitutes as well. The result looks
like this:

$ guix weather --substitute-urls=https://bordeaux.guix.gnu.org

https://ci.guix.gnu.org -c 10

computing 8,983 package derivations for x86_64-linux...

looking for 9,343 store items on https://bordeaux.guix.gnu.org

https://ci.guix.gnu.org...

updating substitutes from 'https://bordeaux.guix.gnu.org https://ci.guix.gnu.org'... 100.0%

https://bordeaux.guix.gnu.org https://ci.guix.gnu.org

64.7% substitutes available (6,047 out of 9,343)

...

2502 packages are missing from 'https://bordeaux.guix.gnu.org

https://ci.guix.gnu.org' for 'x86_64-linux', among which:

58 kcoreaddons@5.49.0 /gnu/store/...-kcoreaddons-5.49.0

46 qgpgme@1.11.1 /gnu/store/...-qgpgme-1.11.1

Chapter 9: Utilities 226

37 perl-http-cookiejar@0.008 /gnu/store/...-perl-http-cookiejar-0.008

...

What this example shows is that kcoreaddons and presumably the 58 packages
that depend on it have no substitutes at bordeaux.guix.gnu.org; likewise for
qgpgme and the 46 packages that depend on it.

If you are a Guix developer, or if you are taking care of this build farm, you’ll
probably want to have a closer look at these packages: they may simply fail to
build.

--display-missing

Display the list of store items for which substitutes are missing.

9.16 Invoking guix processes

The guix processes command can be useful to developers and system administrators, es-
pecially on multi-user machines and on build farms: it lists the current sessions (connections
to the daemon), as well as information about the processes involved3. Here’s an example of
the information it returns:

$ sudo guix processes

SessionPID: 19002

ClientPID: 19090

ClientCommand: guix shell python

SessionPID: 19402

ClientPID: 19367

ClientCommand: guix publish -u guix-publish -p 3000 -C 9 ...

SessionPID: 19444

ClientPID: 19419

ClientCommand: cuirass --cache-directory /var/cache/cuirass ...

LockHeld: /gnu/store/...-perl-ipc-cmd-0.96.lock

LockHeld: /gnu/store/...-python-six-bootstrap-1.11.0.lock

LockHeld: /gnu/store/...-libjpeg-turbo-2.0.0.lock

ChildPID: 20495

ChildCommand: guix offload x86_64-linux 7200 1 28800

ChildPID: 27733

ChildCommand: guix offload x86_64-linux 7200 1 28800

ChildPID: 27793

ChildCommand: guix offload x86_64-linux 7200 1 28800

In this example we see that guix-daemon has three clients: guix shell, guix publish,
and the Cuirass continuous integration tool; their process identifier (PID) is given by the
ClientPID field. The SessionPID field gives the PID of the guix-daemon sub-process of
this particular session.

The LockHeld fields show which store items are currently locked by this session, which
corresponds to store items being built or substituted (the LockHeld field is not displayed

3 Remote sessions, when guix-daemon is started with --listen specifying a TCP endpoint, are not listed.

Chapter 9: Utilities 227

when guix processes is not running as root). Last, by looking at the ChildPID and
ChildCommand fields, we understand that these three builds are being offloaded (see Sec-
tion 2.2.2 [Daemon Offload Setup], page 7).

The output is in Recutils format so we can use the handy recsel command to select
sessions of interest (see Section “Selection Expressions” in GNU recutils manual). As an
example, the command shows the command line and PID of the client that triggered the
build of a Perl package:

$ sudo guix processes | \

recsel -p ClientPID,ClientCommand -e 'LockHeld ~ "perl"'

ClientPID: 19419

ClientCommand: cuirass --cache-directory /var/cache/cuirass ...

Additional options are listed below.

--format=format

-f format Produce output in the specified format, one of:

recutils The default option. It outputs a set of Session recutils records that
include each ChildProcess as a field.

normalized

Normalize the output records into record sets (see Section “Record
Sets” in GNU recutils manual). Normalizing into record sets al-
lows joins across record types. The example below lists the PID
of each ChildProcess and the associated PID for Session that
spawned the ChildProcess where the Session was started using
guix build.

$ guix processes --format=normalized | \

recsel \

-j Session \

-t ChildProcess \

-p Session.PID,PID \

-e 'Session.ClientCommand ~ "guix build"'

PID: 4435

Session_PID: 4278

PID: 4554

Session_PID: 4278

PID: 4646

Session_PID: 4278

228

10 Foreign Architectures

You can target computers of different CPU architectures when producing packages (see
Section 5.2 [Invoking guix package], page 35), packs (see Section 7.3 [Invoking guix pack],
page 88) or full systems (see Section 11.16 [Invoking guix system], page 601).

GNU Guix supports two distinct mechanisms to target foreign architectures:

1. The traditional cross-compilation (https://en.wikipedia.org/wiki/
Cross_compiler) mechanism.

2. The native building mechanism which consists in building using the CPU instruction
set of the foreign system you are targeting. It often requires emulation, using the
QEMU program for instance.

10.1 Cross-Compilation

The commands supporting cross-compilation are proposing the --list-targets and
--target options.

The --list-targets option lists all the supported targets that can be passed as an
argument to --target.

$ guix build --list-targets

The available targets are:

- aarch64-linux-gnu

- arm-linux-gnueabihf

- avr

- i586-pc-gnu

- i686-linux-gnu

- i686-w64-mingw32

- mips64el-linux-gnu

- or1k-elf

- powerpc-linux-gnu

- powerpc64le-linux-gnu

- riscv64-linux-gnu

- x86_64-linux-gnu

- x86_64-linux-gnux32

- x86_64-w64-mingw32

- xtensa-ath9k-elf

Targets are specified as GNU triplets (see Section “Specifying Target Triplets” in Auto-
conf).

Those triplets are passed to GCC and the other underlying compilers possibly involved
when building a package, a system image or any other GNU Guix output.

$ guix build --target=aarch64-linux-gnu hello

/gnu/store/9926by9qrxa91ijkhw9ndgwp4bn24g9h-hello-2.12

$ file /gnu/store/9926by9qrxa91ijkhw9ndgwp4bn24g9h-hello-2.12/bin/hello

/gnu/store/9926by9qrxa91ijkhw9ndgwp4bn24g9h-hello-2.12/bin/hello: ELF

https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Cross_compiler

Chapter 10: Foreign Architectures 229

64-bit LSB executable, ARM aarch64 ...

The major benefit of cross-compilation is that there are no performance penalty com-
pared to emulation using QEMU. There are however higher risks that some packages fail
to cross-compile because fewer users are using this mechanism extensively.

10.2 Native Builds

The commands that support impersonating a specific system have the --list-systems and
--system options.

The --list-systems option lists all the supported systems that can be passed as an
argument to --system.

$ guix build --list-systems

The available systems are:

- x86_64-linux [current]

- aarch64-linux

- armhf-linux

- i586-gnu

- i686-linux

- mips64el-linux

- powerpc-linux

- powerpc64le-linux

- riscv64-linux

$ guix build --system=i686-linux hello

/gnu/store/cc0km35s8x2z4pmwkrqqjx46i8b1i3gm-hello-2.12

$ file /gnu/store/cc0km35s8x2z4pmwkrqqjx46i8b1i3gm-hello-2.12/bin/hello

/gnu/store/cc0km35s8x2z4pmwkrqqjx46i8b1i3gm-hello-2.12/bin/hello: ELF

32-bit LSB executable, Intel 80386 ...

In the above example, the current system is x86 64-linux. The hello package is however
built for the i686-linux system.

This is possible because the i686 CPU instruction set is a subset of the x86 64, hence
i686 targeting binaries can be run on x86 64.

Still in the context of the previous example, if picking the aarch64-linux system and the
guix build --system=aarch64-linux hello has to build some derivations, an extra step
might be needed.

The aarch64-linux targeting binaries cannot directly be run on a x86 64-linux system.
An emulation layer is requested. The GNU Guix daemon can take advantage of the Linux
kernel binfmt misc (https://en.wikipedia.org/wiki/Binfmt_misc) mechanism for that.
In short, the Linux kernel can defer the execution of a binary targeting a foreign platform,
here aarch64-linux, to a userspace program, usually an emulator.

There is a service that registers QEMU as a backend for the binfmt_miscmechanism (see
Section 11.10.30 [Virtualization Services], page 512). On Debian based foreign distributions,
the alternative would be the qemu-user-static package.

https://en.wikipedia.org/wiki/Binfmt_misc

Chapter 10: Foreign Architectures 230

If the binfmt_misc mechanism is not setup correctly, the building will fail this way:

$ guix build --system=armhf-linux hello --check

...

unsupported-platform /gnu/store/jjn969pijv7hff62025yxpfmc8zy0aq0-hello-2.12.drv aarch64-linux

while setting up the build environment: a `aarch64-linux' is required to

build `/gnu/store/jjn969pijv7hff62025yxpfmc8zy0aq0-hello-2.12.drv', but

I am a `x86_64-linux'...

whereas, with the binfmt_misc mechanism correctly linked with QEMU, one can expect
to see:

$ guix build --system=armhf-linux hello --check

/gnu/store/13xz4nghg39wpymivlwghy08yzj97hlj-hello-2.12

The main advantage of native building compared to cross-compiling, is that more pack-
ages are likely to build correctly. However it comes at a price: compilation backed by QEMU
is way slower than cross-compilation, because every instruction needs to be emulated.

The availability of substitutes for the architecture targeted by the --system option can
mitigate this problem. An other way to work around it is to install GNU Guix on a machine
whose CPU supports the targeted instruction set, and set it up as an offload machine (see
Section 2.2.2 [Daemon Offload Setup], page 7).

231

11 System Configuration

Guix System supports a consistent whole-system configuration mechanism. By that we
mean that all aspects of the global system configuration—such as the available system
services, timezone and locale settings, user accounts—are declared in a single place. Such
a system configuration can be instantiated—i.e., effected.

One of the advantages of putting all the system configuration under the control of Guix
is that it supports transactional system upgrades, and makes it possible to roll back to a
previous system instantiation, should something go wrong with the new one (see Section 5.1
[Features], page 34). Another advantage is that it makes it easy to replicate the exact same
configuration across different machines, or at different points in time, without having to
resort to additional administration tools layered on top of the own tools of the system.

This section describes this mechanism. First we focus on the system administrator’s
viewpoint—explaining how the system is configured and instantiated. Then we show how
this mechanism can be extended, for instance to support new system services.

11.1 Getting Started

You’re reading this section probably because you have just installed Guix System (see
Chapter 3 [System Installation], page 20) and would like to know where to go from here.
If you’re already familiar with GNU/Linux system administration, the way Guix System
is configured is very different from what you’re used to: you won’t install a system service
by running guix install, you won’t configure services by modifying files under /etc, and
you won’t create user accounts by invoking useradd; instead, all these aspects are spelled
out in a system configuration file.

The first step with Guix System is thus to write the system configuration file; luckily,
system installation already generated one for you and stored it under /etc/config.scm.

Note: You can store your system configuration file anywhere you like—it doesn’t
have to be at /etc/config.scm. It’s a good idea to keep it under version con-
trol, for instance in a Git repository (https://git-scm.com/book/en/).

The entire configuration of the system—user accounts, system services, timezone, locale
settings—is declared in this file, which follows this template:

(use-modules (gnu))

(use-package-modules ...)

(use-service-modules ...)

(operating-system

(host-name ...)

(timezone ...)

(locale ...)

(bootloader ...)

(file-systems ...)

(users ...)

(packages ...)

(services ...))

https://git-scm.com/book/en/

Chapter 11: System Configuration 232

This configuration file is in fact a Scheme program; the first lines pull in modules pro-
viding variables you might need in the rest of the file—e.g., packages, services, etc. The
operating-system form declares the system configuration as a record with a number of
fields. See Section 11.2 [Using the Configuration System], page 233, to view complete
examples and learn what to put in there.

The second step, once you have this configuration file, is to test it. Of course, you can
skip this step if you’re feeling lucky—you choose! To do that, pass your configuration file
to guix system vm (no need to be root, you can do that as a regular user):

guix system vm /etc/config.scm

This command returns the name of a shell script that starts a virtual machine (VM) running
the system as described in the configuration file:

/gnu/store/...-run-vm.sh

In this VM, you can log in as root with no password. That’s a good way to check that
your configuration file is correct and that it gives the expected result, without touching
your system. See Section 11.16 [Invoking guix system], page 601, for more information.

Note: When using guix system vm, aspects tied to your hardware such as file
systems and mapped devices are overridden because they cannot be meaning-
fully tested in the VM. Other aspects such as static network configuration (see
Section 11.10.4 [Networking Setup], page 289) are not overridden but they may
not work inside the VM.

The third step, once you’re happy with your configuration, is to instantiate it—make
this configuration effective on your system. To do that, run:

sudo guix system reconfigure /etc/config.scm

This operation is transactional: either it succeeds and you end up with an upgraded system,
or it fails and nothing has changed. Note that it does not restart system services that were
already running. Thus, to upgrade those services, you have to reboot or to explicitly restart
them; for example, to restart the secure shell (SSH) daemon, you would run:

sudo herd restart sshd

Note: System services are managed by the Shepherd (see Section “Jump Start”
in The GNU Shepherd Manual). The herd command lets you inspect, start,
and stop services. To view the status of services, run:

sudo herd status

To view detailed information about a given service, add its name to the com-
mand:

sudo herd status sshd

See Section 11.10 [Services], page 263, for more information.

The system records its provenance—the configuration file and channels that were used
to deploy it. You can view it like so:

guix system describe

Additionally, guix system reconfigure preserves previous system generations, which
you can list:

guix system list-generations

Chapter 11: System Configuration 233

Crucially, that means that you can always roll back to an earlier generation should some-
thing go wrong! When you eventually reboot, you’ll notice a sub-menu in the bootloader
that reads “Old system generations”: it’s what allows you to boot an older generation of
your system, should the latest generation be “broken” or otherwise unsatisfying. You can
also “permanently” roll back, like so:

sudo guix system roll-back

Alternatively, you can use guix system switch-generation to switch to a specific gener-
ation.

Once in a while, you’ll want to delete old generations that you do not need anymore
to allow garbage collection to free space (see Section 5.6 [Invoking guix gc], page 51). For
example, to remove generations older than 4 months, run:

sudo guix system delete-generations 4m

From there on, anytime you want to change something in the system configuration, be
it adding a user account or changing parameters of a service, you will first update your
configuration file and then run guix system reconfigure as shown above.

Likewise, to upgrade system software, you first fetch an up-to-date Guix and then recon-
figure your system with that new Guix:

guix pull

sudo guix system reconfigure /etc/config.scm

We recommend doing that regularly so that your system includes the latest security updates
(see Chapter 19 [Security Updates], page 688).

Note:

sudo guix runs your user’s guix command and not root’s, because sudo leaves
PATH unchanged.

The difference matters here, because guix pull updates the guix command
and package definitions only for the user it is run as. This means that if you
choose to use guix system reconfigure in root’s login shell, you’ll need to
guix pull separately.

That’s it! If you’re getting started with Guix entirely, see Chapter 4 [Getting Started],
page 31. The next sections dive in more detail into the crux of the matter: system config-
uration.

11.2 Using the Configuration System

The previous section showed the overall workflow you would follow when administering a
Guix System machine (see Section 11.1 [Getting Started with the System], page 231). Let’s
now see in more detail what goes into the system configuration file.

The operating system is configured by providing an operating-system declaration in
a file that can then be passed to the guix system command (see Section 11.16 [Invoking
guix system], page 601), as we’ve seen before. A simple setup, with the default Linux-Libre
kernel, initial RAM disk, and a couple of system services added to those provided by default
looks like this:

;; -*- mode: scheme; -*-

;; This is an operating system configuration template

Chapter 11: System Configuration 234

;; for a "bare bones" setup, with no X11 display server.

(use-modules (gnu))

(use-service-modules networking ssh)

(use-package-modules screen ssh)

(operating-system

(host-name "komputilo")

(timezone "Europe/Berlin")

(locale "en_US.utf8")

;; Boot in "legacy" BIOS mode, assuming /dev/sdX is the

;; target hard disk, and "my-root" is the label of the target

;; root file system.

(bootloader (bootloader-configuration

(bootloader grub-bootloader)

(targets '("/dev/sdX"))))

;; It's fitting to support the equally bare bones ‘-nographic’

;; QEMU option, which also nicely sidesteps forcing QWERTY.

(kernel-arguments (list "console=ttyS0,115200"))

(file-systems (cons (file-system

(device (file-system-label "my-root"))

(mount-point "/")

(type "ext4"))

%base-file-systems))

;; This is where user accounts are specified. The "root"

;; account is implicit, and is initially created with the

;; empty password.

(users (cons (user-account

(name "alice")

(comment "Bob's sister")

(group "users")

;; Adding the account to the "wheel" group

;; makes it a sudoer. Adding it to "audio"

;; and "video" allows the user to play sound

;; and access the webcam.

(supplementary-groups '("wheel"

"audio" "video")))

%base-user-accounts))

;; Globally-installed packages.

(packages (cons screen %base-packages))

;; Add services to the baseline: a DHCP client and an SSH

;; server. You may wish to add an NTP service here.

Chapter 11: System Configuration 235

(services (append (list (service dhcp-client-service-type)

(service openssh-service-type

(openssh-configuration

(openssh openssh-sans-x)

(port-number 2222))))

%base-services)))

The configuration is declarative. It is code in the Scheme programming language; the
whole (operating-system ...) expression produces a record with a number of fields. Some
of the fields defined above, such as host-name and bootloader, are mandatory. Others,
such as packages and services, can be omitted, in which case they get a default value.
See Section 11.3 [operating-system Reference], page 242, for details about all the available
fields.

Below we discuss the meaning of some of the most important fields.

Troubleshooting: The configuration file is a Scheme program and you might
get the syntax or semantics wrong as you get started. Syntactic issues such as
misplaced parentheses can often be identified by reformatting your file:

guix style -f config.scm

The Cookbook has a short section to get started with the Scheme programming
language that explains the fundamentals, which you will find helpful when hack-
ing your configuration. See Section “A Scheme Crash Course” in GNU Guix
Cookbook.

Bootloader

The bootloader field describes the method that will be used to boot your system. Ma-
chines based on Intel processors can boot in “legacy” BIOS mode, as in the example above.
However, more recent machines rely instead on the Unified Extensible Firmware Interface
(UEFI) to boot. In that case, the bootloader field should contain something along these
lines:

(bootloader-configuration

(bootloader grub-efi-bootloader)

(targets '("/boot/efi")))

See Section 11.15 [Bootloader Configuration], page 594, for more information on the
available configuration options.

Globally-Visible Packages

The packages field lists packages that will be globally visible on the system, for all user
accounts—i.e., in every user’s PATH environment variable—in addition to the per-user pro-
files (see Section 5.2 [Invoking guix package], page 35). The %base-packages variable
provides all the tools one would expect for basic user and administrator tasks—including
the GNU Core Utilities, the GNU Networking Utilities, the mg lightweight text editor, find,
grep, etc. The example above adds GNU Screen to those, taken from the (gnu packages

screen)module (see Section 8.1 [Package Modules], page 97). The (list package output)

syntax can be used to add a specific output of a package:

(use-modules (gnu packages))

(use-modules (gnu packages dns))

Chapter 11: System Configuration 236

(operating-system

;; ...

(packages (cons (list isc-bind "utils")

%base-packages)))

Referring to packages by variable name, like isc-bind above, has the advantage of
being unambiguous; it also allows typos and such to be diagnosed right away as “unbound
variables”. The downside is that one needs to know which module defines which package,
and to augment the use-package-modules line accordingly. To avoid that, one can use the
specification->package procedure of the (gnu packages) module, which returns the
best package for a given name or name and version:

(use-modules (gnu packages))

(operating-system

;; ...

(packages (append (map specification->package

'("tcpdump" "htop" "gnupg@2.0"))

%base-packages)))

When a package has more than one output it can be a challenge to refer to a spe-
cific output instead of just to the standard out output. For these situations one can use
the specification->package+output procedure from the (gnu packages) module. For
example:

(use-modules (gnu packages))

(operating-system

;; ...

(packages (append (map specification->package+output

'("git" "git:send-email"))

%base-packages)))

System Services

The services field lists system services to be made available when the system starts (see
Section 11.10 [Services], page 263). The operating-system declaration above specifies
that, in addition to the basic services, we want the OpenSSH secure shell daemon listen-
ing on port 2222 (see Section 11.10.5 [Networking Services], page 301). Under the hood,
openssh-service-type arranges so that sshd is started with the right command-line op-
tions, possibly with supporting configuration files generated as needed (see Section 11.19
[Defining Services], page 615).

Occasionally, instead of using the base services as is, you will want to customize them.
To do this, use modify-services (see Section 11.19.3 [Service Reference], page 618) to
modify the list.

For example, suppose you want to modify guix-daemon and Mingetty (the console log-
in) in the %base-services list (see Section 11.10.1 [Base Services], page 263). To do that,
you can write the following in your operating system declaration:

Chapter 11: System Configuration 237

(define %my-services

;; My very own list of services.

(modify-services %base-services

(guix-service-type config =>

(guix-configuration

(inherit config)

;; Fetch substitutes from example.org.

(substitute-urls

(list "https://example.org/guix"

"https://ci.guix.gnu.org"))))

(mingetty-service-type config =>

(mingetty-configuration

(inherit config)

;; Automatically log in as "guest".

(auto-login "guest")))))

(operating-system

;; ...

(services %my-services))

This changes the configuration—i.e., the service parameters—of the guix-service-type
instance, and that of all the mingetty-service-type instances in the %base-services list
(see Section “Auto-Login to a Specific TTY” in GNU Guix Cookbook)). Observe how
this is accomplished: first, we arrange for the original configuration to be bound to the
identifier config in the body, and then we write the body so that it evaluates to the desired
configuration. In particular, notice how we use inherit to create a new configuration which
has the same values as the old configuration, but with a few modifications.

The configuration for a typical “desktop” usage, with an encrypted root partition, a
swap file on the root partition, the X11 display server, GNOME and Xfce (users can choose
which of these desktop environments to use at the log-in screen by pressing F1), network
management, power management, and more, would look like this:

;; -*- mode: scheme; -*-

;; This is an operating system configuration template

;; for a "desktop" setup with GNOME and Xfce where the

;; root partition is encrypted with LUKS, and a swap file.

(use-modules (gnu) (gnu system nss) (guix utils))

(use-service-modules desktop sddm xorg)

(use-package-modules gnome)

(operating-system

(host-name "antelope")

(timezone "Europe/Paris")

(locale "en_US.utf8")

;; Choose US English keyboard layout. The "altgr-intl"

;; variant provides dead keys for accented characters.

Chapter 11: System Configuration 238

(keyboard-layout (keyboard-layout "us" "altgr-intl"))

;; Use the UEFI variant of GRUB with the EFI System

;; Partition mounted on /boot/efi.

(bootloader (bootloader-configuration

(bootloader grub-efi-bootloader)

(targets '("/boot/efi"))

(keyboard-layout keyboard-layout)))

;; Specify a mapped device for the encrypted root partition.

;; The UUID is that returned by 'cryptsetup luksUUID'.

(mapped-devices

(list (mapped-device

(source (uuid "12345678-1234-1234-1234-123456789abc"))

(target "my-root")

(type luks-device-mapping))))

(file-systems (append

(list (file-system

(device (file-system-label "my-root"))

(mount-point "/")

(type "ext4")

(dependencies mapped-devices))

(file-system

(device (uuid "1234-ABCD" 'fat))

(mount-point "/boot/efi")

(type "vfat")))

%base-file-systems))

;; Specify a swap file for the system, which resides on the

;; root file system.

(swap-devices (list (swap-space

(target "/swapfile"))))

;; Create user `bob' with `alice' as its initial password.

(users (cons (user-account

(name "bob")

(comment "Alice's brother")

(password (crypt "alice" "6abc"))

(group "students")

(supplementary-groups '("wheel" "netdev"

"audio" "video")))

%base-user-accounts))

;; Add the `students' group

(groups (cons* (user-group

(name "students"))

Chapter 11: System Configuration 239

%base-groups))

;; This is where we specify system-wide packages.

(packages (append (list

;; for user mounts

gvfs)

%base-packages))

;; Add GNOME and Xfce---we can choose at the log-in screen

;; by clicking the gear. Use the "desktop" services, which

;; include the X11 log-in service, networking with

;; NetworkManager, and more.

(services (if (target-x86-64?)

(append (list (service gnome-desktop-service-type)

(service xfce-desktop-service-type)

(set-xorg-configuration

(xorg-configuration

(keyboard-layout keyboard-layout))))

%desktop-services)

;; FIXME: Since GDM depends on Rust (gdm -> gnome-shell -> gjs

;; -> mozjs -> rust) and Rust is currently unavailable on

;; non-x86_64 platforms, we use SDDM and Mate here instead of

;; GNOME and GDM.

(append (list (service mate-desktop-service-type)

(service xfce-desktop-service-type)

(set-xorg-configuration

(xorg-configuration

(keyboard-layout keyboard-layout))

sddm-service-type))

%desktop-services)))

;; Allow resolution of '.local' host names with mDNS.

(name-service-switch %mdns-host-lookup-nss))

A graphical system with a choice of lightweight window managers instead of full-blown
desktop environments would look like this:

;; -*- mode: scheme; -*-

;; This is an operating system configuration template

;; for a "desktop" setup without full-blown desktop

;; environments.

(use-modules (gnu) (gnu system nss))

(use-service-modules desktop)

(use-package-modules bootloaders emacs emacs-xyz ratpoison suckless wm

xorg)

Chapter 11: System Configuration 240

(operating-system

(host-name "antelope")

(timezone "Europe/Paris")

(locale "en_US.utf8")

;; Use the UEFI variant of GRUB with the EFI System

;; Partition mounted on /boot/efi.

(bootloader (bootloader-configuration

(bootloader grub-efi-bootloader)

(targets '("/boot/efi"))))

;; Assume the target root file system is labelled "my-root",

;; and the EFI System Partition has UUID 1234-ABCD.

(file-systems (append

(list (file-system

(device (file-system-label "my-root"))

(mount-point "/")

(type "ext4"))

(file-system

(device (uuid "1234-ABCD" 'fat))

(mount-point "/boot/efi")

(type "vfat")))

%base-file-systems))

(users (cons (user-account

(name "alice")

(comment "Bob's sister")

(group "users")

(supplementary-groups '("wheel" "netdev"

"audio" "video")))

%base-user-accounts))

;; Add a bunch of window managers; we can choose one at

;; the log-in screen with F1.

(packages (append (list

;; window managers

ratpoison i3-wm i3status dmenu

emacs emacs-exwm emacs-desktop-environment

;; terminal emulator

xterm)

%base-packages))

;; Use the "desktop" services, which include the X11

;; log-in service, networking with NetworkManager, and more.

(services %desktop-services)

;; Allow resolution of '.local' host names with mDNS.

Chapter 11: System Configuration 241

(name-service-switch %mdns-host-lookup-nss))

This example refers to the /boot/efi file system by its UUID, 1234-ABCD. Replace this
UUID with the right UUID on your system, as returned by the blkid command.

See Section 11.10.9 [Desktop Services], page 347, for the exact list of services provided
by %desktop-services.

Again, %desktop-services is just a list of service objects. If you want to remove services
from there, you can do so using the procedures for list filtering (see Section “SRFI-1 Filtering
and Partitioning” in GNU Guile Reference Manual). For instance, the following expression
returns a list that contains all the services in %desktop-services minus the Avahi service:

(remove (lambda (service)

(eq? (service-kind service) avahi-service-type))

%desktop-services)

Alternatively, the modify-services macro can be used:

(modify-services %desktop-services

(delete avahi-service-type))

Inspecting Services

As you work on your system configuration, you might wonder why some system service
doesn’t show up or why the system is not as you expected. There are several ways to
inspect and troubleshoot problems.

First, you can inspect the dependency graph of Shepherd services like so:

guix system shepherd-graph /etc/config.scm | \

guix shell xdot -- xdot -

This lets you visualize the Shepherd services as defined in /etc/config.scm. Each box
is a service as would be shown by sudo herd status on the running system, and each arrow
denotes a dependency (in the sense that if service A depends on B, then B must be started
before A).

Not all “services” are Shepherd services though, since Guix System uses a broader defi-
nition of the term (see Section 11.10 [Services], page 263). To visualize system services and
their relations at a higher level, run:

guix system extension-graph /etc/config.scm | \

guix shell xdot -- xdot -

This lets you view the service extension graph: how services “extend” each other, for
instance by contributing to their configuration. See Section 11.19.1 [Service Composition],
page 615, to understand the meaning of this graph.

Last, you may also find it useful to inspect your system configuration at the REPL (see
Section 8.14 [Using Guix Interactively], page 170). Here is an example session:

$ guix repl

scheme@(guix-user)> ,use (gnu)

scheme@(guix-user)> (define os (load "config.scm"))

scheme@(guix-user)> ,pp (map service-kind (operating-system-services os))

$1 = (#<service-type localed cabba93>

...)

Chapter 11: System Configuration 242

See Section 11.19.3 [Service Reference], page 618, to learn about the Scheme interface
to manipulate and inspect services.

Instantiating the System

Assuming the operating-system declaration is stored in the config.scm file, the sudo

guix system reconfigure config.scm command instantiates that configuration, and
makes it the default boot entry. See Section 11.1 [Getting Started with the System],
page 231, for an overview.

The normal way to change the system configuration is by updating this file and re-
running guix system reconfigure. One should never have to touch files in /etc or to run
commands that modify the system state such as useradd or grub-install. In fact, you
must avoid that since that would not only void your warranty but also prevent you from
rolling back to previous versions of your system, should you ever need to.

The Programming Interface

At the Scheme level, the bulk of an operating-system declaration is instantiated with the
following monadic procedure (see Section 8.11 [The Store Monad], page 155):

[Monadic Procedure]operating-system-derivation os
Return a derivation that builds os, an operating-system object (see Section 8.10
[Derivations], page 152).

The output of the derivation is a single directory that refers to all the packages,
configuration files, and other supporting files needed to instantiate os.

This procedure is provided by the (gnu system) module. Along with (gnu services)

(see Section 11.10 [Services], page 263), this module contains the guts of Guix System.
Make sure to visit it!

11.3 operating-system Reference

This section summarizes all the options available in operating-system declarations (see
Section 11.2 [Using the Configuration System], page 233).

[Data Type]operating-system
This is the data type representing an operating system configuration. By that, we
mean all the global system configuration, not per-user configuration (see Section 11.2
[Using the Configuration System], page 233).

kernel (default: linux-libre)
The package object of the operating system kernel to use1.

hurd (default: #f)
The package object of the Hurd to be started by the kernel. When this
field is set, produce a GNU/Hurd operating system. In that case, kernel
must also be set to the gnumach package—the microkernel the Hurd runs
on.

1 Currently only the Linux-libre kernel is fully supported. Using GNU mach with the GNU Hurd is
experimental and only available when building a virtual machine disk image.

Chapter 11: System Configuration 243

Warning: This feature is experimental and only supported
for disk images.

kernel-loadable-modules (default: ’())
A list of objects (usually packages) to collect loadable kernel modules
from–e.g. (list ddcci-driver-linux).

kernel-arguments (default: %default-kernel-arguments)
List of strings or gexps representing additional arguments to pass on the
command-line of the kernel—e.g., ("console=ttyS0").

bootloader

The system bootloader configuration object. See Section 11.15 [Boot-
loader Configuration], page 594.

label This is the label (a string) as it appears in the bootloader’s menu entry.
The default label includes the kernel name and version.

keyboard-layout (default: #f)
This field specifies the keyboard layout to use in the console. It can be
either #f, in which case the default keyboard layout is used (usually US
English), or a <keyboard-layout> record. See Section 11.8 [Keyboard
Layout], page 259, for more information.

This keyboard layout is in effect as soon as the kernel has booted. For
instance, it is the keyboard layout in effect when you type a passphrase if
your root file system is on a luks-device-mapping mapped device (see
Section 11.5 [Mapped Devices], page 251).

Note: This does not specify the keyboard layout used by the
bootloader, nor that used by the graphical display server. See
Section 11.15 [Bootloader Configuration], page 594, for infor-
mation on how to specify the bootloader’s keyboard layout.
See Section 11.10.7 [X Window], page 325, for information on
how to specify the keyboard layout used by the X Window
System.

initrd-modules (default: %base-initrd-modules)
The list of Linux kernel modules that need to be available in the initial
RAM disk. See Section 11.14 [Initial RAM Disk], page 591.

initrd (default: base-initrd)
A procedure that returns an initial RAM disk for the Linux kernel. This
field is provided to support low-level customization and should rarely be
needed for casual use. See Section 11.14 [Initial RAM Disk], page 591.

firmware (default: %base-firmware)
List of firmware packages loadable by the operating system kernel.

The default includes firmware needed for Atheros- and Broadcom-based
WiFi devices (Linux-libre modules ath9k and b43-open, respectively).
See Section 3.2 [Hardware Considerations], page 20, for more info on
supported hardware.

Chapter 11: System Configuration 244

host-name

The host name.

mapped-devices (default: '())
A list of mapped devices. See Section 11.5 [Mapped Devices], page 251.

file-systems

A list of file systems. See Section 11.4 [File Systems], page 246.

swap-devices (default: '())
A list of swap spaces. See Section 11.6 [Swap Space], page 253.

users (default: %base-user-accounts)
groups (default: %base-groups)

List of user accounts and groups. See Section 11.7 [User Accounts],
page 256.

If the users list lacks a user account with UID 0, a “root” account with
UID 0 is automatically added.

skeletons (default: (default-skeletons))
A list of target file name/file-like object tuples (see Section 8.12 [G-
Expressions], page 159). These are the skeleton files that will be added
to the home directory of newly-created user accounts.

For instance, a valid value may look like this:

`((".bashrc" ,(plain-file "bashrc" "echo Hello\n"))

(".guile" ,(plain-file "guile"

"(use-modules (ice-9 readline))

(activate-readline)")))

issue (default: %default-issue)
A string denoting the contents of the /etc/issue file, which is displayed
when users log in on a text console.

packages (default: %base-packages)
A list of packages to be installed in the global profile, which is accessible
at /run/current-system/profile. Each element is either a package
variable or a package/output tuple. Here’s a simple example of both:

(cons* git ; the default "out" output

(list git "send-email") ; another output of git

%base-packages) ; the default set

The default set includes core utilities and it is good practice to install
non-core utilities in user profiles (see Section 5.2 [Invoking guix package],
page 35).

timezone (default: "Etc/UTC")
A timezone identifying string—e.g., "Europe/Paris".

You can run the tzselect command to find out which timezone string
corresponds to your region. Choosing an invalid timezone name causes
guix system to fail.

Chapter 11: System Configuration 245

locale (default: "en_US.utf8")
The name of the default locale (see Section “Locale Names” in The GNU
C Library Reference Manual). See Section 11.9 [Locales], page 261, for
more information.

locale-definitions (default: %default-locale-definitions)
The list of locale definitions to be compiled and that may be used at run
time. See Section 11.9 [Locales], page 261.

locale-libcs (default: (list glibc))
The list of GNU libc packages whose locale data and tools are used to
build the locale definitions. See Section 11.9 [Locales], page 261, for
compatibility considerations that justify this option.

name-service-switch (default: %default-nss)
Configuration of the libc name service switch (NSS)—a <name-service-

switch> object. See Section 11.13 [Name Service Switch], page 589, for
details.

services (default: %base-services)
A list of service objects denoting system services. See Section 11.10 [Ser-
vices], page 263.

essential-services (default: ...)
The list of “essential services”—i.e., things like instances of system-

service-type (see Section 11.19.3 [Service Reference], page 618) and
host-name-service-type, which are derived from the operating system
definition itself. As a user you should never need to touch this field.

pam-services (default: (base-pam-services))
Linux pluggable authentication module (PAM) services.

setuid-programs (default: %setuid-programs)
List of <setuid-program>. See Section 11.11 [Setuid Programs],
page 587, for more information.

sudoers-file (default: %sudoers-specification)
The contents of the /etc/sudoers file as a file-like object (see Section 8.12
[G-Expressions], page 159).

This file specifies which users can use the sudo command, what they are
allowed to do, and what privileges they may gain. The default is that
only root and members of the wheel group may use sudo.

[Macro]this-operating-system
When used in the lexical scope of an operating system field definition, this
identifier resolves to the operating system being defined.

The example below shows how to refer to the operating system being defined
in the definition of the label field:

(use-modules (gnu) (guix))

(operating-system

Chapter 11: System Configuration 246

;; ...

(label (package-full-name

(operating-system-kernel this-operating-system))))

It is an error to refer to this-operating-system outside an operating system
definition.

11.4 File Systems

The list of file systems to be mounted is specified in the file-systems field of the operating
system declaration (see Section 11.2 [Using the Configuration System], page 233). Each file
system is declared using the file-system form, like this:

(file-system

(mount-point "/home")

(device "/dev/sda3")

(type "ext4"))

As usual, some of the fields are mandatory—those shown in the example above—while
others can be omitted. These are described below.

[Data Type]file-system
Objects of this type represent file systems to be mounted. They contain the following
members:

type This is a string specifying the type of the file system—e.g., "ext4".

mount-point

This designates the place where the file system is to be mounted.

device This names the “source” of the file system. It can be one of three things:
a file system label, a file system UUID, or the name of a /dev node.
Labels and UUIDs offer a way to refer to file systems without having to
hard-code their actual device name2.

File system labels are created using the file-system-label procedure,
UUIDs are created using uuid, and /dev nodes are plain strings. Here’s
an example of a file system referred to by its label, as shown by the
e2label command:

(file-system

(mount-point "/home")

(type "ext4")

(device (file-system-label "my-home")))

UUIDs are converted from their string representation (as shown by the
tune2fs -l command) using the uuid form3, like this:

(file-system

2 Note that, while it is tempting to use /dev/disk/by-uuid and similar device names to achieve the same
result, this is not recommended: These special device nodes are created by the udev daemon and may
be unavailable at the time the device is mounted.

3 The uuid form expects 16-byte UUIDs as defined in RFC 4122 (https://tools.ietf.org/html/
rfc4122). This is the form of UUID used by the ext2 family of file systems and others, but it is different
from “UUIDs” found in FAT file systems, for instance.

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122

Chapter 11: System Configuration 247

(mount-point "/home")

(type "ext4")

(device (uuid "4dab5feb-d176-45de-b287-9b0a6e4c01cb")))

When the source of a file system is a mapped device (see Section 11.5
[Mapped Devices], page 251), its device field must refer to the mapped
device name—e.g., "/dev/mapper/root-partition". This is required so
that the system knows that mounting the file system depends on having
the corresponding device mapping established.

flags (default: '())
This is a list of symbols denoting mount flags. Recognized flags include
read-only, bind-mount, no-dev (disallow access to special files), no-
suid (ignore setuid and setgid bits), no-atime (do not update file access
times), no-diratime (likewise for directories only), strict-atime (up-
date file access time), lazy-time (only update time on the in-memory ver-
sion of the file inode), no-exec (disallow program execution), and shared

(make the mount shared). See Section “Mount-Unmount-Remount” in
The GNU C Library Reference Manual, for more information on these
flags.

options (default: #f)
This is either #f, or a string denoting mount options passed to the file
system driver. See Section “Mount-Unmount-Remount” in The GNU C
Library Reference Manual, for details.

Run man 8 mount for options for various file systems, but beware that
what it lists as file-system-independent “mount options” are in fact flags,
and belong in the flags field described above.

The file-system-options->alist and alist->file-system-options

procedures from (gnu system file-systems) can be used to convert file
system options given as an association list to the string representation,
and vice-versa.

mount? (default: #t)
This value indicates whether to automatically mount the file system when
the system is brought up. When set to #f, the file system gets an entry
in /etc/fstab (read by the mount command) but is not automatically
mounted.

needed-for-boot? (default: #f)
This Boolean value indicates whether the file system is needed when boot-
ing. If that is true, then the file system is mounted when the initial RAM
disk (initrd) is loaded. This is always the case, for instance, for the root
file system.

check? (default: #t)
This Boolean indicates whether the file system should be checked for
errors before being mounted. How and when this happens can be further
adjusted with the following options.

Chapter 11: System Configuration 248

skip-check-if-clean? (default: #t)
When true, this Boolean indicates that a file system check triggered by
check? may exit early if the file system is marked as “clean”, meaning
that it was previously correctly unmounted and should not contain errors.

Setting this to false will always force a full consistency check when check?

is true. This may take a very long time and is not recommended on
healthy systems—in fact, it may reduce reliability!

Conversely, some primitive file systems like fat do not keep track of
clean shutdowns and will perform a full scan regardless of the value of
this option.

repair (default: 'preen)
When check? finds errors, it can (try to) repair them and continue boot-
ing. This option controls when and how to do so.

If false, try not to modify the file system at all. Checking certain file
systems like jfs may still write to the device to replay the journal. No
repairs will be attempted.

If #t, try to repair any errors found and assume “yes” to all questions.
This will fix the most errors, but may be risky.

If 'preen, repair only errors that are safe to fix without human interac-
tion. What that means is left up to the developers of each file system
and may be equivalent to “none” or “all”.

create-mount-point? (default: #f)
When true, the mount point is created if it does not exist yet.

mount-may-fail? (default: #f)
When true, this indicates that mounting this file system can fail but that
should not be considered an error. This is useful in unusual cases; an
example of this is efivarfs, a file system that can only be mounted on
EFI/UEFI systems.

dependencies (default: '())
This is a list of <file-system> or <mapped-device> objects representing
file systems that must be mounted or mapped devices that must be opened
before (and unmounted or closed after) this one.

As an example, consider a hierarchy of mounts: /sys/fs/cgroup is a
dependency of /sys/fs/cgroup/cpu and /sys/fs/cgroup/memory.

Another example is a file system that depends on a mapped device, for
example for an encrypted partition (see Section 11.5 [Mapped Devices],
page 251).

[Procedure]file-system-label str
This procedure returns an opaque file system label from str, a string:

(file-system-label "home")

⇒ #<file-system-label "home">

File system labels are used to refer to file systems by label rather than by device
name. See above for examples.

Chapter 11: System Configuration 249

The (gnu system file-systems) exports the following useful variables.

[Variable]%base-file-systems
These are essential file systems that are required on normal systems, such as %pseudo-
terminal-file-system and %immutable-store (see below). Operating system dec-
larations should always contain at least these.

[Variable]%pseudo-terminal-file-system
This is the file system to be mounted as /dev/pts. It supports pseudo-terminals
created via openpty and similar functions (see Section “Pseudo-Terminals” in The
GNU C Library Reference Manual). Pseudo-terminals are used by terminal emulators
such as xterm.

[Variable]%shared-memory-file-system
This file system is mounted as /dev/shm and is used to support memory sharing
across processes (see Section “Memory-mapped I/O” in The GNU C Library Refer-
ence Manual).

[Variable]%immutable-store
This file system performs a read-only “bind mount” of /gnu/store, making it read-
only for all the users including root. This prevents against accidental modification
by software running as root or by system administrators.

The daemon itself is still able to write to the store: it remounts it read-write in its
own “name space.”

[Variable]%binary-format-file-system
The binfmt_misc file system, which allows handling of arbitrary executable file types
to be delegated to user space. This requires the binfmt.ko kernel module to be
loaded.

[Variable]%fuse-control-file-system
The fusectl file system, which allows unprivileged users to mount and unmount
user-space FUSE file systems. This requires the fuse.ko kernel module to be loaded.

The (gnu system uuid) module provides tools to deal with file system “unique identi-
fiers” (UUIDs).

[Procedure]uuid str [type]
Return an opaque UUID (unique identifier) object of the given type (a symbol) by
parsing str (a string):

(uuid "4dab5feb-d176-45de-b287-9b0a6e4c01cb")

⇒ #<<uuid> type: dce bv: ...>

(uuid "1234-ABCD" 'fat)

⇒ #<<uuid> type: fat bv: ...>

type may be one of dce, iso9660, fat, ntfs, or one of the commonly found synonyms
for these.

UUIDs are another way to unambiguously refer to file systems in operating system
configuration. See the examples above.

Chapter 11: System Configuration 250

11.4.1 Btrfs file system

The Btrfs has special features, such as subvolumes, that merit being explained in more
details. The following section attempts to cover basic as well as complex uses of a Btrfs file
system with the Guix System.

In its simplest usage, a Btrfs file system can be described, for example, by:

(file-system

(mount-point "/home")

(type "btrfs")

(device (file-system-label "my-home")))

The example below is more complex, as it makes use of a Btrfs subvolume, named
rootfs. The parent Btrfs file system is labeled my-btrfs-pool, and is located on an
encrypted device (hence the dependency on mapped-devices):

(file-system

(device (file-system-label "my-btrfs-pool"))

(mount-point "/")

(type "btrfs")

(options "subvol=rootfs")

(dependencies mapped-devices))

Some bootloaders, for example GRUB, only mount a Btrfs partition at its top level
during the early boot, and rely on their configuration to refer to the correct subvolume
path within that top level. The bootloaders operating in this way typically produce their
configuration on a running system where the Btrfs partitions are already mounted and
where the subvolume information is readily available. As an example, grub-mkconfig, the
configuration generator command shipped with GRUB, reads /proc/self/mountinfo to
determine the top-level path of a subvolume.

The Guix System produces a bootloader configuration using the operating system con-
figuration as its sole input; it is therefore necessary to extract the subvolume name on which
/gnu/store lives (if any) from that operating system configuration. To better illustrate,
consider a subvolume named ’rootfs’ which contains the root file system data. In such
situation, the GRUB bootloader would only see the top level of the root Btrfs partition,
e.g.:

/ (top level)

rootfs (subvolume directory)

gnu (normal directory)

store (normal directory)

[...]

Thus, the subvolume name must be prepended to the /gnu/store path of the kernel,
initrd binaries and any other files referred to in the GRUB configuration that must be found
during the early boot.

The next example shows a nested hierarchy of subvolumes and directories:

/ (top level)

rootfs (subvolume)

gnu (normal directory)

store (subvolume)

Chapter 11: System Configuration 251

[...]

This scenario would work without mounting the ’store’ subvolume. Mounting ’rootfs’ is
sufficient, since the subvolume name matches its intended mount point in the file system
hierarchy. Alternatively, the ’store’ subvolume could be referred to by setting the subvol

option to either /rootfs/gnu/store or rootfs/gnu/store.

Finally, a more contrived example of nested subvolumes:

/ (top level)

root-snapshots (subvolume)

root-current (subvolume)

guix-store (subvolume)

[...]

Here, the ’guix-store’ subvolume doesn’t match its intended mount point, so it is nec-
essary to mount it. The subvolume must be fully specified, by passing its file name to the
subvol option. To illustrate, the ’guix-store’ subvolume could be mounted on /gnu/store

by using a file system declaration such as:

(file-system

(device (file-system-label "btrfs-pool-1"))

(mount-point "/gnu/store")

(type "btrfs")

(options "subvol=root-snapshots/root-current/guix-store,\

compress-force=zstd,space_cache=v2"))

11.5 Mapped Devices

The Linux kernel has a notion of device mapping : a block device, such as a hard disk
partition, can be mapped into another device, usually in /dev/mapper/, with additional
processing over the data that flows through it4. A typical example is encryption device
mapping: all writes to the mapped device are encrypted, and all reads are deciphered,
transparently. Guix extends this notion by considering any device or set of devices that are
transformed in some way to create a new device; for instance, RAID devices are obtained
by assembling several other devices, such as hard disks or partitions, into a new one that
behaves as one partition.

Mapped devices are declared using the mapped-device form, defined as follows; for
examples, see below.

[Data Type]mapped-device
Objects of this type represent device mappings that will be made when the system
boots up.

source This is either a string specifying the name of the block device to be
mapped, such as "/dev/sda3", or a list of such strings when several
devices need to be assembled for creating a new one. In case of LVM this
is a string specifying name of the volume group to be mapped.

4 Note that the GNU Hurd makes no difference between the concept of a “mapped device” and that of a
file system: both boil down to translating input/output operations made on a file to operations on its
backing store. Thus, the Hurd implements mapped devices, like file systems, using the generic translator
mechanism (see Section “Translators” in The GNU Hurd Reference Manual).

Chapter 11: System Configuration 252

target This string specifies the name of the resulting mapped device. For kernel
mappers such as encrypted devices of type luks-device-mapping, spec-
ifying "my-partition" leads to the creation of the "/dev/mapper/my-

partition" device. For RAID devices of type raid-device-mapping,
the full device name such as "/dev/md0" needs to be given. LVM logical
volumes of type lvm-device-mapping need to be specified as "VGNAME-
LVNAME".

targets This list of strings specifies names of the resulting mapped devices in case
there are several. The format is identical to target.

type This must be a mapped-device-kind object, which specifies how source
is mapped to target.

[Variable]luks-device-mapping
This defines LUKS block device encryption using the cryptsetup command from the
package with the same name. It relies on the dm-crypt Linux kernel module.

[Procedure]luks-device-mapping-with-options [#:key-file]
Return a luks-device-mapping object, which defines LUKS block device encryption
using the cryptsetup command from the package with the same name. It relies on
the dm-crypt Linux kernel module.

If key-file is provided, unlocking is first attempted using that key file. This has
an advantage of not requiring a password entry, so it can be used (for example) to
unlock RAID arrays automatically on boot. If key file unlock fails, password unlock
is attempted as well. Key file is not stored in the store and needs to be available at
the given location at the time of the unlock attempt.

;; Following definition would be equivalent to running:

;; cryptsetup open --key-file /crypto.key /dev/sdb1 data

(mapped-device

(source "/dev/sdb1)

(target "data)

(type (luks-device-mapping-with-options

#:key-file "/crypto.key")))

[Variable]raid-device-mapping
This defines a RAID device, which is assembled using the mdadm command from the
package with the same name. It requires a Linux kernel module for the appropriate
RAID level to be loaded, such as raid456 for RAID-4, RAID-5 or RAID-6, or raid10
for RAID-10.

[Variable]lvm-device-mapping
This defines one or more logical volumes for the Linux Logical Volume Manager
(LVM) (https://www.sourceware.org/lvm2/). The volume group is activated by
the vgchange command from the lvm2 package.

The following example specifies a mapping from /dev/sda3 to /dev/mapper/home using
LUKS—the Linux Unified Key Setup (https://gitlab.com/cryptsetup/cryptsetup), a

https://www.sourceware.org/lvm2/
https://www.sourceware.org/lvm2/
https://gitlab.com/cryptsetup/cryptsetup

Chapter 11: System Configuration 253

standard mechanism for disk encryption. The /dev/mapper/home device can then be used
as the device of a file-system declaration (see Section 11.4 [File Systems], page 246).

(mapped-device

(source "/dev/sda3")

(target "home")

(type luks-device-mapping))

Alternatively, to become independent of device numbering, one may obtain the LUKS
UUID (unique identifier) of the source device by a command like:

cryptsetup luksUUID /dev/sda3

and use it as follows:

(mapped-device

(source (uuid "cb67fc72-0d54-4c88-9d4b-b225f30b0f44"))

(target "home")

(type luks-device-mapping))

It is also desirable to encrypt swap space, since swap space may contain sensitive data.
One way to accomplish that is to use a swap file in a file system on a device mapped
via LUKS encryption. In this way, the swap file is encrypted because the entire device is
encrypted. See Section 11.6 [Swap Space], page 253, or See Section 3.4 [Disk Partitioning],
page 22, for an example.

A RAID device formed of the partitions /dev/sda1 and /dev/sdb1 may be declared as
follows:

(mapped-device

(source (list "/dev/sda1" "/dev/sdb1"))

(target "/dev/md0")

(type raid-device-mapping))

The /dev/md0 device can then be used as the device of a file-system declaration (see
Section 11.4 [File Systems], page 246). Note that the RAID level need not be given; it is
chosen during the initial creation and formatting of the RAID device and is determined
automatically later.

LVM logical volumes “alpha” and “beta” from volume group “vg0” can be declared as
follows:

(mapped-device

(source "vg0")

(targets (list "vg0-alpha" "vg0-beta"))

(type lvm-device-mapping))

Devices /dev/mapper/vg0-alpha and /dev/mapper/vg0-beta can then be used as the
device of a file-system declaration (see Section 11.4 [File Systems], page 246).

11.6 Swap Space

Swap space, as it is commonly called, is a disk area specifically designated for paging: the
process in charge of memory management (the Linux kernel or Hurd’s default pager) can
decide that some memory pages stored in RAM which belong to a running program but
are unused should be stored on disk instead. It unloads those from the RAM, freeing up

Chapter 11: System Configuration 254

precious fast memory, and writes them to the swap space. If the program tries to access
that very page, the memory management process loads it back into memory for the program
to use.

A common misconception about swap is that it is only useful when small amounts of
RAM are available to the system. However, it should be noted that kernels often use all
available RAM for disk access caching to make I/O faster, and thus paging out unused
portions of program memory will expand the RAM available for such caching.

For a more detailed description of how memory is managed from the viewpoint of a
monolithic kernel, see Section “Memory Concepts” in The GNU C Library Reference Man-
ual.

The Linux kernel has support for swap partitions and swap files: the former uses a
whole disk partition for paging, whereas the second uses a file on a file system for that
(the file system driver needs to support it). On a comparable setup, both have the same
performance, so one should consider ease of use when deciding between them. Partitions are
“simpler” and do not need file system support, but need to be allocated at disk formatting
time (logical volumes notwithstanding), whereas files can be allocated and deallocated at
any time.

Swap space is also required to put the system into hibernation (also called suspend to
disk), whereby memory is dumped to swap before shutdown so it can be restored when the
machine is eventually restarted. Hibernation uses at most half the size of the RAM in the
configured swap space. The Linux kernel needs to know about the swap space to be used
to resume from hibernation on boot (via a kernel argument). When using a swap file, its
offset in the device holding it also needs to be given to the kernel; that value has to be
updated if the file is initialized again as swap—e.g., because its size was changed.

Note that swap space is not zeroed on shutdown, so sensitive data (such as passwords)
may linger on it if it was paged out. As such, you should consider having your swap reside
on an encrypted device (see Section 11.5 [Mapped Devices], page 251).

[Data Type]swap-space
Objects of this type represent swap spaces. They contain the following members:

target The device or file to use, either a UUID, a file-system-label or a string,
as in the definition of a file-system (see Section 11.4 [File Systems],
page 246).

dependencies (default: '())
A list of file-system or mapped-device objects, upon which the avail-
ability of the space depends. Note that just like for file-system objects,
dependencies which are needed for boot and mounted in early userspace
are not managed by the Shepherd, and so automatically filtered out for
you.

priority (default: #f)
Only supported by the Linux kernel. Either #f to disable swap priority,
or an integer between 0 and 32767. The kernel will first use swap spaces
of higher priority when paging, and use same priority spaces on a round-
robin basis. The kernel will use swap spaces without a set priority after

Chapter 11: System Configuration 255

prioritized spaces, and in the order that they appeared in (not round-
robin).

discard? (default: #f)
Only supported by the Linux kernel. When true, the kernel will notify the
disk controller of discarded pages, for example with the TRIM operation
on Solid State Drives.

Here are some examples:

(swap-space (target (uuid "4dab5feb-d176-45de-b287-9b0a6e4c01cb")))

Use the swap partition with the given UUID. You can learn the UUID of a Linux
swap partition by running swaplabel device, where device is the /dev file name of that
partition.

(swap-space

(target (file-system-label "swap"))

(dependencies mapped-devices))

Use the partition with label swap, which can be found after all the mapped-devices
mapped devices have been opened. Again, the swaplabel command allows you to view and
change the label of a Linux swap partition.

Here’s a more involved example with the corresponding file-systems part of an
operating-system declaration.

(file-systems

(list (file-system

(device (file-system-label "root"))

(mount-point "/")

(type "ext4"))

(file-system

(device (file-system-label "btrfs"))

(mount-point "/btrfs")

(type "btrfs"))))

(swap-devices

(list

(swap-space

(target "/btrfs/swapfile")

(dependencies (filter (file-system-mount-point-predicate "/btrfs")

file-systems)))))

Use the file /btrfs/swapfile as swap space, which depends on the file system mounted
at /btrfs. Note how we use Guile’s filter to select the file system in an elegant fashion!

(swap-devices

(list

(swap-space

(target "/dev/mapper/my-swap")

(dependencies mapped-devices))))

(kernel-arguments

Chapter 11: System Configuration 256

(cons* "resume=/dev/mapper/my-swap"

%default-kernel-arguments))

The above snippet of an operating-system declaration enables the mapped device
/dev/mapper/my-swap (which may be part of an encrypted device) as swap space, and
tells the kernel to use it for hibernation via the resume kernel argument (see Section 11.3
[operating-system Reference], page 242, kernel-arguments).

(swap-devices

(list

(swap-space

(target "/swapfile")

(dependencies (filter (file-system-mount-point-predicate "/")

file-systems)))))

(kernel-arguments

(cons* "resume=/dev/sda3" ;device that holds /swapfile

"resume_offset=92514304" ;offset of /swapfile on device

%default-kernel-arguments))

This other snippet of operating-system enables the swap file /swapfile for hibernation
by telling the kernel about the partition containing it (resume argument) and its offset on
that partition (resume_offset argument). The latter value can be found in the output of
the command filefrag -e as the first number right under the physical_offset column
header (the second command extracts its value directly):

$ sudo filefrag -e /swapfile

Filesystem type is: ef53

File size of /swapfile is 2463842304 (601524 blocks of 4096 bytes)

ext: logical_offset: physical_offset: length: expected: flags:

0: 0.. 2047: 92514304.. 92516351: 2048:

...

$ sudo filefrag -e /swapfile | grep '^ *0:' | cut -d: -f3 | cut -d. -f1

92514304

11.7 User Accounts

User accounts and groups are entirely managed through the operating-system declaration.
They are specified with the user-account and user-group forms:

(user-account

(name "alice")

(group "users")

(supplementary-groups '("wheel" ;allow use of sudo, etc.

"audio" ;sound card

"video" ;video devices such as webcams

"cdrom")) ;the good ol' CD-ROM

(comment "Bob's sister"))

Here’s a user account that uses a different shell and a custom home directory (the default
would be "/home/bob"):

(user-account

(name "bob")

Chapter 11: System Configuration 257

(group "users")

(comment "Alice's bro")

(shell (file-append zsh "/bin/zsh"))

(home-directory "/home/robert"))

When booting or upon completion of guix system reconfigure, the system ensures that
only the user accounts and groups specified in the operating-system declaration exist, and
with the specified properties. Thus, account or group creations or modifications made by
directly invoking commands such as useradd are lost upon reconfiguration or reboot. This
ensures that the system remains exactly as declared.

[Data Type]user-account
Objects of this type represent user accounts. The following members may be specified:

name The name of the user account.

group This is the name (a string) or identifier (a number) of the user group this
account belongs to.

supplementary-groups (default: '())
Optionally, this can be defined as a list of group names that this account
belongs to.

uid (default: #f)
This is the user ID for this account (a number), or #f. In the latter
case, a number is automatically chosen by the system when the account
is created.

comment (default: "")
A comment about the account, such as the account owner’s full name.

Note that, for non-system accounts, users are free to change their real
name as it appears in /etc/passwd using the chfn command. When
they do, their choice prevails over the system administrator’s choice; re-
configuring does not change their name.

home-directory

This is the name of the home directory for the account.

create-home-directory? (default: #t)
Indicates whether the home directory of this account should be created
if it does not exist yet.

shell (default: Bash)
This is a G-expression denoting the file name of a program to be used as
the shell (see Section 8.12 [G-Expressions], page 159). For example, you
would refer to the Bash executable like this:

(file-append bash "/bin/bash")

... and to the Zsh executable like that:

(file-append zsh "/bin/zsh")

system? (default: #f)
This Boolean value indicates whether the account is a “system” account.
System accounts are sometimes treated specially; for instance, graphical
login managers do not list them.

Chapter 11: System Configuration 258

password (default: #f)
You would normally leave this field to #f, initialize user passwords as root
with the passwd command, and then let users change it with passwd.
Passwords set with passwd are of course preserved across reboot and
reconfiguration.

If you do want to set an initial password for an account, then this field
must contain the encrypted password, as a string. You can use the crypt
procedure for this purpose:

(user-account

(name "charlie")

(group "users")

;; Specify a SHA-512-hashed initial password.

(password (crypt "InitialPassword!" "6abc")))

Note: The hash of this initial password will be available in a
file in /gnu/store, readable by all the users, so this method
must be used with care.

See Section “Passphrase Storage” in The GNU C Library Reference Man-
ual, for more information on password encryption, and Section “Encryp-
tion” in GNU Guile Reference Manual, for information on Guile’s crypt
procedure.

User group declarations are even simpler:

(user-group (name "students"))

[Data Type]user-group
This type is for, well, user groups. There are just a few fields:

name The name of the group.

id (default: #f)
The group identifier (a number). If #f, a new number is automatically
allocated when the group is created.

system? (default: #f)
This Boolean value indicates whether the group is a “system” group.
System groups have low numerical IDs.

password (default: #f)
What, user groups can have a password? Well, apparently yes. Unless
#f, this field specifies the password of the group.

For convenience, a variable lists all the basic user groups one may expect:

[Variable]%base-groups
This is the list of basic user groups that users and/or packages expect to be present
on the system. This includes groups such as “root”, “wheel”, and “users”, as well as
groups used to control access to specific devices such as “audio”, “disk”, and “cdrom”.

Chapter 11: System Configuration 259

[Variable]%base-user-accounts
This is the list of basic system accounts that programs may expect to find on a
GNU/Linux system, such as the “nobody” account.

Note that the “root” account is not included here. It is a special-case and is auto-
matically added whether or not it is specified.

11.8 Keyboard Layout

To specify what each key of your keyboard does, you need to tell the operating system what
keyboard layout you want to use. The default, when nothing is specified, is the US English
QWERTY layout for 105-key PC keyboards. However, German speakers will usually prefer
the German QWERTZ layout, French speakers will want the AZERTY layout, and so on;
hackers might prefer Dvorak or bépo, and they might even want to further customize the
effect of some of the keys. This section explains how to get that done.

There are three components that will want to know about your keyboard layout:

• The bootloader may want to know what keyboard layout you want to use (see Sec-
tion 11.15 [Bootloader Configuration], page 594). This is useful if you want, for in-
stance, to make sure that you can type the passphrase of your encrypted root partition
using the right layout.

• The operating system kernel, Linux, will need that so that the console is properly
configured (see Section 11.3 [operating-system Reference], page 242).

• The graphical display server, usually Xorg, also has its own idea of the keyboard layout
(see Section 11.10.7 [X Window], page 325).

Guix allows you to configure all three separately but, fortunately, it allows you to share
the same keyboard layout for all three components.

Keyboard layouts are represented by records created by the keyboard-layout procedure
of (gnu system keyboard). Following the X Keyboard extension (XKB), each layout has
four attributes: a name (often a language code such as “fi” for Finnish or “jp” for Japanese),
an optional variant name, an optional keyboard model name, and a possibly empty list of
additional options. In most cases the layout name is all you care about.

[Procedure]keyboard-layout name [variant] [#:model] [#:options ’()]
Return a new keyboard layout with the given name and variant.

name must be a string such as "fr"; variant must be a string such as "bepo" or
"nodeadkeys". See the xkeyboard-config package for valid options.

Here are a few examples:

;; The German QWERTZ layout. Here we assume a standard

;; "pc105" keyboard model.

(keyboard-layout "de")

;; The bépo variant of the French layout.

(keyboard-layout "fr" "bepo")

;; The Catalan layout.

(keyboard-layout "es" "cat")

Chapter 11: System Configuration 260

;; Arabic layout with "Alt-Shift" to switch to US layout.

(keyboard-layout "ar,us" #:options '("grp:alt_shift_toggle"))

;; The Latin American Spanish layout. In addition, the

;; "Caps Lock" key is used as an additional "Ctrl" key,

;; and the "Menu" key is used as a "Compose" key to enter

;; accented letters.

(keyboard-layout "latam"

#:options '("ctrl:nocaps" "compose:menu"))

;; The Russian layout for a ThinkPad keyboard.

(keyboard-layout "ru" #:model "thinkpad")

;; The "US international" layout, which is the US layout plus

;; dead keys to enter accented characters. This is for an

;; Apple MacBook keyboard.

(keyboard-layout "us" "intl" #:model "macbook78")

See the share/X11/xkb directory of the xkeyboard-config package for a complete list
of supported layouts, variants, and models.

Let’s say you want your system to use the Turkish keyboard layout throughout your
system—bootloader, console, and Xorg. Here’s what your system configuration would look
like:

;; Using the Turkish layout for the bootloader, the console,

;; and for Xorg.

(operating-system

;; ...

(keyboard-layout (keyboard-layout "tr")) ;for the console

(bootloader (bootloader-configuration

(bootloader grub-efi-bootloader)

(targets '("/boot/efi"))

(keyboard-layout keyboard-layout))) ;for GRUB

(services (cons (set-xorg-configuration

(xorg-configuration ;for Xorg

(keyboard-layout keyboard-layout)))

%desktop-services)))

In the example above, for GRUB and for Xorg, we just refer to the keyboard-layout

field defined above, but we could just as well refer to a different layout. The set-xorg-

configuration procedure communicates the desired Xorg configuration to the graphical
log-in manager, by default GDM.

We’ve discussed how to specify the default keyboard layout of your system when it starts,
but you can also adjust it at run time:

• If you’re using GNOME, its settings panel has a “Region & Language” entry where
you can select one or more keyboard layouts.

Chapter 11: System Configuration 261

• Under Xorg, the setxkbmap command (from the same-named package) allows you to
change the current layout. For example, this is how you would change the layout to
US Dvorak:

setxkbmap us dvorak

• The loadkeys command changes the keyboard layout in effect in the Linux console.
However, note that loadkeys does not use the XKB keyboard layout categorization
described above. The command below loads the French bépo layout:

loadkeys fr-bepo

11.9 Locales

A locale defines cultural conventions for a particular language and region of the world (see
Section “Locales” in The GNU C Library Reference Manual). Each locale has a name
that typically has the form language_territory.codeset—e.g., fr_LU.utf8 designates
the locale for the French language, with cultural conventions from Luxembourg, and using
the UTF-8 encoding.

Usually, you will want to specify the default locale for the machine using the locale

field of the operating-system declaration (see Section 11.3 [operating-system Reference],
page 242).

The selected locale is automatically added to the locale definitions known to the system if
needed, with its codeset inferred from its name—e.g., bo_CN.utf8 will be assumed to use the
UTF-8 codeset. Additional locale definitions can be specified in the locale-definitions

slot of operating-system—this is useful, for instance, if the codeset could not be inferred
from the locale name. The default set of locale definitions includes some widely used locales,
but not all the available locales, in order to save space.

For instance, to add the North Frisian locale for Germany, the value of that field may
be:

(cons (locale-definition

(name "fy_DE.utf8") (source "fy_DE"))

%default-locale-definitions)

Likewise, to save space, one might want locale-definitions to list only the locales
that are actually used, as in:

(list (locale-definition

(name "ja_JP.eucjp") (source "ja_JP")

(charset "EUC-JP")))

The compiled locale definitions are available at /run/current-system/locale/X.Y,
where X.Y is the libc version, which is the default location where the GNU libc provided by
Guix looks for locale data. This can be overridden using the LOCPATH environment variable
(see [locales-and-locpath], page 16).

The locale-definition form is provided by the (gnu system locale) module. Details
are given below.

[Data Type]locale-definition
This is the data type of a locale definition.

name The name of the locale. See Section “Locale Names” in The GNU C
Library Reference Manual, for more information on locale names.

Chapter 11: System Configuration 262

source The name of the source for that locale. This is typically the language_

territory part of the locale name.

charset (default: "UTF-8")
The “character set” or “code set” for that locale, as defined by IANA
(https://www.iana.org/assignments/character-sets).

[Variable]%default-locale-definitions
A list of commonly used UTF-8 locales, used as the default value of the locale-

definitions field of operating-system declarations.

These locale definitions use the normalized codeset for the part that follows the dot in
the name (see Section “Using gettextized software” in The GNU C Library Reference
Manual). So for instance it has uk_UA.utf8 but not, say, uk_UA.UTF-8.

11.9.1 Locale Data Compatibility Considerations

operating-system declarations provide a locale-libcs field to specify the GNU libc
packages that are used to compile locale declarations (see Section 11.3 [operating-system
Reference], page 242). “Why would I care?”, you may ask. Well, it turns out that the
binary format of locale data is occasionally incompatible from one libc version to another.

For instance, a program linked against libc version 2.21 is unable to read locale data
produced with libc 2.22; worse, that program aborts instead of simply ignoring the incom-
patible locale data5. Similarly, a program linked against libc 2.22 can read most, but not
all, of the locale data from libc 2.21 (specifically, LC_COLLATE data is incompatible); thus
calls to setlocale may fail, but programs will not abort.

The “problem” with Guix is that users have a lot of freedom: They can choose whether
and when to upgrade software in their profiles, and might be using a libc version different
from the one the system administrator used to build the system-wide locale data.

Fortunately, unprivileged users can also install their own locale data and define GUIX_

LOCPATH accordingly (see [locales-and-locpath], page 16).

Still, it is best if the system-wide locale data at /run/current-system/locale is built
for all the libc versions actually in use on the system, so that all the programs can access
it—this is especially crucial on a multi-user system. To do that, the administrator can
specify several libc packages in the locale-libcs field of operating-system:

(use-package-modules base)

(operating-system

;; ...

(locale-libcs (list glibc-2.21 (canonical-package glibc))))

This example would lead to a system containing locale definitions for both libc 2.21 and
the current version of libc in /run/current-system/locale.

5 Versions 2.23 and later of GNU libc will simply skip the incompatible locale data, which is already an
improvement.

https://www.iana.org/assignments/character-sets
https://www.iana.org/assignments/character-sets

Chapter 11: System Configuration 263

11.10 Services

An important part of preparing an operating-system declaration is listing system ser-
vices and their configuration (see Section 11.2 [Using the Configuration System], page 233).
System services are typically daemons launched when the system boots, or other actions
needed at that time—e.g., configuring network access.

Guix has a broad definition of “service” (see Section 11.19.1 [Service Composition],
page 615), but many services are managed by the GNU Shepherd (see Section 11.19.4
[Shepherd Services], page 623). On a running system, the herd command allows you to list
the available services, show their status, start and stop them, or do other specific operations
(see Section “Jump Start” in The GNU Shepherd Manual). For example:

herd status

The above command, run as root, lists the currently defined services. The herd doc

command shows a synopsis of the given service and its associated actions:

herd doc nscd

Run libc's name service cache daemon (nscd).

herd doc nscd action invalidate

invalidate: Invalidate the given cache--e.g., 'hosts' for host name lookups.

The start, stop, and restart sub-commands have the effect you would expect. For
instance, the commands below stop the nscd service and restart the Xorg display server:

herd stop nscd

Service nscd has been stopped.

herd restart xorg-server

Service xorg-server has been stopped.

Service xorg-server has been started.

For some services, herd configuration returns the name of the service’s configuration
file, which can be handy to inspect its configuration:

herd configuration sshd

/gnu/store/...-sshd_config

The following sections document the available services, starting with the core services,
that may be used in an operating-system declaration.

11.10.1 Base Services

The (gnu services base) module provides definitions for the basic services that one ex-
pects from the system. The services exported by this module are listed below.

[Variable]%base-services
This variable contains a list of basic services (see Section 11.19.2 [Service Types and
Services], page 616, for more information on service objects) one would expect from
the system: a login service (mingetty) on each tty, syslogd, the libc name service
cache daemon (nscd), the udev device manager, and more.

This is the default value of the services field of operating-system declarations.
Usually, when customizing a system, you will want to append services to %base-

services, like this:

(append (list (service avahi-service-type)

Chapter 11: System Configuration 264

(service openssh-service-type))

%base-services)

[Variable]special-files-service-type
This is the service that sets up “special files” such as /bin/sh; an instance of it is
part of %base-services.

The value associated with special-files-service-type services must be a list of
two-element lists where the first element is the “special file” and the second element
is its target. By default it is:

`(("/bin/sh" ,(file-append bash "/bin/sh"))

("/usr/bin/env" ,(file-append coreutils "/bin/env")))

If you want to add, say, /bin/bash to your system, you can change it to:

`(("/bin/sh" ,(file-append bash "/bin/sh"))

("/usr/bin/env" ,(file-append coreutils "/bin/env"))

("/bin/bash" ,(file-append bash "/bin/bash")))

Since this is part of %base-services, you can use modify-services to customize the
set of special files (see Section 11.19.3 [Service Reference], page 618). But the simple
way to add a special file is via the extra-special-file procedure (see below).

[Procedure]extra-special-file file target
Use target as the “special file” file.

For example, adding the following lines to the services field of your operating system
declaration leads to a /usr/bin/env symlink:

(extra-special-file "/usr/bin/env"

(file-append coreutils "/bin/env"))

[Variable]host-name-service-type
Type of the service that sets the system host name, whose value is a string. This
service is included in operating-system by default (see [operating-system-essential-
services], page 245).

[Variable]console-font-service-type
Install the given fonts on the specified ttys (fonts are per virtual console on the kernel
Linux). The value of this service is a list of tty/font pairs. The font can be the name
of a font provided by the kbd package or any valid argument to setfont, as in this
example:

`(("tty1" . "LatGrkCyr-8x16")

("tty2" . ,(file-append

font-tamzen

"/share/kbd/consolefonts/TamzenForPowerline10x20.psf"))

("tty3" . ,(file-append

font-terminus

"/share/consolefonts/ter-132n"))) ; for HDPI

[Variable]hosts-service-type
Type of the service that populates the entries for (/etc/hosts). This service type
can be extended by passing it a list of host records.

Chapter 11: System Configuration 265

The example below shows how to add two entries to /etc/hosts:

(simple-service 'add-extra-hosts

hosts-service-type

(list (host "192.0.2.1" "example.com"

'("example.net" "example.org"))

(host "2001:db8::1" "example.com"

'("example.net" "example.org"))))

Note:

By default /etc/hosts comes with the following entries:

127.0.0.1 localhost host-name

::1 localhost host-name

For most setups this is what you want though if you find yourself in the
situation where you want to change the default entries, you can do so
in operating-system via modify-services (see Section 11.19.3 [Service
Reference], page 618).

The following example shows how to unset host-name from being an alias
of localhost.

(operating-system

;; ...

(essential-services

(modify-services

(operating-system-default-essential-services this-operating-system)

(hosts-service-type config => (list

(host "127.0.0.1" "localhost")

(host "::1" "localhost"))))))

[Procedure]host address canonical-name [aliases]
Return a new record for the host at address with the given canonical-name and
possibly aliases.

address must be a string denoting a valid IPv4 or IPv6 address, and canonical-name
and the strings listed in aliases must be valid host names.

[Variable]login-service-type
Type of the service that provides a console login service, whose value is a <login-

configuration> object.

[Data Type]login-configuration
Data type representing the configuration of login, which specifies the MOTD (message
of the day), among other things.

motd A file-like object containing the “message of the day”.

allow-empty-passwords? (default: #t)
Allow empty passwords by default so that first-time users can log in when
the ’root’ account has just been created.

Chapter 11: System Configuration 266

[Variable]mingetty-service-type
Type of the service that runs Mingetty, an implementation of the virtual console
log-in. The value for this service is a <mingetty-configuration> object.

[Data Type]mingetty-configuration
Data type representing the configuration of Mingetty, which specifies the tty to run,
among other things.

tty The name of the console this Mingetty runs on—e.g., "tty1".

auto-login (default: #f)
When true, this field must be a string denoting the user name under
which the system automatically logs in. When it is #f, a user name and
password must be entered to log in.

login-program (default: #f)
This must be either #f, in which case the default log-in program is used
(login from the Shadow tool suite), or a gexp denoting the name of the
log-in program.

login-pause? (default: #f)
When set to #t in conjunction with auto-login, the user will have to press
a key before the log-in shell is launched.

clear-on-logout? (default: #t)
When set to #t, the screen will be cleared after logout.

mingetty (default: mingetty)
The Mingetty package to use.

[Variable]agetty-service-type
Type of the service that runs agetty, which implements virtual and serial console
log-in. The value for this service is a <agetty-configuration> object.

[Data Type]agetty-configuration
Data type representing the configuration of agetty, which specifies the tty to run,
among other things6.

tty The name of the console this agetty runs on, as a string—e.g., "ttyS0".
This argument is optional, it will default to a reasonable default serial
port used by the kernel Linux.

For this, if there is a value for an option agetty.tty in the kernel com-
mand line, agetty will extract the device name of the serial port from it
and use that.

If not and if there is a value for an option console with a tty in the Linux
command line, agetty will extract the device name of the serial port from
it and use that.

In both cases, agetty will leave the other serial device settings (baud rate
etc.) alone—in the hope that Linux pinned them to the correct values.

6 See the agetty(8) man page for more information.

Chapter 11: System Configuration 267

baud-rate (default: #f)
A string containing a comma-separated list of one or more baud rates, in
descending order.

term (default: #f)
A string containing the value used for the TERM environment variable.

eight-bits? (default: #f)
When #t, the tty is assumed to be 8-bit clean, and parity detection is
disabled.

auto-login (default: #f)
When passed a login name, as a string, the specified user will be logged
in automatically without prompting for their login name or password.

no-reset? (default: #f)
When #t, don’t reset terminal cflags (control modes).

host (default: #f)
This accepts a string containing the “login host”, which will be written
into the /var/run/utmpx file.

remote? (default: #f)
When set to #t in conjunction with host, this will add an -r fakehost op-
tion to the command line of the login program specified in login-program.

flow-control? (default: #f)
When set to #t, enable hardware (RTS/CTS) flow control.

no-issue? (default: #f)
When set to #t, the contents of the /etc/issue file will not be displayed
before presenting the login prompt.

init-string (default: #f)
This accepts a string that will be sent to the tty or modem before sending
anything else. It can be used to initialize a modem.

no-clear? (default: #f)
When set to #t, agetty will not clear the screen before showing the login
prompt.

login-program (default: (file-append shadow "/bin/login"))
This must be either a gexp denoting the name of a log-in program, or
unset, in which case the default value is the login from the Shadow tool
suite.

local-line (default: #f)
Control the CLOCAL line flag. This accepts one of three symbols as
arguments, 'auto, 'always, or 'never. If #f, the default value chosen
by agetty is 'auto.

extract-baud? (default: #f)
When set to #t, instruct agetty to try to extract the baud rate from the
status messages produced by certain types of modems.

Chapter 11: System Configuration 268

skip-login? (default: #f)
When set to #t, do not prompt the user for a login name. This can be
used with login-program field to use non-standard login systems.

no-newline? (default: #f)
When set to #t, do not print a newline before printing the /etc/issue

file.

login-options (default: #f)
This option accepts a string containing options that are passed to the login
program. When used with the login-program, be aware that a malicious
user could try to enter a login name containing embedded options that
could be parsed by the login program.

login-pause (default: #f)
When set to #t, wait for any key before showing the login prompt. This
can be used in conjunction with auto-login to save memory by lazily
spawning shells.

chroot (default: #f)
Change root to the specified directory. This option accepts a directory
path as a string.

hangup? (default: #f)
Use the Linux system call vhangup to do a virtual hangup of the specified
terminal.

keep-baud? (default: #f)
When set to #t, try to keep the existing baud rate. The baud rates from
baud-rate are used when agetty receives a BREAK character.

timeout (default: #f)
When set to an integer value, terminate if no user name could be read
within timeout seconds.

detect-case? (default: #f)
When set to #t, turn on support for detecting an uppercase-only terminal.
This setting will detect a login name containing only uppercase letters as
indicating an uppercase-only terminal and turn on some upper-to-lower
case conversions. Note that this will not support Unicode characters.

wait-cr? (default: #f)
When set to #t, wait for the user or modem to send a carriage-return or
linefeed character before displaying /etc/issue or login prompt. This is
typically used with the init-string option.

no-hints? (default: #f)
When set to #t, do not print hints about Num, Caps, and Scroll locks.

no-hostname? (default: #f)
By default, the hostname is printed. When this option is set to #t, no
hostname will be shown at all.

Chapter 11: System Configuration 269

long-hostname? (default: #f)
By default, the hostname is only printed until the first dot. When
this option is set to #t, the fully qualified hostname by gethostname

or getaddrinfo is shown.

erase-characters (default: #f)
This option accepts a string of additional characters that should be in-
terpreted as backspace when the user types their login name.

kill-characters (default: #f)
This option accepts a string that should be interpreted to mean “ignore
all previous characters” (also called a “kill” character) when the user
types their login name.

chdir (default: #f)
This option accepts, as a string, a directory path that will be changed to
before login.

delay (default: #f)
This options accepts, as an integer, the number of seconds to sleep before
opening the tty and displaying the login prompt.

nice (default: #f)
This option accepts, as an integer, the nice value with which to run the
login program.

extra-options (default: '())
This option provides an “escape hatch” for the user to provide arbitrary
command-line arguments to agetty as a list of strings.

shepherd-requirement (default: '())
The option can be used to provides extra shepherd requirements (for
example 'syslogd) to the respective 'term-* shepherd service.

[Variable]kmscon-service-type
Type of the service that runs kmscon (https://www.freedesktop.org/wiki/
Software/kmscon), which implements virtual console log-in. The value for this ser-
vice is a <kmscon-configuration> object.

[Data Type]kmscon-configuration
Data type representing the configuration of Kmscon, which specifies the tty to run,
among other things.

virtual-terminal

The name of the console this Kmscon runs on—e.g., "tty1".

login-program (default: #~(string-append #$shadow "/bin/login"))
A gexp denoting the name of the log-in program. The default log-in
program is login from the Shadow tool suite.

login-arguments (default: '("-p"))
A list of arguments to pass to login.

https://www.freedesktop.org/wiki/Software/kmscon
https://www.freedesktop.org/wiki/Software/kmscon

Chapter 11: System Configuration 270

auto-login (default: #f)
When passed a login name, as a string, the specified user will be logged
in automatically without prompting for their login name or password.

hardware-acceleration? (default: #f)
Whether to use hardware acceleration.

font-engine (default: "pango")
Font engine used in Kmscon.

font-size (default: 12)
Font size used in Kmscon.

keyboard-layout (default: #f)
If this is #f, Kmscon uses the default keyboard layout—usually US En-
glish (“qwerty”) for a 105-key PC keyboard.

Otherwise this must be a keyboard-layout object specifying the key-
board layout. See Section 11.8 [Keyboard Layout], page 259, for more
information on how to specify the keyboard layout.

kmscon (default: kmscon)
The Kmscon package to use.

[Variable]nscd-service-type
Type of the service that runs the libc nscd (name service cache daemon), whose value
is an <nscd-configuration> object.

For convenience, the Shepherd service for nscd provides the following actions:

invalidate

This invalidate the given cache. For instance, running:

herd invalidate nscd hosts

invalidates the host name lookup cache of nscd.

statistics

Running herd statistics nscd displays information about nscd usage
and caches.

[Data Type]nscd-configuration
Data type representing the nscd (name service cache daemon) configuration.

name-services (default: '())
List of packages denoting name services that must be visible to the nscd—
e.g., (list nss-mdns).

glibc (default: glibc)
Package object denoting the GNU C Library providing the nscd com-
mand.

log-file (default: "/var/log/nscd.log")
Name of the nscd log file. This is where debugging output goes when
debug-level is strictly positive.

Chapter 11: System Configuration 271

debug-level (default: 0)
Integer denoting the debugging levels. Higher numbers mean that more
debugging output is logged.

caches (default: %nscd-default-caches)
List of <nscd-cache> objects denoting things to be cached; see below.

[Data Type]nscd-cache
Data type representing a cache database of nscd and its parameters.

database This is a symbol representing the name of the database to be cached.
Valid values are passwd, group, hosts, and services, which designate
the corresponding NSS database (see Section “NSS Basics” in The GNU
C Library Reference Manual).

positive-time-to-live

negative-time-to-live (default: 20)
A number representing the number of seconds during which a positive or
negative lookup result remains in cache.

check-files? (default: #t)
Whether to check for updates of the files corresponding to database.

For instance, when database is hosts, setting this flag instructs nscd to
check for updates in /etc/hosts and to take them into account.

persistent? (default: #t)
Whether the cache should be stored persistently on disk.

shared? (default: #t)
Whether the cache should be shared among users.

max-database-size (default: 32 MiB)
Maximum size in bytes of the database cache.

[Variable]%nscd-default-caches
List of <nscd-cache> objects used by default by nscd-configuration (see above).

It enables persistent and aggressive caching of service and host name lookups. The
latter provides better host name lookup performance, resilience in the face of unreli-
able name servers, and also better privacy—often the result of host name lookups is
in local cache, so external name servers do not even need to be queried.

[Variable]syslog-service-type
Type of the service that runs the syslog daemon, whose value is a <syslog-

configuration> object.

To have a modified syslog-configuration come into effect after reconfiguring your
system, the ‘reload’ action should be preferred to restarting the service, as many services
such as the login manager depend on it and would be restarted as well:

herd reload syslog

which will cause the running syslogd process to reload its configuration.

Chapter 11: System Configuration 272

[Data Type]syslog-configuration
Data type representing the configuration of the syslog daemon.

syslogd (default: #~(string-append #$inetutils "/libexec/syslogd"))
The syslog daemon to use.

config-file (default: %default-syslog.conf)
The syslog configuration file to use. See Section “syslogd invocation” in
GNU Inetutils, for more information on the configuration file syntax.

[Variable]guix-service-type
This is the type of the service that runs the build daemon, guix-daemon (see Sec-
tion 2.3 [Invoking guix-daemon], page 11). Its value must be a guix-configuration

record as described below.

[Data Type]guix-configuration
This data type represents the configuration of the Guix build daemon. See Section 2.3
[Invoking guix-daemon], page 11, for more information.

guix (default: guix)
The Guix package to use. See Section 6.4 [Customizing the System-Wide
Guix], page 68, to learn how to provide a package with a pre-configured
set of channels.

build-group (default: "guixbuild")
Name of the group for build user accounts.

build-accounts (default: 10)
Number of build user accounts to create.

authorize-key? (default: #t)
Whether to authorize the substitute keys listed in authorized-keys—
by default that of bordeaux.guix.gnu.org and ci.guix.gnu.org (see
Section 5.3 [Substitutes], page 44).

When authorize-key? is true, /etc/guix/acl cannot be changed by
invoking guix archive --authorize. You must instead adjust guix-

configuration as you wish and reconfigure the system. This ensures
that your operating system configuration file is self-contained.

Note: When booting or reconfiguring to a system where
authorize-key? is true, the existing /etc/guix/acl file is
backed up as /etc/guix/acl.bak if it was determined to be
a manually modified file. This is to facilitate migration from
earlier versions, which allowed for in-place modifications to
/etc/guix/acl.

authorized-keys (default: %default-authorized-guix-keys)
The list of authorized key files for archive imports, as a list of string-valued
gexps (see Section 5.11 [Invoking guix archive], page 63). By default,
it contains that of bordeaux.guix.gnu.org and ci.guix.gnu.org (see
Section 5.3 [Substitutes], page 44). See substitute-urls below for an
example on how to change it.

Chapter 11: System Configuration 273

use-substitutes? (default: #t)
Whether to use substitutes.

substitute-urls (default: %default-substitute-urls)
The list of URLs where to look for substitutes by default.

Suppose you would like to fetch substitutes from guix.example.org in
addition to bordeaux.guix.gnu.org. You will need to do two things:
(1) add guix.example.org to substitute-urls, and (2) authorize its
signing key, having done appropriate checks (see Section 5.3.2 [Substitute
Server Authorization], page 45). The configuration below does exactly
that:

(guix-configuration

(substitute-urls

(append (list "https://guix.example.org")

%default-substitute-urls))

(authorized-keys

(append (list (local-file "./guix.example.org-key.pub"))

%default-authorized-guix-keys)))

This example assumes that the file ./guix.example.org-key.pub con-
tains the public key that guix.example.org uses to sign substitutes.

generate-substitute-key? (default: #t)
Whether to generate a substitute key pair under /etc/guix/signing-

key.pub and /etc/guix/signing-key.sec if there is not already one.

This key pair is used when exporting store items, for instance with guix

publish (see Section 9.11 [Invoking guix publish], page 216) or guix

archive (see Section 5.11 [Invoking guix archive], page 63). Generating
a key pair takes a few seconds when enough entropy is available and is
only done once; you might want to turn it off for instance in a virtual
machine that does not need it and where the extra boot time is a problem.

channels (default: %default-channels)
List of channels to be specified in /etc/guix/channels.scm, which is
what guix pull uses by default (see Section 5.7 [Invoking guix pull],
page 54).

Note: When reconfiguring a system, the exist-
ing /etc/guix/channels.scm file is backed up as
/etc/guix/channels.scm.bak if it was determined to be a
manually modified file. This is to facilitate migration from
earlier versions, which allowed for in-place modifications to
/etc/guix/channels.scm.

max-silent-time (default: 3600)
timeout (default: (* 3600 24))

The number of seconds of silence and the number of seconds of activity,
respectively, after which a build process times out. A value of zero disables
the timeout.

Chapter 11: System Configuration 274

log-compression (default: 'gzip)
The type of compression used for build logs—one of gzip, bzip2, or none.

discover? (default: #f)
Whether to discover substitute servers on the local network using mDNS
and DNS-SD.

build-machines (default: #f)
This field must be either #f or a list of gexps evaluating to a build-

machine record or to a list of build-machine records (see Section 2.2.2
[Daemon Offload Setup], page 7).

When it is #f, the /etc/guix/machines.scm file is left un-
touched. Otherwise, the list of of gexps is written to
/etc/guix/machines.scm; if a previously-existing file is found,
it is backed up as /etc/guix/machines.scm.bak. This allows you to
declare build machines for offloading directly in the operating system
declaration, like so:

(guix-configuration

(build-machines

(list #~(build-machine (name "foo.example.org") ...)

#~(build-machine (name "bar.example.org") ...))))

Additional build machines may be added via the guix-extension mech-
anism (see below).

extra-options (default: '())
List of extra command-line options for guix-daemon.

log-file (default: "/var/log/guix-daemon.log")
File where guix-daemon’s standard output and standard error are writ-
ten.

http-proxy (default: #f)
The URL of the HTTP and HTTPS proxy used for downloading fixed-
output derivations and substitutes.

It is also possible to change the daemon’s proxy at run time through the
set-http-proxy action, which restarts it:

herd set-http-proxy guix-daemon http://localhost:8118

To clear the proxy settings, run:

herd set-http-proxy guix-daemon

tmpdir (default: #f)
A directory path where the guix-daemon will perform builds.

environment (default: '())
Environment variables to be set before starting the daemon, as a list of
key=value strings.

[Data Type]guix-extension
This data type represents the parameters of the Guix build daemon that are extend-
able. This is the type of the object that must be used within a guix service extension.
See Section 11.19.1 [Service Composition], page 615, for more information.

Chapter 11: System Configuration 275

authorized-keys (default: '())
A list of file-like objects where each element contains a public key.

substitute-urls (default: '())
A list of strings where each element is a substitute URL.

build-machines (default: '())
A list of gexps that evaluate to build-machine records or to a list
of build-machine records. (see Section 2.2.2 [Daemon Offload Setup],
page 7).

Using this field, a service may add new build machines to receive builds
offloaded by the daemon. This is useful for a service such as hurd-vm-

service-type, which can make a GNU/Hurd virtual machine directly
usable for offloading (see [hurd-vm], page 524).

chroot-directories (default: '())
A list of file-like objects or strings pointing to additional directories the
build daemon can use.

[Variable]udev-service-type
Type of the service that runs udev, a service which populates the /dev directory
dynamically, whose value is a <udev-configuration> object.

Since the file names for udev rules and hardware description files matter, the config-
uration items for rules and hardware cannot simply be plain file-like objects with the
rules content, because the name would be ignored. Instead, they are directory file-like
objects that contain optional rules in lib/udev/rules.d and optional hardware files
in lib/udev/hwdb.d. This way, the service can be configured with whole packages
from which to take rules and hwdb files.

The udev-service-type can be extended with file-like directories that respect this
hierarchy. For convenience, the udev-rule and file->udev-rule can be used to
construct udev rules, while udev-hardware and file->udev-hardware can be used
to construct hardware description files.

In an operating-system declaration, this service type can be extended using proce-
dures udev-rules-service and udev-hardware-service.

[Data Type]udev-configuration
Data type representing the configuration of udev.

udev (default: eudev) (type: file-like)
Package object of the udev service. This package is used at run-time,
when compiled for the target system. In order to generate the hwdb.bin
hardware index, it is also used when generating the system definition,
compiled for the current system.

rules (default: ’()) (type: list-of-file-like)
List of file-like objects denoting udev rule files under a sub-directory.

hardware (default: ’()) (type: list-of-file-like)
List of file-like objects denoting udev hardware description files under a
sub-directory.

Chapter 11: System Configuration 276

[Procedure]udev-rule file-name contents
Return a udev-rule file named file-name containing the rules defined by the contents
literal.

In the following example, a rule for a USB device is defined to be stored in the file
90-usb-thing.rules. The rule runs a script upon detecting a USB device with a
given product identifier.

(define %example-udev-rule

(udev-rule

"90-usb-thing.rules"

(string-append "ACTION==\"add\", SUBSYSTEM==\"usb\", "

"ATTR{product}==\"Example\", "

"RUN+=\"/path/to/script\"")))

[Procedure]udev-hardware file-name contents
Return a udev hardware description file named file-name containing the hardware
information contents.

[Procedure]udev-rules-service name rules [#:groups ’()]
Return a service that extends udev-service-type with rules and account-service-

type with groups as system groups. This works by creating a singleton service type
name-udev-rules, of which the returned service is an instance.

Here we show how it can be used to extend udev-service-type with the previously
defined rule %example-udev-rule.

(operating-system

;; ...

(services

(cons (udev-rules-service 'usb-thing %example-udev-rule)

%desktop-services)))

[Procedure]udev-hardware-service name hardware
Return a service that extends udev-service-type with hardware. The service name
is name-udev-hardware.

[Procedure]file->udev-rule file-name file
Return a udev-rule file named file-name containing the rules defined within file, a
file-like object.

The following example showcases how we can use an existing rule file.

(use-modules (guix download) ;for url-fetch

(guix packages) ;for origin

...)

(define %android-udev-rules

(file->udev-rule

"51-android-udev.rules"

(let ((version "20170910"))

(origin

(method url-fetch)

Chapter 11: System Configuration 277

(uri (string-append "https://raw.githubusercontent.com/M0Rf30/"

"android-udev-rules/" version "/51-android.rules"))

(sha256

(base32 "0lmmagpyb6xsq6zcr2w1cyx9qmjqmajkvrdbhjx32gqf1d9is003"))))))

Since guix package definitions can be included in rules in order to use all their rules
under the lib/udev/rules.d sub-directory, then in lieu of the previous file->udev-rule
example, we could have used the android-udev-rules package which exists in Guix in the
(gnu packages android) module.

[Procedure]file->udev-hardware file-name file
Return a udev hardware description file named file-name containing the rules defined
within file, a file-like object.

The following example shows how to use the android-udev-rules package so that the
Android tool adb can detect devices without root privileges. It also details how to create
the adbusers group, which is required for the proper functioning of the rules defined within
the android-udev-rules package. To create such a group, we must define it both as part
of the supplementary-groups of our user-account declaration, as well as in the groups
of the udev-rules-service procedure.

(use-modules (gnu packages android) ;for android-udev-rules

(gnu system shadow) ;for user-group

...)

(operating-system

;; ...

(users (cons (user-account

;; ...

(supplementary-groups

'("adbusers" ;for adb

"wheel" "netdev" "audio" "video")))))

;; ...

(services

(cons (udev-rules-service 'android android-udev-rules

#:groups '("adbusers"))

%desktop-services)))

[Variable]urandom-seed-service-type
Save some entropy in %random-seed-file to seed /dev/urandom when rebooting. It
also tries to seed /dev/urandom from /dev/hwrng while booting, if /dev/hwrng exists
and is readable.

[Variable]%random-seed-file
This is the name of the file where some random bytes are saved by urandom-seed-
service to seed /dev/urandom when rebooting. It defaults to /var/lib/random-seed.

[Variable]gpm-service-type
This is the type of the service that runs GPM, the general-purpose mouse daemon,
which provides mouse support to the Linux console. GPM allows users to use the
mouse in the console, notably to select, copy, and paste text.

Chapter 11: System Configuration 278

The value for services of this type must be a gpm-configuration (see below). This
service is not part of %base-services.

[Data Type]gpm-configuration
Data type representing the configuration of GPM.

options (default: %default-gpm-options)
Command-line options passed to gpm. The default set of options instruct
gpm to listen to mouse events on /dev/input/mice. See Section “Com-
mand Line” in gpm manual, for more information.

gpm (default: gpm)
The GPM package to use.

[Variable]guix-publish-service-type
This is the service type for guix publish (see Section 9.11 [Invoking guix publish],
page 216). Its value must be a guix-publish-configuration object, as described
below.

This assumes that /etc/guix already contains a signing key pair as created by guix

archive --generate-key (see Section 5.11 [Invoking guix archive], page 63). If that
is not the case, the service will fail to start.

[Data Type]guix-publish-configuration
Data type representing the configuration of the guix publish service.

guix (default: guix)
The Guix package to use.

port (default: 80)
The TCP port to listen for connections.

host (default: "localhost")
The host (and thus, network interface) to listen to. Use "0.0.0.0" to
listen on all the network interfaces.

advertise? (default: #f)
When true, advertise the service on the local network via the DNS-SD
protocol, using Avahi.

This allows neighboring Guix devices with discovery on (see
guix-configuration above) to discover this guix publish instance
and to automatically download substitutes from it.

compression (default: '(("gzip" 3) ("zstd" 3)))
This is a list of compression method/level tuple used when compressing
substitutes. For example, to compress all substitutes with both lzip at
level 7 and gzip at level 9, write:

'(("lzip" 7) ("gzip" 9))

Level 9 achieves the best compression ratio at the expense of increased
CPU usage, whereas level 1 achieves fast compression. See Section 9.11
[Invoking guix publish], page 216, for more information on the available
compression methods and the tradeoffs involved.

An empty list disables compression altogether.

Chapter 11: System Configuration 279

nar-path (default: "nar")
The URL path at which “nars” can be fetched. See Section 9.11 [Invoking
guix publish], page 216, for details.

cache (default: #f)
When it is #f, disable caching and instead generate archives on
demand. Otherwise, this should be the name of a directory—e.g.,
"/var/cache/guix/publish"—where guix publish caches archives
and meta-data ready to be sent. See Section 9.11 [Invoking guix
publish], page 216, for more information on the tradeoffs involved.

workers (default: #f)
When it is an integer, this is the number of worker threads used for
caching; when #f, the number of processors is used. See Section 9.11
[Invoking guix publish], page 216, for more information.

cache-bypass-threshold (default: 10 MiB)
When cache is true, this is the maximum size in bytes of a store item for
which guix publish may bypass its cache in case of a cache miss. See
Section 9.11 [Invoking guix publish], page 216, for more information.

ttl (default: #f)
When it is an integer, this denotes the time-to-live in seconds of the
published archives. See Section 9.11 [Invoking guix publish], page 216,
for more information.

negative-ttl (default: #f)
When it is an integer, this denotes the time-to-live in seconds for the
negative lookups. See Section 9.11 [Invoking guix publish], page 216, for
more information.

[Variable]rngd-service-type
Type of the service that runs rng-tools rngd, whose value is an <rngd-

configuration> object.

[Data Type]rngd-configuration
Data type representing the configuration of rngd.

rng-tools (default: rng-tools) (type: file-like)
Package object of the rng-tools rngd.

device (default: "/dev/hwrng") (type: string)
Path of the device to add to the kernel’s entropy pool. The service will
fail if device does not exist.

[Variable]pam-limits-service-type
Type of the service that installs a configuration file for the pam_limits module
(http://linux-pam.org/Linux-PAM-html/sag-pam_limits.html). The value for
this service type is a list of pam-limits-entry values, which can be used to specify
ulimit limits and nice priority limits to user sessions. By default, the value is the
empty list.

http://linux-pam.org/Linux-PAM-html/sag-pam_limits.html
http://linux-pam.org/Linux-PAM-html/sag-pam_limits.html

Chapter 11: System Configuration 280

The following limits definition sets two hard and soft limits for all login sessions of
users in the realtime group:

(service pam-limits-service-type

(list

(pam-limits-entry "@realtime" 'both 'rtprio 99)

(pam-limits-entry "@realtime" 'both 'memlock 'unlimited)))

The first entry increases the maximum realtime priority for non-privileged processes;
the second entry lifts any restriction of the maximum address space that can be locked
in memory. These settings are commonly used for real-time audio systems.

Another useful example is raising the maximum number of open file descriptors that
can be used:

(service pam-limits-service-type

(list

(pam-limits-entry "*" 'both 'nofile 100000)))

In the above example, the asterisk means the limit should apply to any user. It
is important to ensure the chosen value doesn’t exceed the maximum system value
visible in the /proc/sys/fs/file-max file, else the users would be prevented from
login in. For more information about the Pluggable Authentication Module (PAM)
limits, refer to the ‘pam_limits’ man page from the linux-pam package.

[Variable]greetd-service-type
greetd (https://git.sr.ht/~kennylevinsen/greetd) is a minimal and flexible lo-
gin manager daemon, that makes no assumptions about what you want to launch.

If you can run it from your shell in a TTY, greetd can start it. If it can be taught to
speak a simple JSON-based IPC protocol, then it can be a geeter.

greetd-service-type provides necessary infrastructure for logging in users, includ-
ing:

• greetd PAM service

• Special variation of pam-mount to mount XDG_RUNTIME_DIR

Here is an example of switching from mingetty-service-type to greetd-service-

type, and how different terminals could be:

(append

(modify-services %base-services

;; greetd-service-type provides "greetd" PAM service

(delete login-service-type)

;; and can be used in place of mingetty-service-type

(delete mingetty-service-type))

(list

(service greetd-service-type

(greetd-configuration

(terminals

(list

;; we can make any terminal active by default

(greetd-terminal-configuration (terminal-vt "1") (terminal-switch #t))

https://git.sr.ht/~kennylevinsen/greetd

Chapter 11: System Configuration 281

;; we can make environment without XDG_RUNTIME_DIR set

;; even provide our own environment variables

(greetd-terminal-configuration

(terminal-vt "2")

(default-session-command

(greetd-agreety-session

(extra-env '(("MY_VAR" . "1")))

(xdg-env? #f))))

;; we can use different shell instead of default bash

(greetd-terminal-configuration

(terminal-vt "3")

(default-session-command

(greetd-agreety-session (command (file-append zsh "/bin/zsh")))))

;; we can use any other executable command as greeter

(greetd-terminal-configuration

(terminal-vt "4")

(default-session-command (program-file "my-noop-greeter" #~(exit))))

(greetd-terminal-configuration (terminal-vt "5"))

(greetd-terminal-configuration (terminal-vt "6"))))))

;; mingetty-service-type can be used in parallel

;; if needed to do so, do not (delete login-service-type)

;; as illustrated above

#| (service mingetty-service-type (mingetty-configuration (tty "tty8"))) |#))

[Data Type]greetd-configuration
Configuration record for the greetd-service-type.

motd A file-like object containing the “message of the day”.

allow-empty-passwords? (default: #t)
Allow empty passwords by default so that first-time users can log in when
the ’root’ account has just been created.

terminals (default: '())
List of greetd-terminal-configuration per terminal for which greetd

should be started.

greeter-supplementary-groups (default: '())
List of groups which should be added to greeter user. For instance:

(greeter-supplementary-groups '("seat" "video"))

Note that this example will fail if seat group does not exist.

[Data Type]greetd-terminal-configuration
Configuration record for per terminal greetd daemon service.

greetd (default: greetd)
The greetd package to use.

config-file-name

Configuration file name to use for greetd daemon. Generally, autogener-
ated derivation based on terminal-vt value.

Chapter 11: System Configuration 282

log-file-name

Log file name to use for greetd daemon. Generally, autogenerated name
based on terminal-vt value.

terminal-vt (default: ‘"7"’)
The VT to run on. Use of a specific VT with appropriate conflict avoid-
ance is recommended.

terminal-switch (default: #f)
Make this terminal active on start of greetd.

source-profile? (default: #t)
Whether to source /etc/profile and ~/.profile, when they exist.

default-session-user (default: ‘"greeter"’)
The user to use for running the greeter.

default-session-command (default: (greetd-agreety-session))
Can be either instance of greetd-agreety-session configuration or
gexp->script like object to use as greeter.

[Data Type]greetd-agreety-session
Configuration record for the agreety greetd greeter.

agreety (default: greetd)
The package with /bin/agreety command.

command (default: (file-append bash "/bin/bash"))
Command to be started by /bin/agreety on successful login.

command-args (default: '("-l"))
Command arguments to pass to command.

extra-env (default: '())
Extra environment variables to set on login.

xdg-env? (default: #t)
If true XDG_RUNTIME_DIR and XDG_SESSION_TYPE will be set before start-
ing command. One should note that, extra-env variables are set right
after mentioned variables, so that they can be overridden.

[Data Type]greetd-wlgreet-session
Generic configuration record for the wlgreet greetd greeter.

wlgreet (default: wlgreet)
The package with the /bin/wlgreet command.

command (default: (file-append sway "/bin/sway"))
Command to be started by /bin/wlgreet on successful login.

command-args (default: '())
Command arguments to pass to command.

output-mode (default: "all")
Option to use for outputMode in the TOML configuration file.

Chapter 11: System Configuration 283

scale (default: 1)
Option to use for scale in the TOML configuration file.

background (default: '(0 0 0 0.9))
RGBA list to use as the background colour of the login prompt.

headline (default: '(1 1 1 1))
RGBA list to use as the headline colour of the UI popup.

prompt (default: '(1 1 1 1))
RGBA list to use as the prompt colour of the UI popup.

prompt-error (default: '(1 1 1 1))
RGBA list to use as the error colour of the UI popup.

border (default: '(1 1 1 1))
RGBA list to use as the border colour of the UI popup.

extra-env (default: '())
Extra environment variables to set on login.

[Data Type]greetd-wlgreet-sway-session
Sway-specific configuration record for the wlgreet greetd greeter.

wlgreet-session (default: (greetd-wlgreet-session))
A greetd-wlgreet-session record for generic wlgreet configuration, on
top of the Sway-specific greetd-wlgreet-sway-session.

sway (default: sway)
The package providing the /bin/sway command.

sway-configuration (default: #f)
File-like object providing an additional Sway configuration file to be
prepended to the mandatory part of the configuration.

Here is an example of a greetd configuration that uses wlgreet and Sway:

(greetd-configuration

;; We need to give the greeter user these permissions, otherwise

;; Sway will crash on launch.

(greeter-supplementary-groups (list "video" "input" "seat"))

(terminals

(list (greetd-terminal-configuration

(terminal-vt "1")

(terminal-switch #t)

(default-session-command

(greetd-wlgreet-sway-session

(sway-configuration

(local-file "sway-greetd.conf"))))))))

11.10.2 Scheduled Job Execution

The (gnu services mcron) module provides an interface to GNU mcron, a daemon to run
jobs at scheduled times (see GNU mcron). GNU mcron is similar to the traditional Unix

Chapter 11: System Configuration 284

cron daemon; the main difference is that it is implemented in Guile Scheme, which provides
a lot of flexibility when specifying the scheduling of jobs and their actions.

The example below defines an operating system that runs the updatedb (see Section
“Invoking updatedb” in Finding Files) and the guix gc commands (see Section 5.6 [Invoking
guix gc], page 51) daily, as well as the mkid command on behalf of an unprivileged user
(see Section “mkid invocation” in ID Database Utilities). It uses gexps to introduce job
definitions that are passed to mcron (see Section 8.12 [G-Expressions], page 159).

(use-modules (guix) (gnu) (gnu services mcron))

(use-package-modules base idutils)

(define updatedb-job

;; Run 'updatedb' at 3AM every day. Here we write the

;; job's action as a Scheme procedure.

#~(job '(next-hour '(3))

(lambda ()

(system* (string-append #$findutils "/bin/updatedb")

"--prunepaths=/tmp /var/tmp /gnu/store"))

"updatedb"))

(define garbage-collector-job

;; Collect garbage 5 minutes after midnight every day.

;; The job's action is a shell command.

#~(job "5 0 * * *" ;Vixie cron syntax

"guix gc -F 1G"))

(define idutils-job

;; Update the index database as user "charlie" at 12:15PM

;; and 19:15PM. This runs from the user's home directory.

#~(job '(next-minute-from (next-hour '(12 19)) '(15))

(string-append #$idutils "/bin/mkid src")

#:user "charlie"))

(operating-system

;; ...

;; %BASE-SERVICES already includes an instance of

;; 'mcron-service-type', which we extend with additional

;; jobs using 'simple-service'.

(services (cons (simple-service 'my-cron-jobs

mcron-service-type

(list garbage-collector-job

updatedb-job

idutils-job))

%base-services)))

Tip: When providing the action of a job specification as a procedure, you
should provide an explicit name for the job via the optional 3rd argument as

Chapter 11: System Configuration 285

done in the updatedb-job example above. Otherwise, the job would appear as
“Lambda function” in the output of herd schedule mcron, which is not nearly
descriptive enough!

Tip: Avoid calling the Guile procedures execl, execle or execlp inside a job
specification, else mcron won’t be able to output the completion status of the
job.

For more complex jobs defined in Scheme where you need control over the top level,
for instance to introduce a use-modules form, you can move your code to a separate
program using the program-file procedure of the (guix gexp) module (see Section 8.12
[G-Expressions], page 159). The example below illustrates that.

(define %battery-alert-job

;; Beep when the battery percentage falls below %MIN-LEVEL.

#~(job

'(next-minute (range 0 60 1))

#$(program-file

"battery-alert.scm"

(with-imported-modules (source-module-closure

'((guix build utils)))

#~(begin

(use-modules (guix build utils)

(ice-9 popen)

(ice-9 regex)

(ice-9 textual-ports)

(srfi srfi-2))

(define %min-level 20)

(setenv "LC_ALL" "C") ;ensure English output

(and-let* ((input-pipe (open-pipe*

OPEN_READ

#$(file-append acpi "/bin/acpi")))

(output (get-string-all input-pipe))

(m (string-match "Discharging, ([0-9]+)%" output))

(level (string->number (match:substring m 1)))

((< level %min-level)))

(format #t "warning: Battery level is low (~a%)~%" level)

(invoke #$(file-append beep "/bin/beep") "-r5")))))))

See Section “Guile Syntax” in GNU mcron, for more information on mcron job specifi-
cations. Below is the reference of the mcron service.

On a running system, you can use the schedule action of the service to visualize the
mcron jobs that will be executed next:

herd schedule mcron

The example above lists the next five tasks that will be executed, but you can also specify
the number of tasks to display:

herd schedule mcron 10

Chapter 11: System Configuration 286

[Variable]mcron-service-type
This is the type of the mcron service, whose value is an mcron-configuration object.

This service type can be the target of a service extension that provides additional job
specifications (see Section 11.19.1 [Service Composition], page 615). In other words,
it is possible to define services that provide additional mcron jobs to run.

[Data Type]mcron-configuration
Available mcron-configuration fields are:

mcron (default: mcron) (type: file-like)
The mcron package to use.

jobs (default: '()) (type: list-of-gexps)
This is a list of gexps (see Section 8.12 [G-Expressions], page 159), where
each gexp corresponds to an mcron job specification (see Section “Syntax”
in GNU mcron).

log? (default: #t) (type: boolean)
Log messages to standard output.

log-file (default: "/var/log/mcron.log") (type: string)
Log file location.

log-format (default: "~1@*~a ~a: ~a~%") (type: string)
(ice-9 format) format string for log messages. The default value pro-
duces messages like ‘pid name: message’ (see Section “Invoking mcron”
in GNU mcron). Each message is also prefixed by a timestamp by GNU
Shepherd.

date-format (type: maybe-string)
(srfi srfi-19) format string for date.

11.10.3 Log Rotation

Log files such as those found in /var/log tend to grow endlessly, so it’s a good idea to rotate
them once in a while—i.e., archive their contents in separate files, possibly compressed. The
(gnu services admin) module provides an interface to GNU Rot[t]log, a log rotation tool
(see GNU Rot[t]log Manual).

This service is part of %base-services, and thus enabled by default, with the default
settings, for commonly encountered log files. The example below shows how to extend it
with an additional rotation, should you need to do that (usually, services that produce log
files already take care of that):

(use-modules (guix) (gnu))

(use-service-modules admin)

(define my-log-files

;; Log files that I want to rotate.

'("/var/log/something.log" "/var/log/another.log"))

(operating-system

;; ...

Chapter 11: System Configuration 287

(services (cons (simple-service 'rotate-my-stuff

rottlog-service-type

(list (log-rotation

(frequency 'daily)

(files my-log-files))))

%base-services)))

[Variable]rottlog-service-type
This is the type of the Rottlog service, whose value is a rottlog-configuration

object.

Other services can extend this one with new log-rotation objects (see below),
thereby augmenting the set of files to be rotated.

This service type can define mcron jobs (see Section 11.10.2 [Scheduled Job Execu-
tion], page 283) to run the rottlog service.

[Data Type]rottlog-configuration
Data type representing the configuration of rottlog.

rottlog (default: rottlog)
The Rottlog package to use.

rc-file (default: (file-append rottlog "/etc/rc"))
The Rottlog configuration file to use (see Section “Mandatory RC Vari-
ables” in GNU Rot[t]log Manual).

rotations (default: %default-rotations)
A list of log-rotation objects as defined below.

jobs This is a list of gexps where each gexp corresponds to an mcron job
specification (see Section 11.10.2 [Scheduled Job Execution], page 283).

[Data Type]log-rotation
Data type representing the rotation of a group of log files.

Taking an example from the Rottlog manual (see Section “Period Related File Ex-
amples” in GNU Rot[t]log Manual), a log rotation might be defined like this:

(log-rotation

(frequency 'daily)

(files '("/var/log/apache/*"))

(options '("storedir apache-archives"

"rotate 6"

"notifempty"

"nocompress")))

The list of fields is as follows:

frequency (default: 'weekly)
The log rotation frequency, a symbol.

files The list of files or file glob patterns to rotate.

options (default: %default-log-rotation-options)
The list of rottlog options for this rotation (see Section “Configuration
parameters” in GNU Rot[t]log Manual).

Chapter 11: System Configuration 288

post-rotate (default: #f)
Either #f or a gexp to execute once the rotation has completed.

[Variable]%default-rotations
Specifies weekly rotation of %rotated-files and of /var/log/guix-daemon.log.

[Variable]%rotated-files
The list of syslog-controlled files to be rotated. By default it is:
'("/var/log/messages" "/var/log/secure" "/var/log/debug" \

"/var/log/maillog").

Some log files just need to be deleted periodically once they are old, without any other
criterion and without any archival step. This is the case of build logs stored by guix-daemon
under /var/log/guix/drvs (see Section 2.3 [Invoking guix-daemon], page 11). The log-

cleanup service addresses this use case. For example, %base-services (see Section 11.10.1
[Base Services], page 263) includes the following:

;; Periodically delete old build logs.

(service log-cleanup-service-type

(log-cleanup-configuration

(directory "/var/log/guix/drvs")))

That ensures build logs do not accumulate endlessly.

[Variable]log-cleanup-service-type
This is the type of the service to delete old logs. Its value must be a log-cleanup-

configuration record as described below.

[Data Type]log-cleanup-configuration
Data type representing the log cleanup configuration

directory

Name of the directory containing log files.

expiry (default: (* 6 30 24 3600))
Age in seconds after which a file is subject to deletion (six months by
default).

schedule (default: "30 12 01,08,15,22 * *")
String or gexp denoting the corresponding mcron job schedule (see Sec-
tion 11.10.2 [Scheduled Job Execution], page 283).

Anonip Service

Anonip is a privacy filter that removes IP address from web server logs. This service creates
a FIFO and filters any written lines with anonip before writing the filtered log to a target
file.

The following example sets up the FIFO /var/run/anonip/https.access.log and
writes the filtered log file /var/log/anonip/https.access.log.

(service anonip-service-type

(anonip-configuration

(input "/var/run/anonip/https.access.log")

Chapter 11: System Configuration 289

(output "/var/log/anonip/https.access.log")))

Configure your web server to write its logs to the FIFO at /var/run/anonip/https.access.log
and collect the anonymized log file at /var/web-logs/https.access.log.

[Data Type]anonip-configuration
This data type represents the configuration of anonip. It has the following parameters:

anonip (default: anonip)
The anonip package to use.

input The file name of the input log file to process. The service creates a FIFO
of this name. The web server should write its logs to this FIFO.

output The file name of the processed log file.

The following optional settings may be provided:

skip-private?

When #true do not mask addresses in private ranges.

column A 1-based indexed column number. Assume IP address is in the specified
column (default is 1).

replacement

Replacement string in case address parsing fails, e.g. "0.0.0.0".

ipv4mask Number of bits to mask in IPv4 addresses.

ipv6mask Number of bits to mask in IPv6 addresses.

increment

Increment the IP address by the given number. By default this is zero.

delimiter

Log delimiter string.

regex Regular expression for detecting IP addresses. Use this instead of column.

11.10.4 Networking Setup

The (gnu services networking) module provides services to configure network interfaces
and set up networking on your machine. Those services provide different ways for you to set
up your machine: by declaring a static network configuration, by running a Dynamic Host
Configuration Protocol (DHCP) client, or by running daemons such as NetworkManager and
Connman that automate the whole process, automatically adapt to connectivity changes,
and provide a high-level user interface.

On a laptop, NetworkManager and Connman are by far the most convenient options,
which is why the default desktop services include NetworkManager (see Section 11.10.9
[Desktop Services], page 347). For a server, or for a virtual machine or a container, static
network configuration or a simple DHCP client are often more appropriate.

This section describes the various network setup services available, starting with static
network configuration.

Chapter 11: System Configuration 290

[Variable]static-networking-service-type
This is the type for statically-configured network interfaces. Its value must be a list
of static-networking records. Each of them declares a set of addresses, routes, and
links, as shown below.

Here is the simplest configuration, with only one network interface controller (NIC)
and only IPv4 connectivity:

;; Static networking for one NIC, IPv4-only.

(service static-networking-service-type

(list (static-networking

(addresses

(list (network-address

(device "eno1")

(value "10.0.2.15/24"))))

(routes

(list (network-route

(destination "default")

(gateway "10.0.2.2"))))

(name-servers '("10.0.2.3")))))

The snippet above can be added to the services field of your operating system
configuration (see Section 11.2 [Using the Configuration System], page 233). It will
configure your machine to have 10.0.2.15 as its IP address, with a 24-bit netmask for
the local network—meaning that any 10.0.2.x address is on the local area network
(LAN). Traffic to addresses outside the local network is routed via 10.0.2.2. Host
names are resolved by sending domain name system (DNS) queries to 10.0.2.3.

[Data Type]static-networking
This is the data type representing a static network configuration.

As an example, here is how you would declare the configuration of a machine with
a single network interface controller (NIC) available as eno1, and with one IPv4 and
one IPv6 address:

;; Network configuration for one NIC, IPv4 + IPv6.

(static-networking

(addresses (list (network-address

(device "eno1")

(value "10.0.2.15/24"))

(network-address

(device "eno1")

(value "2001:123:4567:101::1/64"))))

(routes (list (network-route

(destination "default")

(gateway "10.0.2.2"))

(network-route

(destination "default")

(gateway "2020:321:4567:42::1"))))

(name-servers '("10.0.2.3")))

Chapter 11: System Configuration 291

If you are familiar with the ip command of the iproute2 package (https://wiki.
linuxfoundation.org/networking/iproute2) found on Linux-based systems, the
declaration above is equivalent to typing:

ip address add 10.0.2.15/24 dev eno1

ip address add 2001:123:4567:101::1/64 dev eno1

ip route add default via inet 10.0.2.2

ip route add default via inet6 2020:321:4567:42::1

Run man 8 ip for more info. Venerable GNU/Linux users will certainly know how to
do it with ifconfig and route, but we’ll spare you that.

The available fields of this data type are as follows:

addresses

links (default: '())
routes (default: '())

The list of network-address, network-link, and network-route

records for this network (see below).

name-servers (default: '())
The list of IP addresses (strings) of domain name servers. These IP
addresses go to /etc/resolv.conf.

provision (default: '(networking))
If true, this should be a list of symbols for the Shepherd service corre-
sponding to this network configuration.

requirement (default '())
The list of Shepherd services depended on.

[Data Type]network-address
This is the data type representing the IP address of a network interface.

device The name of the network interface for this address—e.g., "eno1".

value The actual IP address and network mask, in CIDR (Classless
Inter-Domain Routing) notation (https://en.wikipedia.org/wiki/
CIDR#CIDR_notation), as a string.

For example, "10.0.2.15/24" denotes IPv4 address 10.0.2.15 on a 24-bit
sub-network—all 10.0.2.x addresses are on the same local network.

ipv6? Whether value denotes an IPv6 address. By default this is automatically
determined.

[Data Type]network-route
This is the data type representing a network route.

destination

The route destination (a string), either an IP address and network mask
or "default" to denote the default route.

source (default: #f)
The route source.

https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
https://en.wikipedia.org/wiki/CIDR#CIDR_notation
https://en.wikipedia.org/wiki/CIDR#CIDR_notation
https://en.wikipedia.org/wiki/CIDR#CIDR_notation

Chapter 11: System Configuration 292

device (default: #f)
The device used for this route—e.g., "eno2".

ipv6? (default: auto)
Whether this is an IPv6 route. By default this is automatically deter-
mined based on destination or gateway.

gateway (default: #f)
IP address (a string) through which traffic is routed.

[Data Type]network-link
Data type for a network link (see Section “Link” in Guile-Netlink Manual). During
startup, network links are employed to construct or modify existing or virtual ethernet
links. These ethernet links can be identified by their name or mac-address. If there
is a need to create virtual interface, name and type fields are required.

name The name of the link—e.g., "v0p0" (default: #f).

type A symbol denoting the type of the link—e.g., 'veth (default: #f).

mac-address

The mac-address of the link—e.g., "98:11:22:33:44:55" (default: #f).

arguments

List of arguments for this type of link.

Consider a scenario where a server equipped with a network interface which has multiple
ports. These ports are connected to a switch, which supports link aggregation (https://
en.wikipedia.org/wiki/Link_aggregation) (also known as bonding or NIC teaming).
The switch uses port channels to consolidate multiple physical interfaces into one logical
interface to provide higher bandwidth, load balancing, and link redundancy. When a port is
added to a LAG (or link aggregation group), it inherits the properties of the port-channel.
Some of these properties are VLAN membership, trunk status, and so on.

VLAN (https://en.wikipedia.org/wiki/Virtual_LAN) (or virtual local area
network) is a logical network that is isolated from other VLANs on the same physical
network. This can be used to segregate traffic, improve security, and simplify network
management.

With all that in mind let’s configure our static network for the server. We will bond two
existing interfaces together using 802.3ad schema and on top of it, build a VLAN interface
with id 1055. We assign a static ip to our new VLAN interface.

(static-networking

(links (list (network-link

(name "bond0")

(type 'bond)

(arguments '((mode . "802.3ad")

(miimon . 100)

(lacp-active . "on")

(lacp-rate . "fast"))))

(network-link

https://en.wikipedia.org/wiki/Link_aggregation
https://en.wikipedia.org/wiki/Link_aggregation
https://en.wikipedia.org/wiki/Virtual_LAN

Chapter 11: System Configuration 293

(mac-address "98:11:22:33:44:55")

(arguments '((master . "bond0"))))

(network-link

(mac-address "98:11:22:33:44:56")

(arguments '((master . "bond0"))))

(network-link

(name "bond0.1055")

(type 'vlan)

(arguments '((id . 1055)

(link . "bond0"))))))

(addresses (list (network-address

(value "192.168.1.4/24")

(device "bond0.1055")))))

[Variable]%loopback-static-networking
This is the static-networking record representing the “loopback device”, lo, for IP
addresses 127.0.0.1 and ::1, and providing the loopback Shepherd service.

[Variable]%qemu-static-networking
This is the static-networking record representing network setup when using
QEMU’s user-mode network stack on eth0 (see Section “Using the user mode
network stack” in QEMU Documentation).

[Variable]dhcp-client-service-type
This is the type of services that run dhcp, a Dynamic Host Configuration Protocol
(DHCP) client.

[Data Type]dhcp-client-configuration
Data type representing the configuration of the DHCP client service.

package (default: isc-dhcp)
DHCP client package to use.

interfaces (default: 'all)
Either 'all or the list of interface names that the DHCP client should
listen on—e.g., '("eno1").

When set to 'all, the DHCP client listens on all the available non-
loopback interfaces that can be activated. Otherwise the DHCP client
listens only on the specified interfaces.

shepherd-requirement (default: '())
shepherd-provision (default: '(networking))

This option can be used to provide a list of symbols naming Shepherd
services that this service will depend on, such as 'wpa-supplicant or
'iwd if you require authenticated access for encrypted WiFi or Ethernet
networks.

Likewise, shepherd-provision is a list of Shepherd service names (sym-
bols) provided by this service. You might want to change the default value

Chapter 11: System Configuration 294

if you intend to run several DHCP clients, only one of which provides the
networking Shepherd service.

[Variable]network-manager-service-type
This is the service type for the NetworkManager (https://wiki.gnome.org/
Projects/NetworkManager) service. The value for this service type is a network-

manager-configuration record.

This service is part of %desktop-services (see Section 11.10.9 [Desktop Services],
page 347).

[Data Type]network-manager-configuration
Data type representing the configuration of NetworkManager.

network-manager (default: network-manager)
The NetworkManager package to use.

shepherd-requirement (default: '(wpa-supplicant))
This option can be used to provide a list of symbols naming Shepherd
services that this service will depend on, such as 'wpa-supplicant or
'iwd if you require authenticated access for encrypted WiFi or Ethernet
networks.

dns (default: "default")
Processing mode for DNS, which affects how NetworkManager uses the
resolv.conf configuration file.

‘default’ NetworkManager will update resolv.conf to reflect the
nameservers provided by currently active connections.

‘dnsmasq’ NetworkManager will run dnsmasq as a local caching name-
server, using a conditional forwarding configuration if you are
connected to a VPN, and then update resolv.conf to point
to the local nameserver.

With this setting, you can share your network connection.
For example when you want to share your network connection
to another laptop via an Ethernet cable, you can open nm-

connection-editor and configure the Wired connection’s
method for IPv4 and IPv6 to be “Shared to other computers”
and reestablish the connection (or reboot).

You can also set up a host-to-guest connection to QEMU
VMs (see Section 3.8 [Installing Guix in a VM], page 29).
With a host-to-guest connection, you can e.g. access a Web
server running on the VM (see Section 11.10.20 [Web Ser-
vices], page 447) from a Web browser on your host system, or
connect to the VM via SSH (see Section 11.10.5 [Networking
Services], page 301). To set up a host-to-guest connection,
run this command once:

nmcli connection add type tun \

connection.interface-name tap0 \

https://wiki.gnome.org/Projects/NetworkManager
https://wiki.gnome.org/Projects/NetworkManager

Chapter 11: System Configuration 295

tun.mode tap tun.owner $(id -u) \

ipv4.method shared \

ipv4.addresses 172.28.112.1/24

Then each time you launch your QEMU VM (see
Section 11.18 [Running Guix in a VM], page 613), pass
-nic tap,ifname=tap0,script=no,downscript=no to
qemu-system-....

‘none’ NetworkManager will not modify resolv.conf.

vpn-plugins (default: '())
This is the list of available plugins for virtual private networks (VPNs).
An example of this is the network-manager-openvpn package, which
allows NetworkManager to manage VPNs via OpenVPN.

[Variable]connman-service-type
This is the service type to run Connman (https://01.org/connman), a network
connection manager.

Its value must be a connman-configuration record as in this example:

(service connman-service-type

(connman-configuration

(disable-vpn? #t)))

See below for details about connman-configuration.

[Data Type]connman-configuration
Data Type representing the configuration of connman.

connman (default: connman)
The connman package to use.

shepherd-requirement (default: '())
This option can be used to provide a list of symbols naming Shepherd
services that this service will depend on, such as 'wpa-supplicant or
'iwd if you require authenticated access for encrypted WiFi or Ethernet
networks.

disable-vpn? (default: #f)
When true, disable connman’s vpn plugin.

general-configuration (default: (connman-general-configuration))
Configuration serialized to main.conf and passed as --config to
connmand.

[Data Type]connman-general-configuration
Available connman-general-configuration fields are:

input-request-timeout (type: maybe-number)
Set input request timeout. Default is 120 seconds. The request for inputs
like passphrase will timeout after certain amount of time. Use this setting
to increase the value in case of different user interface designs.

https://01.org/connman

Chapter 11: System Configuration 296

browser-launch-timeout (type: maybe-number)
Set browser launch timeout. Default is 300 seconds. The request for
launching a browser for portal pages will timeout after certain amount
of time. Use this setting to increase the value in case of different user
interface designs.

background-scanning? (type: maybe-boolean)
Enable background scanning. Default is true. If wifi is disconnected, the
background scanning will follow a simple back off mechanism from 3s up
to 5 minutes. Then, it will stay in 5 minutes unless user specifically asks
for scanning through a D-Bus call. If so, the mechanism will start again
from 3s. This feature activates also the background scanning while being
connected, which is required for roaming on wifi. When background-

scanning? is false, ConnMan will not perform any scan regardless of wifi
is connected or not, unless it is requested by the user through a D-Bus
call.

use-gateways-as-timeservers? (type: maybe-boolean)
Assume that service gateways also function as timeservers. Default is
false.

fallback-timeservers (type: maybe-list)
List of Fallback timeservers. These timeservers are used for NTP sync
when there are no timeservers set by the user or by the service, and
when use-gateways-as-timeservers? is #f. These can contain a mixed
combination of fully qualified domain names, IPv4 and IPv6 addresses.

fallback-nameservers (type: maybe-list)
List of fallback nameservers appended to the list of nameservers given
by the service. The nameserver entries must be in numeric format, host
names are ignored.

default-auto-connect-technologies (type: maybe-list)
List of technologies that are marked autoconnectable by default.
The default value for this entry when empty is "ethernet", "wifi",
"cellular". Services that are automatically connected must have been
set up and saved to storage beforehand.

default-favourite-technologies (type: maybe-list)
List of technologies that are marked favorite by default. The default value
for this entry when empty is "ethernet". Connects to services from this
technology even if not setup and saved to storage.

always-connected-technologies (type: maybe-list)
List of technologies which are always connected regardless of preferred-
technologies setting (auto-connect? #t). The default value is empty and
this feature is disabled unless explicitly enabled.

preferred-technologies (type: maybe-list)
List of preferred technologies from the most preferred one to the least
preferred one. Services of the listed technology type will be tried one by

Chapter 11: System Configuration 297

one in the order given, until one of them gets connected or they are all
tried. A service of a preferred technology type in state ’ready’ will get
the default route when compared to another preferred type further down
the list with state ’ready’ or with a non-preferred type; a service of a
preferred technology type in state ’online’ will get the default route when
compared to either a non-preferred type or a preferred type further down
in the list.

network-interface-blacklist (type: maybe-list)
List of blacklisted network interfaces. Found interfaces will be compared
to the list and will not be handled by ConnMan, if their first charac-
ters match any of the list entries. Default value is "vmnet", "vboxnet",
"virbr", "ifb".

allow-hostname-updates? (type: maybe-boolean)
Allow ConnMan to change the system hostname. This can happen for
example if we receive DHCP hostname option. Default value is #t.

allow-domainname-updates? (type: maybe-boolean)
Allow connman to change the system domainname. This can happen for
example if we receive DHCP domainname option. Default value is #t.

single-connected-technology? (type: maybe-boolean)
Keep only a single connected technology at any time. When a new service
is connected by the user or a better one is found according to preferred-
technologies, the new service is kept connected and all the other previ-
ously connected services are disconnected. With this setting it does not
matter whether the previously connected services are in ’online’ or ’ready’
states, the newly connected service is the only one that will be kept con-
nected. A service connected by the user will be used until going out of
network coverage. With this setting enabled applications will notice more
network breaks than normal. Note this options can’t be used with VPNs.
Default value is #f.

tethering-technologies (type: maybe-list)
List of technologies that are allowed to enable tethering. The default
value is "wifi", "bluetooth", "gadget". Only those technologies listed
here are used for tethering. If one wants to tether ethernet, then add
"ethernet" in the list. Note that if ethernet tethering is enabled, then
a DHCP server is started on all ethernet interfaces. Tethered ethernet
should never be connected to corporate or home network as it will disrupt
normal operation of these networks. Due to this ethernet is not tethered
by default. Do not activate ethernet tethering unless you really know
what you are doing.

persistent-tethering-mode? (type: maybe-boolean)
Restore earlier tethering status when returning from offline mode, re-
enabling a technology, and after restarts and reboots. Default value is
#f.

Chapter 11: System Configuration 298

enable-6to4? (type: maybe-boolean)
Automatically enable anycast 6to4 if possible. This is not recommended,
as the use of 6to4 will generally lead to a severe degradation of connection
quality. See RFC6343. Default value is #f (as recommended by RFC6343
section 4.1).

vendor-class-id (type: maybe-string)
Set DHCP option 60 (Vendor Class ID) to the given string. This option
can be used by DHCP servers to identify specific clients without having
to rely on MAC address ranges, etc.

enable-online-check? (type: maybe-boolean)
Enable or disable use of HTTP GET as an online status check. When
a service is in a READY state, and is selected as default, ConnMan will
issue an HTTP GET request to verify that end-to-end connectivity is
successful. Only then the service will be transitioned to ONLINE state.
If this setting is false, the default service will remain in READY state.
Default value is #t.

online-check-ipv4-url (type: maybe-string)
IPv4 URL used during the online status check. Please refer to the
README for more detailed information. Default value is http://ipv4.
connman.net/online/status.html.

online-check-ipv6-url (type: maybe-string)
IPv6 URL used during the online status check. Please refer to the
README for more detailed information. Default value is http://ipv6.
connman.net/online/status.html.

online-check-initial-interval (type: maybe-number)
Range of intervals between two online check requests. Please refer to the
README for more detailed information. Default value is ‘1’.

online-check-max-interval (type: maybe-number)
Range of intervals between two online check requests. Please refer to the
README for more detailed information. Default value is ‘1’.

enable-online-to-ready-transition? (type: maybe-boolean)
WARNING: This is an experimental feature. In addition to enable-

online-check setting, enable or disable use of HTTP GET to detect the
loss of end-to-end connectivity. If this setting is #f, when the default
service transitions to ONLINE state, the HTTP GET request is no more
called until next cycle, initiated by a transition of the default service to
DISCONNECT state. If this setting is #t, the HTTP GET request keeps
being called to guarantee that end-to-end connectivity is still successful. If
not, the default service will transition to READY state, enabling another
service to become the default one, in replacement. Default value is #f.

auto-connect-roaming-services? (type: maybe-boolean)
Automatically connect roaming services. This is not recommended unless
you know you won’t have any billing problem. Default value is #f.

http://ipv4.connman.net/online/status.html
http://ipv4.connman.net/online/status.html
http://ipv6.connman.net/online/status.html
http://ipv6.connman.net/online/status.html

Chapter 11: System Configuration 299

address-conflict-detection? (type: maybe-boolean)
Enable or disable the implementation of IPv4 address conflict detection
according to RFC5227. ConnMan will send probe ARP packets to see
if an IPv4 address is already in use before assigning the address to an
interface. If an address conflict occurs for a statically configured address,
an IPv4LL address will be chosen instead (according to RFC3927). If an
address conflict occurs for an address offered via DHCP, ConnMan sends
a DHCP DECLINE once and for the second conflict resorts to finding an
IPv4LL address. Default value is #f.

localtime (type: maybe-string)
Path to localtime file. Defaults to /etc/localtime.

regulatory-domain-follows-timezone? (type: maybe-boolean)
Enable regulatory domain to be changed along timezone
changes. With this option set to true each time the timezone
changes the first present ISO3166 country code is read from
/usr/share/zoneinfo/zone1970.tab and set as regulatory domain
value. Default value is #f.

resolv-conf (type: maybe-string)
Path to resolv.conf file. If the file does not exist, but intermediate direc-
tories exist, it will be created. If this option is not set, it tries to write
into /var/run/connman/resolv.conf if it fails (/var/run/connman does
not exist or is not writeable). If you do not want to update resolv.conf,
you can set /dev/null.

[Variable]wpa-supplicant-service-type
This is the service type to run WPA supplicant (https://w1.fi/wpa_supplicant/
), an authentication daemon required to authenticate against encrypted WiFi or eth-
ernet networks.

[Data Type]wpa-supplicant-configuration
Data type representing the configuration of WPA Supplicant.

It takes the following parameters:

wpa-supplicant (default: wpa-supplicant)
The WPA Supplicant package to use.

requirement (default: '(user-processes loopback syslogd)

List of services that should be started before WPA Supplicant starts.

dbus? (default: #t)
Whether to listen for requests on D-Bus.

pid-file (default: "/var/run/wpa_supplicant.pid")
Where to store the PID file.

interface (default: #f)
If this is set, it must specify the name of a network interface that WPA
supplicant will control.

https://w1.fi/wpa_supplicant/
https://w1.fi/wpa_supplicant/

Chapter 11: System Configuration 300

config-file (default: #f)
Optional configuration file to use.

extra-options (default: '())
List of additional command-line arguments to pass to the daemon.

Some networking devices such as modems require special care, and this is what the
services below focus on.

[Variable]modem-manager-service-type
This is the service type for the ModemManager (https://wiki.gnome.
org/Projects/ModemManager) service. The value for this service type is a
modem-manager-configuration record.

This service is part of %desktop-services (see Section 11.10.9 [Desktop Services],
page 347).

[Data Type]modem-manager-configuration
Data type representing the configuration of ModemManager.

modem-manager (default: modem-manager)
The ModemManager package to use.

[Variable]usb-modeswitch-service-type
This is the service type for the USB ModeSwitch (https://www.draisberghof.de/
usb_modeswitch/) service. The value for this service type is a usb-modeswitch-

configuration record.

When plugged in, some USB modems (and other USB devices) initially present them-
selves as a read-only storage medium and not as a modem. They need to be mod-
eswitched before they are usable. The USB ModeSwitch service type installs udev
rules to automatically modeswitch these devices when they are plugged in.

This service is part of %desktop-services (see Section 11.10.9 [Desktop Services],
page 347).

[Data Type]usb-modeswitch-configuration
Data type representing the configuration of USB ModeSwitch.

usb-modeswitch (default: usb-modeswitch)
The USB ModeSwitch package providing the binaries for modeswitching.

usb-modeswitch-data (default: usb-modeswitch-data)
The package providing the device data and udev rules file used by
USB ModeSwitch.

config-file (default: #~(string-append #$usb-modeswitch:dispatcher

"/etc/usb_modeswitch.conf"))
Which config file to use for the USB ModeSwitch dispatcher. By default
the config file shipped with USB ModeSwitch is used which disables log-
ging to /var/log among other default settings. If set to #f, no config file
is used.

https://wiki.gnome.org/Projects/ModemManager
https://wiki.gnome.org/Projects/ModemManager
https://www.draisberghof.de/usb_modeswitch/
https://www.draisberghof.de/usb_modeswitch/

Chapter 11: System Configuration 301

11.10.5 Networking Services

The (gnu services networking)module discussed in the previous section provides services
for more advanced setups: providing a DHCP service for others to use, filtering packets
with iptables or nftables, running a WiFi access point with hostapd, running the inetd

“superdaemon”, and more. This section describes those.

[Variable]dhcpd-service-type
This type defines a service that runs a DHCP daemon. To create a service of this
type, you must supply a <dhcpd-configuration>. For example:

(service dhcpd-service-type

(dhcpd-configuration

(config-file (local-file "my-dhcpd.conf"))

(interfaces '("enp0s25"))))

[Data Type]dhcpd-configuration

package (default: isc-dhcp)
The package that provides the DHCP daemon. This package is expected
to provide the daemon at sbin/dhcpd relative to its output directory.
The default package is the ISC’s DHCP server (https://www.isc.org/
dhcp/).

config-file (default: #f)
The configuration file to use. This is required. It will be passed to dhcpd

via its -cf option. This may be any “file-like” object (see Section 8.12
[G-Expressions], page 159). See man dhcpd.conf for details on the con-
figuration file syntax.

version (default: "4")
The DHCP version to use. The ISC DHCP server supports the values
“4”, “6”, and “4o6”. These correspond to the dhcpd program options -4,
-6, and -4o6. See man dhcpd for details.

run-directory (default: "/run/dhcpd")
The run directory to use. At service activation time, this directory will
be created if it does not exist.

pid-file (default: "/run/dhcpd/dhcpd.pid")
The PID file to use. This corresponds to the -pf option of dhcpd. See
man dhcpd for details.

interfaces (default: '())
The names of the network interfaces on which dhcpd should listen for
broadcasts. If this list is not empty, then its elements (which must be
strings) will be appended to the dhcpd invocation when starting the dae-
mon. It may not be necessary to explicitly specify any interfaces here;
see man dhcpd for details.

[Variable]hostapd-service-type
This is the service type to run the hostapd (https://w1.fi/hostapd/) daemon to
set up WiFi (IEEE 802.11) access points and authentication servers. Its associated
value must be a hostapd-configuration as shown below:

https://www.isc.org/dhcp/
https://www.isc.org/dhcp/
https://w1.fi/hostapd/

Chapter 11: System Configuration 302

;; Use wlan1 to run the access point for "My Network".

(service hostapd-service-type

(hostapd-configuration

(interface "wlan1")

(ssid "My Network")

(channel 12)))

[Data Type]hostapd-configuration
This data type represents the configuration of the hostapd service, with the following
fields:

package (default: hostapd)
The hostapd package to use.

interface (default: "wlan0")
The network interface to run the WiFi access point.

ssid The SSID (service set identifier), a string that identifies this network.

broadcast-ssid? (default: #t)
Whether to broadcast this SSID.

channel (default: 1)
The WiFi channel to use.

driver (default: "nl80211")
The driver interface type. "nl80211" is used with all Linux mac80211
drivers. Use "none" if building hostapd as a standalone RADIUS server
that does not control any wireless/wired driver.

extra-settings (default: "")
Extra settings to append as-is to the hostapd configuration file. See
https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf for the
configuration file reference.

[Variable]simulated-wifi-service-type
This is the type of a service to simulate WiFi networking, which can be
useful in virtual machines for testing purposes. The service loads the Linux
kernel mac80211_hwsim module (https://www.kernel.org/doc/html/latest/
networking/mac80211_hwsim/mac80211_hwsim.html) and starts hostapd to create
a pseudo WiFi network that can be seen on wlan0, by default.

The service’s value is a hostapd-configuration record.

[Variable]iptables-service-type
This is the service type to set up an iptables configuration. iptables is a packet
filtering framework supported by the Linux kernel. This service supports configur-
ing iptables for both IPv4 and IPv6. A simple example configuration rejecting all
incoming connections except those to the ssh port 22 is shown below.

(service iptables-service-type

(iptables-configuration

(ipv4-rules (plain-file "iptables.rules" "*filter

https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf
https://www.kernel.org/doc/html/latest/networking/mac80211_hwsim/mac80211_hwsim.html
https://www.kernel.org/doc/html/latest/networking/mac80211_hwsim/mac80211_hwsim.html

Chapter 11: System Configuration 303

:INPUT ACCEPT

:FORWARD ACCEPT

:OUTPUT ACCEPT

-A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

-A INPUT -p tcp --dport 22 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-port-unreachable

COMMIT

"))

(ipv6-rules (plain-file "ip6tables.rules" "*filter

:INPUT ACCEPT

:FORWARD ACCEPT

:OUTPUT ACCEPT

-A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

-A INPUT -p tcp --dport 22 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp6-port-unreachable

COMMIT

"))))

[Data Type]iptables-configuration
The data type representing the configuration of iptables.

iptables (default: iptables)
The iptables package that provides iptables-restore and ip6tables-

restore.

ipv4-rules (default: %iptables-accept-all-rules)
The iptables rules to use. It will be passed to iptables-restore. This
may be any “file-like” object (see Section 8.12 [G-Expressions], page 159).

ipv6-rules (default: %iptables-accept-all-rules)
The ip6tables rules to use. It will be passed to ip6tables-restore. This
may be any “file-like” object (see Section 8.12 [G-Expressions], page 159).

[Variable]nftables-service-type
This is the service type to set up a nftables configuration. nftables is a netfilter
project that aims to replace the existing iptables, ip6tables, arptables and ebtables
framework. It provides a new packet filtering framework, a new user-space utility
nft, and a compatibility layer for iptables. This service comes with a default ruleset
%default-nftables-ruleset that rejecting all incoming connections except those to
the ssh port 22. To use it, simply write:

(service nftables-service-type)

[Data Type]nftables-configuration
The data type representing the configuration of nftables.

package (default: nftables)
The nftables package that provides nft.

ruleset (default: %default-nftables-ruleset)
The nftables ruleset to use. This may be any “file-like” object (see Sec-
tion 8.12 [G-Expressions], page 159).

Chapter 11: System Configuration 304

[Variable]ntp-service-type
This is the type of the service running the Network Time Protocol (NTP) (https://
www.ntp.org) daemon, ntpd. The daemon will keep the system clock synchronized
with that of the specified NTP servers.

The value of this service is an ntpd-configuration object, as described below.

[Data Type]ntp-configuration
This is the data type for the NTP service configuration.

servers (default: %ntp-servers)
This is the list of servers (<ntp-server> records) with which ntpd will
be synchronized. See the ntp-server data type definition below.

allow-large-adjustment? (default: #t)
This determines whether ntpd is allowed to make an initial adjustment
of more than 1,000 seconds.

ntp (default: ntp)
The NTP package to use.

[Variable]%ntp-servers
List of host names used as the default NTP servers. These are servers of the NTP
Pool Project (https://www.ntppool.org/en/).

[Data Type]ntp-server
The data type representing the configuration of a NTP server.

type (default: 'server)
The type of the NTP server, given as a symbol. One of 'pool, 'server,
'peer, 'broadcast or 'manycastclient.

address The address of the server, as a string.

options NTPD options to use with that specific server, given as a list of option
names and/or of option names and values tuples. The following example
define a server to use with the options iburst and prefer, as well as
version 3 and a maxpoll time of 16 seconds.

(ntp-server

(type 'server)

(address "some.ntp.server.org")

(options `(iburst (version 3) (maxpoll 16) prefer))))

[Variable]openntpd-service-type
Run the ntpd, the Network Time Protocol (NTP) daemon, as implemented by
OpenNTPD (http://www.openntpd.org). The daemon will keep the system clock
synchronized with that of the given servers.

(service

openntpd-service-type

(openntpd-configuration

(listen-on '("127.0.0.1" "::1"))

(sensor '("udcf0 correction 70000"))

https://www.ntp.org
https://www.ntp.org
https://www.ntppool.org/en/
https://www.ntppool.org/en/
http://www.openntpd.org

Chapter 11: System Configuration 305

(constraint-from '("www.gnu.org"))

(constraints-from '("https://www.google.com/"))))

[Variable]%openntpd-servers
This variable is a list of the server addresses defined in %ntp-servers.

[Data Type]openntpd-configuration

openntpd (default: openntpd)
The openntpd package to use.

listen-on (default: '("127.0.0.1" "::1"))
A list of local IP addresses or hostnames the ntpd daemon should listen
on.

query-from (default: '())
A list of local IP address the ntpd daemon should use for outgoing queries.

sensor (default: '())
Specify a list of timedelta sensor devices ntpd should use. ntpd will
listen to each sensor that actually exists and ignore non-existent ones.
See upstream documentation (https://man.openbsd.org/ntpd.conf)
for more information.

server (default: '())
Specify a list of IP addresses or hostnames of NTP servers to synchronize
to.

servers (default: %openntp-servers)
Specify a list of IP addresses or hostnames of NTP pools to synchronize
to.

constraint-from (default: '())
ntpd can be configured to query the ‘Date’ from trusted HTTPS servers
via TLS. This time information is not used for precision but acts as an
authenticated constraint, thereby reducing the impact of unauthenticated
NTP man-in-the-middle attacks. Specify a list of URLs, IP addresses or
hostnames of HTTPS servers to provide a constraint.

constraints-from (default: '())
As with constraint from, specify a list of URLs, IP addresses or hostnames
of HTTPS servers to provide a constraint. Should the hostname resolve
to multiple IP addresses, ntpd will calculate a median constraint from all
of them.

[Variable]inetd-service-type
This service runs the inetd (see Section “inetd invocation” inGNU Inetutils) daemon.
inetd listens for connections on internet sockets, and lazily starts the specified server
program when a connection is made on one of these sockets.

The value of this service is an inetd-configuration object. The following example
configures the inetd daemon to provide the built-in echo service, as well as an smtp

https://man.openbsd.org/ntpd.conf

Chapter 11: System Configuration 306

service which forwards smtp traffic over ssh to a server smtp-server behind a gateway
hostname:

(service

inetd-service-type

(inetd-configuration

(entries (list

(inetd-entry

(name "echo")

(socket-type 'stream)

(protocol "tcp")

(wait? #f)

(user "root"))

(inetd-entry

(node "127.0.0.1")

(name "smtp")

(socket-type 'stream)

(protocol "tcp")

(wait? #f)

(user "root")

(program (file-append openssh "/bin/ssh"))

(arguments

'("ssh" "-qT" "-i" "/path/to/ssh_key"

"-W" "smtp-server:25" "user@hostname")))))))

See below for more details about inetd-configuration.

[Data Type]inetd-configuration
Data type representing the configuration of inetd.

program (default: (file-append inetutils "/libexec/inetd"))
The inetd executable to use.

entries (default: '())
A list of inetd service entries. Each entry should be created by the
inetd-entry constructor.

[Data Type]inetd-entry
Data type representing an entry in the inetd configuration. Each entry corresponds
to a socket where inetd will listen for requests.

node (default: #f)
Optional string, a comma-separated list of local addresses inetd should
use when listening for this service. See Section “Configuration file” in
GNU Inetutils for a complete description of all options.

name A string, the name must correspond to an entry in /etc/services.

socket-type

One of 'stream, 'dgram, 'raw, 'rdm or 'seqpacket.

protocol A string, must correspond to an entry in /etc/protocols.

Chapter 11: System Configuration 307

wait? (default: #t)
Whether inetd should wait for the server to exit before listening to new
service requests.

user A string containing the user (and, optionally, group) name of the user
as whom the server should run. The group name can be specified in
a suffix, separated by a colon or period, i.e. "user", "user:group" or
"user.group".

program (default: "internal")
The server program which will serve the requests, or "internal" if inetd
should use a built-in service.

arguments (default: '())
A list strings or file-like objects, which are the server program’s argu-
ments, starting with the zeroth argument, i.e. the name of the pro-
gram itself. For inetd’s internal services, this entry must be '() or
'("internal").

See Section “Configuration file” in GNU Inetutils for a more detailed discussion of
each configuration field.

[Variable]opendht-service-type
This is the type of the service running a OpenDHT (https://opendht.net) node,
dhtnode. The daemon can be used to host your own proxy service to the distributed
hash table (DHT), for example to connect to with Jami, among other applications.

Important: When using the OpenDHT proxy server, the IP addresses it
“sees” from the clients should be addresses reachable from other peers.
In practice this means that a publicly reachable address is best suited
for a proxy server, outside of your private network. For example, hosting
the proxy server on a IPv4 private local network and exposing it via port
forwarding could work for external peers, but peers local to the proxy
would have their private addresses shared with the external peers, leading
to connectivity problems.

The value of this service is a opendht-configuration object, as described below.

[Data Type]opendht-configuration
Available opendht-configuration fields are:

opendht (default: opendht) (type: file-like)
The opendht package to use.

peer-discovery? (default: #f) (type: boolean)
Whether to enable the multicast local peer discovery mechanism.

enable-logging? (default: #f) (type: boolean)
Whether to enable logging messages to syslog. It is disabled by default
as it is rather verbose.

debug? (default: #f) (type: boolean)
Whether to enable debug-level logging messages. This has no effect if
logging is disabled.

https://opendht.net

Chapter 11: System Configuration 308

bootstrap-host (default: "bootstrap.jami.net:4222") (type: maybe-string)
The node host name that is used to make the first connection to the
network. A specific port value can be provided by appending the :PORT

suffix. By default, it uses the Jami bootstrap nodes, but any host can
be specified here. It’s also possible to disable bootstrapping by explicitly
setting this field to the %unset-value value.

port (default: 4222) (type: maybe-number)
The UDP port to bind to. When left unspecified, an available port is
automatically selected.

proxy-server-port (type: maybe-number)
Spawn a proxy server listening on the specified port.

proxy-server-port-tls (type: maybe-number)
Spawn a proxy server listening to TLS connections on the specified port.

[Variable]tor-service-type
Type for a service that runs the Tor (https://torproject.org) anonymous net-
working daemon. The service is configured using a <tor-configuration> record.
By default, the Tor daemon runs as the tor unprivileged user, which is a member of
the tor group.

Services of this type can be extended by other services to specify onion services (in
addition to those already specified in tor-configuration) as in this example:

(simple-service 'my-extra-onion-service tor-service-type

(list (tor-onion-service-configuration

(name "extra-onion-service")

(mapping '((80 . "127.0.0.1:8080"))))))

[Data Type]tor-configuration

tor (default: tor)
The package that provides the Tor daemon. This package is expected
to provide the daemon at bin/tor relative to its output directory. The
default package is the Tor Project’s (https://www.torproject.org) im-
plementation.

config-file (default: (plain-file "empty" ""))
The configuration file to use. It will be appended to a default config-
uration file, and the final configuration file will be passed to tor via
its -f option. This may be any “file-like” object (see Section 8.12 [G-
Expressions], page 159). See man tor for details on the configuration file
syntax.

hidden-services (default: '())
The list of <tor-onion-service-configuration> records to use. For
any onion service you include in this list, appropriate configuration to
enable the onion service will be automatically added to the default con-
figuration file.

https://torproject.org
https://www.torproject.org

Chapter 11: System Configuration 309

socks-socket-type (default: 'tcp)
The default socket type that Tor should use for its SOCKS socket. This
must be either 'tcp or 'unix. If it is 'tcp, then by default Tor will listen
on TCP port 9050 on the loopback interface (i.e., localhost). If it is 'unix,
then Tor will listen on the UNIX domain socket /var/run/tor/socks-
sock, which will be made writable by members of the tor group.

If you want to customize the SOCKS socket in more detail, leave socks-
socket-type at its default value of 'tcp and use config-file to override
the default by providing your own SocksPort option.

control-socket? (default: #f)
Whether or not to provide a “control socket” by which Tor can be con-
trolled to, for instance, dynamically instantiate tor onion services. If
#t, Tor will listen for control commands on the UNIX domain socket
/var/run/tor/control-sock, which will be made writable by members
of the tor group.

[Data Type]tor-onion-service-configuration
Data Type representing a Tor Onion Service configuration. See the Tor project’s
documentation (https://community.torproject.org/onion-services/) for more
information. Available tor-onion-service-configuration fields are:

name (type: string)
Name for this Onion Service. This creates a /var/lib/tor/hidden-

services/name directory, where the hostname file contains the ‘.onion’
host name for this Onion Service.

mapping (type: alist)
Association list of port to address mappings. The following example:

'((22 . "127.0.0.1:22")

(80 . "127.0.0.1:8080"))

maps ports 22 and 80 of the Onion Service to the local ports 22 and 8080.

The (gnu services rsync) module provides the following services:

You might want an rsync daemon if you have files that you want available so anyone (or
just yourself) can download existing files or upload new files.

[Variable]rsync-service-type
This is the service type for the rsync (https://rsync.samba.org) daemon, The value
for this service type is a rsync-configuration record as in this example:

;; Export two directories over rsync. By default rsync listens on

;; all the network interfaces.

(service rsync-service-type

(rsync-configuration

(modules (list (rsync-module

(name "music")

(file-name "/srv/zik")

(read-only? #f))

https://community.torproject.org/onion-services/
https://community.torproject.org/onion-services/
https://rsync.samba.org

Chapter 11: System Configuration 310

(rsync-module

(name "movies")

(file-name "/home/charlie/movies"))))))

See below for details about rsync-configuration.

[Data Type]rsync-configuration
Data type representing the configuration for rsync-service.

package (default: rsync)
rsync package to use.

address (default: #f)
IP address on which rsync listens for incoming connections. If unspeci-
fied, it defaults to listening on all available addresses.

port-number (default: 873)
TCP port on which rsync listens for incoming connections. If port is less
than 1024 rsync needs to be started as the root user and group.

pid-file (default: "/var/run/rsyncd/rsyncd.pid")
Name of the file where rsync writes its PID.

lock-file (default: "/var/run/rsyncd/rsyncd.lock")
Name of the file where rsync writes its lock file.

log-file (default: "/var/log/rsyncd.log")
Name of the file where rsync writes its log file.

user (default: "root")
Owner of the rsync process.

group (default: "root")
Group of the rsync process.

uid (default: "rsyncd")
User name or user ID that file transfers to and from that module should
take place as when the daemon was run as root.

gid (default: "rsyncd")
Group name or group ID that will be used when accessing the module.

modules (default: %default-modules)
List of “modules”—i.e., directories exported over rsync. Each element
must be a rsync-module record, as described below.

[Data Type]rsync-module
This is the data type for rsync “modules”. A module is a directory exported over the
rsync protocol. The available fields are as follows:

name The module name. This is the name that shows up in URLs. For ex-
ample, if the module is called music, the corresponding URL will be
rsync://host.example.org/music.

file-name

Name of the directory being exported.

Chapter 11: System Configuration 311

comment (default: "")
Comment associated with the module. Client user interfaces may display
it when they obtain the list of available modules.

read-only? (default: #t)
Whether or not client will be able to upload files. If this is false, the
uploads will be authorized if permissions on the daemon side permit it.

chroot? (default: #t)
When this is true, the rsync daemon changes root to the module’s direc-
tory before starting file transfers with the client. This improves security,
but requires rsync to run as root.

timeout (default: 300)
Idle time in seconds after which the daemon closes a connection with the
client.

The (gnu services syncthing) module provides the following services:

You might want a syncthing daemon if you have files between two or more computers
and want to sync them in real time, safely protected from prying eyes.

[Variable]syncthing-service-type
This is the service type for the syncthing (https://syncthing.net/) daemon, The
value for this service type is a syncthing-configuration record as in this example:

(service syncthing-service-type

(syncthing-configuration (user "alice")))

Note: This service is also available for Guix Home, where it runs directly
with your user privileges (see Section 13.3.15 [Networking Home Services],
page 666).

See below for details about syncthing-configuration.

[Data Type]syncthing-configuration
Data type representing the configuration for syncthing-service-type.

syncthing (default: syncthing)
syncthing package to use.

arguments (default: ’())
List of command-line arguments passing to syncthing binary.

logflags (default: 0)
Sum of logging flags, see Syncthing documentation logflags (https://
docs.syncthing.net/users/syncthing.html#cmdoption-logflags).

user (default: #f)
The user as which the Syncthing service is to be run. This assumes that
the specified user exists.

group (default: "users")
The group as which the Syncthing service is to be run. This assumes that
the specified group exists.

https://syncthing.net/
https://docs.syncthing.net/users/syncthing.html#cmdoption-logflags
https://docs.syncthing.net/users/syncthing.html#cmdoption-logflags

Chapter 11: System Configuration 312

home (default: #f)
Common configuration and data directory. The default configuration
directory is $HOME of the specified Syncthing user.

Furthermore, (gnu services ssh) provides the following services.

[Variable]lsh-service-type
Type of the service that runs the GNU lsh secure shell (SSH) daemon, lshd. The
value for this service is a <lsh-configuration> object.

[Data Type]lsh-configuration
Data type representing the configuration of lshd.

lsh (default: lsh) (type: file-like)
The package object of the GNU lsh secure shell (SSH) daemon.

daemonic? (default: #t) (type: boolean)
Whether to detach from the controlling terminal.

host-key (default: "/etc/lsh/host-key") (type: string)
File containing the host key. This file must be readable by root only.

interfaces (default: '()) (type: list)
List of host names or addresses that lshd will listen on. If empty, lshd
listens for connections on all the network interfaces.

port-number (default: 22) (type: integer)
Port to listen on.

allow-empty-passwords? (default: #f) (type: boolean)
Whether to accept log-ins with empty passwords.

root-login? (default: #f) (type: boolean)
Whether to accept log-ins as root.

syslog-output? (default: #t) (type: boolean)
Whether to log lshd standard output to syslogd. This will make the
service depend on the existence of a syslogd service.

pid-file? (default: #f) (type: boolean)
When #t, lshd writes its PID to the file specified in pid-file.

pid-file (default: "/var/run/lshd.pid") (type: string)
File that lshd will write its PID to.

x11-forwarding? (default: #t) (type: boolean)
Whether to enable X11 forwarding.

tcp/ip-forwarding? (default: #t) (type: boolean)
Whether to enable TCP/IP forwarding.

password-authentication? (default: #t) (type: boolean)
Whether to accept log-ins using password authentication.

public-key-authentication? (default: #t) (type: boolean)
Whether to accept log-ins using public key authentication.

Chapter 11: System Configuration 313

initialize? (default: #t) (type: boolean)
When #f, it is up to the user to initialize the randomness generator (see
Section “lsh-make-seed” in LSH Manual), and to create a key pair with
the private key stored in file host-key (see Section “lshd basics” in LSH
Manual).

[Variable]openssh-service-type
This is the type for the OpenSSH (http://www.openssh.org) secure shell daemon,
sshd. Its value must be an openssh-configuration record as in this example:

(service openssh-service-type

(openssh-configuration

(x11-forwarding? #t)

(permit-root-login 'prohibit-password)

(authorized-keys

`(("alice" ,(local-file "alice.pub"))

("bob" ,(local-file "bob.pub"))))))

See below for details about openssh-configuration.

This service can be extended with extra authorized keys, as in this example:

(service-extension openssh-service-type

(const `(("charlie"

,(local-file "charlie.pub")))))

[Data Type]openssh-configuration
This is the configuration record for OpenSSH’s sshd.

openssh (default openssh)
The OpenSSH package to use.

pid-file (default: "/var/run/sshd.pid")
Name of the file where sshd writes its PID.

port-number (default: 22)
TCP port on which sshd listens for incoming connections.

max-connections (default: 200)
Hard limit on the maximum number of simultaneous client connections,
enforced by the inetd-style Shepherd service (see Section “Service De-
and Constructors” in The GNU Shepherd Manual).

permit-root-login (default: #f)
This field determines whether and when to allow logins as root. If #f,
root logins are disallowed; if #t, they are allowed. If it’s the sym-
bol 'prohibit-password, then root logins are permitted but not with
password-based authentication.

allow-empty-passwords? (default: #f)
When true, users with empty passwords may log in. When false, they
may not.

password-authentication? (default: #t)
When true, users may log in with their password. When false, they have
other authentication methods.

http://www.openssh.org

Chapter 11: System Configuration 314

public-key-authentication? (default: #t)
When true, users may log in using public key authentication. When false,
users have to use other authentication method.

Authorized public keys are stored in ~/.ssh/authorized_keys. This is
used only by protocol version 2.

x11-forwarding? (default: #f)
When true, forwarding of X11 graphical client connections is enabled—in
other words, ssh options -X and -Y will work.

allow-agent-forwarding? (default: #t)
Whether to allow agent forwarding.

allow-tcp-forwarding? (default: #t)
Whether to allow TCP forwarding.

gateway-ports? (default: #f)
Whether to allow gateway ports.

challenge-response-authentication? (default: #f)
Specifies whether challenge response authentication is allowed (e.g. via
PAM).

use-pam? (default: #t)
Enables the Pluggable Authentication Module interface. If set to #t,
this will enable PAM authentication using challenge-response-

authentication? and password-authentication?, in addition to
PAM account and session module processing for all authentication types.

Because PAM challenge response authentication usually serves
an equivalent role to password authentication, you should disable
either challenge-response-authentication? or password-

authentication?.

print-last-log? (default: #t)
Specifies whether sshd should print the date and time of the last user
login when a user logs in interactively.

subsystems (default: '(("sftp" "internal-sftp")))
Configures external subsystems (e.g. file transfer daemon).

This is a list of two-element lists, each of which containing the subsys-
tem name and a command (with optional arguments) to execute upon
subsystem request.

The command internal-sftp implements an in-process SFTP server.
Alternatively, one can specify the sftp-server command:

(service openssh-service-type

(openssh-configuration

(subsystems

`(("sftp" ,(file-append openssh "/libexec/sftp-server"))))))

accepted-environment (default: '())
List of strings describing which environment variables may be exported.

Chapter 11: System Configuration 315

Each string gets on its own line. See the AcceptEnv option in man sshd_

config.

This example allows ssh-clients to export the COLORTERM variable. It is
set by terminal emulators, which support colors. You can use it in your
shell’s resource file to enable colors for the prompt and commands if this
variable is set.

(service openssh-service-type

(openssh-configuration

(accepted-environment '("COLORTERM"))))

authorized-keys (default: '())
This is the list of authorized keys. Each element of the list is a user name
followed by one or more file-like objects that represent SSH public keys.
For example:

(openssh-configuration

(authorized-keys

`(("rekado" ,(local-file "rekado.pub"))

("chris" ,(local-file "chris.pub"))

("root" ,(local-file "rekado.pub") ,(local-file "chris.pub")))))

registers the specified public keys for user accounts rekado, chris, and
root.

Additional authorized keys can be specified via service-extension.

Note that this does not interfere with the use of ~/.ssh/authorized_
keys.

generate-host-keys? (default: #t)
Whether to generate host key pairs with ssh-keygen -A under /etc/ssh
if there are none.

Generating key pairs takes a few seconds when enough entropy is available
and is only done once. You might want to turn it off for instance in a
virtual machine that does not need it because host keys are provided in
some other way, and where the extra boot time is a problem.

log-level (default: 'info)
This is a symbol specifying the logging level: quiet, fatal, error, info,
verbose, debug, etc. See the man page for sshd_config for the full list
of level names.

extra-content (default: "")
This field can be used to append arbitrary text to the configuration file. It
is especially useful for elaborate configurations that cannot be expressed
otherwise. This configuration, for example, would generally disable root
logins, but permit them from one specific IP address:

(openssh-configuration

(extra-content "\

Match Address 192.168.0.1

PermitRootLogin yes"))

Chapter 11: System Configuration 316

[Variable]dropbear-service-type
Type of the service that runs the Dropbear SSH daemon (https://matt.ucc.asn.
au/dropbear/dropbear.html), whose value is a <dropbear-configuration> object.

For example, to specify a Dropbear service listening on port 1234:

(service dropbear-service-type (dropbear-configuration

(port-number 1234)))

[Data Type]dropbear-configuration
This data type represents the configuration of a Dropbear SSH daemon.

dropbear (default: dropbear)
The Dropbear package to use.

port-number (default: 22)
The TCP port where the daemon waits for incoming connections.

syslog-output? (default: #t)
Whether to enable syslog output.

pid-file (default: "/var/run/dropbear.pid")
File name of the daemon’s PID file.

root-login? (default: #f)
Whether to allow root logins.

allow-empty-passwords? (default: #f)
Whether to allow empty passwords.

password-authentication? (default: #t)
Whether to enable password-based authentication.

[Variable]autossh-service-type
This is the type for the AutoSSH (https://www.harding.motd.ca/autossh) pro-
gram that runs a copy of ssh and monitors it, restarting it as necessary should it
die or stop passing traffic. AutoSSH can be run manually from the command-line by
passing arguments to the binary autossh from the package autossh, but it can also
be run as a Guix service. This latter use case is documented here.

AutoSSH can be used to forward local traffic to a remote machine using an SSH
tunnel, and it respects the ~/.ssh/config of the user it is run as.

For example, to specify a service running autossh as the user pino and forwarding all
local connections to port 8081 to remote:8081 using an SSH tunnel, add this call to
the operating system’s services field:

(service autossh-service-type

(autossh-configuration

(user "pino")

(ssh-options (list "-T" "-N" "-L" "8081:localhost:8081" "remote.net"))))

[Data Type]autossh-configuration
This data type represents the configuration of an AutoSSH service.

user (default "autossh")
The user as which the AutoSSH service is to be run. This assumes that
the specified user exists.

https://matt.ucc.asn.au/dropbear/dropbear.html
https://matt.ucc.asn.au/dropbear/dropbear.html
https://www.harding.motd.ca/autossh

Chapter 11: System Configuration 317

poll (default 600)
Specifies the connection poll time in seconds.

first-poll (default #f)
Specifies how many seconds AutoSSH waits before the first connection
test. After this first test, polling is resumed at the pace defined in poll.
When set to #f, the first poll is not treated specially and will also use the
connection poll specified in poll.

gate-time (default 30)
Specifies how many seconds an SSH connection must be active before it
is considered successful.

log-level (default 1)
The log level, corresponding to the levels used by syslog—so 0 is the most
silent while 7 is the chattiest.

max-start (default #f)
The maximum number of times SSH may be (re)started before AutoSSH
exits. When set to #f, no maximum is configured and AutoSSH may
restart indefinitely.

message (default "")
The message to append to the echo message sent when testing connec-
tions.

port (default "0")
The ports used for monitoring the connection. When set to "0", moni-
toring is disabled. When set to "n" where n is a positive integer, ports n
and n+1 are used for monitoring the connection, such that port n is the
base monitoring port and n+1 is the echo port. When set to "n:m" where
n and m are positive integers, the ports n and m are used for monitoring
the connection, such that port n is the base monitoring port and m is the
echo port.

ssh-options (default '())
The list of command-line arguments to pass to ssh when it is run. Options
-f and -M are reserved for AutoSSH and may cause undefined behaviour.

[Variable]webssh-service-type
This is the type for the WebSSH (https://webssh.huashengdun.org/) program
that runs a web SSH client. WebSSH can be run manually from the command-line
by passing arguments to the binary wssh from the package webssh, but it can also
be run as a Guix service. This latter use case is documented here.

For example, to specify a service running WebSSH on loopback interface on port 8888
with reject policy with a list of allowed to connection hosts, and NGINX as a reverse-
proxy to this service listening for HTTPS connection, add this call to the operating
system’s services field:

(service webssh-service-type

(webssh-configuration (address "127.0.0.1")

(port 8888)

https://webssh.huashengdun.org/

Chapter 11: System Configuration 318

(policy 'reject)

(known-hosts '("localhost ecdsa-sha2-nistp256 AAAA..."

"127.0.0.1 ecdsa-sha2-nistp256 AAAA..."))))

(service nginx-service-type

(nginx-configuration

(server-blocks

(list

(nginx-server-configuration

(inherit %webssh-configuration-nginx)

(server-name '("webssh.example.com"))

(listen '("443 ssl"))

(ssl-certificate (letsencrypt-certificate "webssh.example.com"))

(ssl-certificate-key (letsencrypt-key "webssh.example.com"))

(locations

(cons (nginx-location-configuration

(uri "/.well-known")

(body '("root /var/www;")))

(nginx-server-configuration-locations %webssh-configuration-nginx))))))))

[Data Type]webssh-configuration
Data type representing the configuration for webssh-service.

package (default: webssh)
webssh package to use.

user-name (default: "webssh")
User name or user ID that file transfers to and from that module should
take place.

group-name (default: "webssh")
Group name or group ID that will be used when accessing the module.

address (default: #f)
IP address on which webssh listens for incoming connections.

port (default: 8888)
TCP port on which webssh listens for incoming connections.

policy (default: #f)
Connection policy. reject policy requires to specify known-hosts.

known-hosts (default: ’())
List of hosts which allowed for SSH connection from webssh.

log-file (default: "/var/log/webssh.log")
Name of the file where webssh writes its log file.

log-level (default: #f)
Logging level.

Chapter 11: System Configuration 319

[Variable]block-facebook-hosts-service-type
This service type adds a list of known Facebook hosts to the /etc/hosts file. (see
Section “Host Names” in The GNU C Library Reference Manual) Each line con-
tains an entry that maps a known server name of the Facebook on-line service—e.g.,
www.facebook.com—to unroutable IPv4 and IPv6 addresses.

This mechanism can prevent programs running locally, such as Web browsers, from
accessing Facebook.

The (gnu services avahi) provides the following definition.

[Variable]avahi-service-type
This is the service that runs avahi-daemon, a system-wide mDNS/DNS-SD respon-
der that allows for service discovery and “zero-configuration” host name lookups (see
https://avahi.org/). Its value must be an avahi-configuration record—see be-
low.

This service extends the name service cache daemon (nscd) so that it can resolve
.local host names using nss-mdns (https://0pointer.de/lennart/projects/
nss-mdns/). See Section 11.13 [Name Service Switch], page 589, for information on
host name resolution.

Additionally, add the avahi package to the system profile so that commands such as
avahi-browse are directly usable.

[Data Type]avahi-configuration
Data type representation the configuration for Avahi.

host-name (default: #f)
If different from #f, use that as the host name to publish for this machine;
otherwise, use the machine’s actual host name.

publish? (default: #t)
When true, allow host names and services to be published (broadcast)
over the network.

publish-workstation? (default: #t)
When true, avahi-daemon publishes the machine’s host name and IP ad-
dress via mDNS on the local network. To view the host names published
on your local network, you can run:

avahi-browse _workstation._tcp

wide-area? (default: #f)
When true, DNS-SD over unicast DNS is enabled.

ipv4? (default: #t)
ipv6? (default: #t)

These fields determine whether to use IPv4/IPv6 sockets.

domains-to-browse (default: '())
This is a list of domains to browse.

[Variable]openvswitch-service-type
This is the type of the Open vSwitch (https://www.openvswitch.org) service, whose
value should be an openvswitch-configuration object.

https://avahi.org/
https://0pointer.de/lennart/projects/nss-mdns/
https://0pointer.de/lennart/projects/nss-mdns/
https://www.openvswitch.org

Chapter 11: System Configuration 320

[Data Type]openvswitch-configuration
Data type representing the configuration of Open vSwitch, a multilayer virtual switch
which is designed to enable massive network automation through programmatic ex-
tension.

package (default: openvswitch)
Package object of the Open vSwitch.

[Variable]pagekite-service-type
This is the service type for the PageKite (https://pagekite.net) service, a tunnel-
ing solution for making localhost servers publicly visible, even from behind restric-
tive firewalls or NAT without forwarded ports. The value for this service type is a
pagekite-configuration record.

Here’s an example exposing the local HTTP and SSH daemons:

(service pagekite-service-type

(pagekite-configuration

(kites '("http:@kitename:localhost:80:@kitesecret"

"raw/22:@kitename:localhost:22:@kitesecret"))

(extra-file "/etc/pagekite.rc")))

[Data Type]pagekite-configuration
Data type representing the configuration of PageKite.

package (default: pagekite)
Package object of PageKite.

kitename (default: #f)
PageKite name for authenticating to the frontend server.

kitesecret (default: #f)
Shared secret for authenticating to the frontend server. You should prob-
ably put this inside extra-file instead.

frontend (default: #f)
Connect to the named PageKite frontend server instead of the
pagekite.net service.

kites (default: '("http:@kitename:localhost:80:@kitesecret"))
List of service kites to use. Exposes HTTP on port 80 by default. The
format is proto:kitename:host:port:secret.

extra-file (default: #f)
Extra configuration file to read, which you are expected to create man-
ually. Use this to add additional options and manage shared secrets
out-of-band.

[Variable]yggdrasil-service-type
The service type for connecting to the Yggdrasil network (https://
yggdrasil-network.github.io/), an early-stage implementation of a fully
end-to-end encrypted IPv6 network.

Yggdrasil provides name-independent routing with cryptographically gen-
erated addresses. Static addressing means you can keep the same address

https://pagekite.net
https://pagekite.net
https://yggdrasil-network.github.io/
https://yggdrasil-network.github.io/

Chapter 11: System Configuration 321

as long as you want, even if you move to a new location, or generate
a new address (by generating new keys) whenever you want. https://

yggdrasil-network.github.io/2018/07/28/addressing.html

Pass it a value of yggdrasil-configuration to connect it to public peers and/or
local peers.

Here is an example using public peers and a static address. The static signing and
encryption keys are defined in /etc/yggdrasil-private.conf (the default value for
config-file).

;; part of the operating-system declaration

(service yggdrasil-service-type

(yggdrasil-configuration

(autoconf? #f) ;; use only the public peers

(json-config

;; choose one from

;; https://github.com/yggdrasil-network/public-peers

'((peers . #("tcp://1.2.3.4:1337"))))

;; /etc/yggdrasil-private.conf is the default value for config-file

))

sample content for /etc/yggdrasil-private.conf

{

Your private key. DO NOT share this with anyone!

PrivateKey: 5c750...

}

[Data Type]yggdrasil-configuration
Data type representing the configuration of Yggdrasil.

package (default: yggdrasil)
Package object of Yggdrasil.

json-config (default: '())
Contents of /etc/yggdrasil.conf. Will be merged with
/etc/yggdrasil-private.conf. Note that these settings are stored in
the Guix store, which is readable to all users. Do not store your private
keys in it. See the output of yggdrasil -genconf for a quick overview
of valid keys and their default values.

autoconf? (default: #f)
Whether to use automatic mode. Enabling it makes Yggdrasil use a
dynamic IP and peer with IPv6 neighbors.

log-level (default: 'info)
How much detail to include in logs. Use 'debug for more detail.

log-to (default: 'stdout)
Where to send logs. By default, the service logs standard output to
/var/log/yggdrasil.log. The alternative is 'syslog, which sends out-
put to the running syslog service.

https://yggdrasil-network.github.io/2018/07/28/addressing.html
https://yggdrasil-network.github.io/2018/07/28/addressing.html

Chapter 11: System Configuration 322

config-file (default: "/etc/yggdrasil-private.conf")
What HJSON file to load sensitive data from. This is where private
keys should be stored, which are necessary to specify if you don’t want
a randomized address after each restart. Use #f to disable. Options
defined in this file take precedence over json-config. Use the output of
yggdrasil -genconf as a starting point. To configure a static address,
delete everything except PrivateKey option.

[Variable]ipfs-service-type
The service type for connecting to the IPFS network (https://ipfs.io), a global,
versioned, peer-to-peer file system. Pass it a ipfs-configuration to change the
ports used for the gateway and API.

Here’s an example configuration, using some non-standard ports:

(service ipfs-service-type

(ipfs-configuration

(gateway "/ip4/127.0.0.1/tcp/8880")

(api "/ip4/127.0.0.1/tcp/8881")))

[Data Type]ipfs-configuration
Data type representing the configuration of IPFS.

package (default: go-ipfs)
Package object of IPFS.

gateway (default: "/ip4/127.0.0.1/tcp/8082")
Address of the gateway, in ‘multiaddress’ format.

api (default: "/ip4/127.0.0.1/tcp/5001")
Address of the API endpoint, in ‘multiaddress’ format.

[Variable]keepalived-service-type
This is the type for the Keepalived (https://www.keepalived.org/) routing soft-
ware, keepalived. Its value must be an keepalived-configuration record as in
this example for master machine:

(service keepalived-service-type

(keepalived-configuration

(config-file (local-file "keepalived-master.conf"))))

where keepalived-master.conf:

vrrp_instance my-group {

state MASTER

interface enp9s0

virtual_router_id 100

priority 100

unicast_peer { 10.0.0.2 }

virtual_ipaddress {

10.0.0.4/24

}

}

https://ipfs.io
https://www.keepalived.org/

Chapter 11: System Configuration 323

and for backup machine:

(service keepalived-service-type

(keepalived-configuration

(config-file (local-file "keepalived-backup.conf"))))

where keepalived-backup.conf:

vrrp_instance my-group {

state BACKUP

interface enp9s0

virtual_router_id 100

priority 99

unicast_peer { 10.0.0.3 }

virtual_ipaddress {

10.0.0.4/24

}

}

11.10.6 Unattended Upgrades

Guix provides a service to perform unattended upgrades: periodically, the system automati-
cally reconfigures itself from the latest Guix. Guix System has several properties that make
unattended upgrades safe:

• upgrades are transactional (either the upgrade succeeds or it fails, but you cannot end
up with an “in-between” system state);

• the upgrade log is kept—you can view it with guix system list-generations—and
you can roll back to any previous generation, should the upgraded system fail to behave
as intended;

• channel code is authenticated so you know you can only run genuine code (see Chapter 6
[Channels], page 66);

• guix system reconfigure prevents downgrades, which makes it immune to downgrade
attacks.

To set up unattended upgrades, add an instance of unattended-upgrade-service-type
like the one below to the list of your operating system services:

(service unattended-upgrade-service-type)

The defaults above set up weekly upgrades: every Sunday at midnight. You do
not need to provide the operating system configuration file: it uses /run/current-

system/configuration.scm, which ensures it always uses your latest configuration—see
[provenance-service-type], page 622, for more information about this file.

There are several things that can be configured, in particular the periodicity and services
(daemons) to be restarted upon completion. When the upgrade is successful, the service
takes care of deleting system generations older that some threshold, as per guix system

delete-generations. See the reference below for details.

To ensure that upgrades are actually happening, you can run guix system describe.
To investigate upgrade failures, visit the unattended upgrade log file (see below).

Chapter 11: System Configuration 324

[Variable]unattended-upgrade-service-type
This is the service type for unattended upgrades. It sets up an mcron job (see
Section 11.10.2 [Scheduled Job Execution], page 283) that runs guix system

reconfigure from the latest version of the specified channels.

Its value must be a unattended-upgrade-configuration record (see below).

[Data Type]unattended-upgrade-configuration
This data type represents the configuration of the unattended upgrade service. The
following fields are available:

schedule (default: "30 01 * * 0")
This is the schedule of upgrades, expressed as a gexp containing an mcron
job schedule (see Section “Guile Syntax” in GNU mcron).

channels (default: #~%default-channels)
This gexp specifies the channels to use for the upgrade (see Chapter 6
[Channels], page 66). By default, the tip of the official guix channel is
used.

operating-system-file (default: "/run/current-system/configuration.scm")
This field specifies the operating system configuration file to use. The
default is to reuse the config file of the current configuration.

There are cases, though, where referring to /run/current-

system/configuration.scm is not enough, for instance because that
file refers to extra files (SSH public keys, extra configuration files, etc.)
via local-file and similar constructs. For those cases, we recommend
something along these lines:

(unattended-upgrade-configuration

(operating-system-file

(file-append (local-file "." "config-dir" #:recursive? #t)

"/config.scm")))

The effect here is to import all of the current directory into the store,
and to refer to config.scm within that directory. Therefore, uses of
local-file within config.scm will work as expected. See Section 8.12
[G-Expressions], page 159, for information about local-file and file-

append.

operating-system-expression (default: #f)
This field specifies an expression that evaluates to the operating system to
use for the upgrade. If no value is provided the operating-system-file
field value is used.

(unattended-upgrade-configuration

(operating-system-expression

#~(@ (guix system install) installation-os)))

services-to-restart (default: '(mcron))
This field specifies the Shepherd services to restart when the upgrade
completes.

Chapter 11: System Configuration 325

Those services are restarted right away upon completion, as with herd

restart, which ensures that the latest version is running—remember
that by default guix system reconfigure only restarts services that are
not currently running, which is conservative: it minimizes disruption but
leaves outdated services running.

Use herd status to find out candidates for restarting. See Section 11.10
[Services], page 263, for general information about services. Common
services to restart would include ntpd and ssh-daemon.

By default, the mcron service is restarted. This ensures that the latest
version of the unattended upgrade job will be used next time.

system-expiration (default: (* 3 30 24 3600))
This is the expiration time in seconds for system generations. System
generations older that this amount of time are deleted with guix system

delete-generations when an upgrade completes.

Note: The unattended upgrade service does not run the
garbage collector. You will probably want to set up your
own mcron job to run guix gc periodically.

maximum-duration (default: 3600)
Maximum duration in seconds for the upgrade; past that time, the up-
grade aborts.

This is primarily useful to ensure the upgrade does not end up rebuilding
or re-downloading “the world”.

log-file (default: "/var/log/unattended-upgrade.log")
File where unattended upgrades are logged.

11.10.7 X Window

Support for the X Window graphical display system—specifically Xorg—is provided by the
(gnu services xorg) module. Note that there is no xorg-service procedure. Instead,
the X server is started by the login manager, by default the GNOME Display Manager
(GDM).

GDM of course allows users to log in into window managers and desktop environments
other than GNOME; for those using GNOME, GDM is required for features such as auto-
matic screen locking.

To use X11, you must install at least one window manager—for example the
windowmaker or openbox packages—preferably by adding it to the packages field of your
operating system definition (see Section 11.3 [operating-system Reference], page 242).

GDM also supports Wayland: it can itself use Wayland instead of X11 for its user
interface, and it can also start Wayland sessions. The former is required for the latter, to
enable, set wayland? to #t in gdm-configuration.

[Variable]gdm-service-type
This is the type for the GNOME Desktop Manager (https://wiki.gnome.org/
Projects/GDM/) (GDM), a program that manages graphical display servers and han-
dles graphical user logins. Its value must be a gdm-configuration (see below).

https://wiki.gnome.org/Projects/GDM/
https://wiki.gnome.org/Projects/GDM/

Chapter 11: System Configuration 326

GDM looks for session types described by the .desktop files in /run/current-

system/profile/share/xsessions (for X11 sessions) and /run/current-

system/profile/share/wayland-sessions (for Wayland sessions) and allows
users to choose a session from the log-in screen. Packages such as gnome, xfce, i3
and sway provide .desktop files; adding them to the system-wide set of packages
automatically makes them available at the log-in screen.

In addition, ~/.xsession files are honored. When available, ~/.xsession must be
an executable that starts a window manager and/or other X clients.

[Data Type]gdm-configuration

auto-login? (default: #f)
default-user (default: #f)

When auto-login? is false, GDM presents a log-in screen.

When auto-login? is true, GDM logs in directly as default-user.

auto-suspend? (default #t)
When true, GDM will automatically suspend to RAM when nobody is
physically connected. When a machine is used via remote desktop or SSH,
this should be set to false to avoid GDM interrupting remote sessions or
rendering the machine unavailable.

debug? (default: #f)
When true, GDM writes debug messages to its log.

gnome-shell-assets (default: ...)
List of GNOME Shell assets needed by GDM: icon theme, fonts, etc.

xorg-configuration (default: (xorg-configuration))
Configuration of the Xorg graphical server.

x-session (default: (xinitrc))
Script to run before starting a X session.

xdmcp? (default: #f)
When true, enable the X Display Manager Control Protocol (XDMCP).
This should only be enabled in trusted environments, as the protocol is
not secure. When enabled, GDM listens for XDMCP queries on the UDP
port 177.

dbus-daemon (default: dbus-daemon-wrapper)
File name of the dbus-daemon executable.

gdm (default: gdm)
The GDM package to use.

wayland? (default: #f)
When true, enables Wayland in GDM, necessary to use Wayland sessions.

wayland-session (default: gdm-wayland-session-wrapper)
The Wayland session wrapper to use, needed to setup the environment.

Chapter 11: System Configuration 327

[Variable]slim-service-type
This is the type for the SLiM graphical login manager for X11.

Like GDM, SLiM looks for session types described by .desktop files and allows users
to choose a session from the log-in screen using F1. It also honors ~/.xsession files.

Unlike GDM, SLiM does not spawn the user session on a different VT after logging
in, which means that you can only start one graphical session. If you want to be able
to run multiple graphical sessions at the same time you have to add multiple SLiM
services to your system services. The following example shows how to replace the
default GDM service with two SLiM services on tty7 and tty8.

(use-modules (gnu services)

(gnu services desktop)

(gnu services xorg))

(operating-system

;; ...

(services (cons* (service slim-service-type (slim-configuration

(display ":0")

(vt "vt7")))

(service slim-service-type (slim-configuration

(display ":1")

(vt "vt8")))

(modify-services %desktop-services

(delete gdm-service-type)))))

[Data Type]slim-configuration
Data type representing the configuration of slim-service-type.

allow-empty-passwords? (default: #t)
Whether to allow logins with empty passwords.

gnupg? (default: #f)
If enabled, pam-gnupg will attempt to automatically unlock the user’s
GPG keys with the login password via gpg-agent. The keygrips
of all keys to be unlocked should be written to ~/.pam-gnupg,
and can be queried with gpg -K --with-keygrip. Presetting
passphrases must be enabled by adding allow-preset-passphrase in
~/.gnupg/gpg-agent.conf.

auto-login? (default: #f)
default-user (default: "")

When auto-login? is false, SLiM presents a log-in screen.

When auto-login? is true, SLiM logs in directly as default-user.

theme (default: %default-slim-theme)
theme-name (default: %default-slim-theme-name)

The graphical theme to use and its name.

auto-login-session (default: #f)
If true, this must be the name of the executable to start as the default
session—e.g., (file-append windowmaker "/bin/windowmaker").

Chapter 11: System Configuration 328

If false, a session described by one of the available .desktop files in
/run/current-system/profile and ~/.guix-profile will be used.

Note: You must install at least one window manager in the
system profile or in your user profile. Failing to do that, if
auto-login-session is false, you will be unable to log in.

xorg-configuration (default (xorg-configuration))
Configuration of the Xorg graphical server.

display (default ":0")
The display on which to start the Xorg graphical server.

vt (default "vt7")
The VT on which to start the Xorg graphical server.

xauth (default: xauth)
The XAuth package to use.

shepherd (default: shepherd)
The Shepherd package used when invoking halt and reboot.

sessreg (default: sessreg)
The sessreg package used in order to register the session.

slim (default: slim)
The SLiM package to use.

[Variable]%default-theme
[Variable]%default-theme-name

The default SLiM theme and its name.

[Variable]sddm-service-type
This is the type of the service to run the SDDM display manager (https://github.
com/sddm/sddm). Its value must be a sddm-configuration record (see below).

Here’s an example use:

(service sddm-service-type

(sddm-configuration

(auto-login-user "alice")

(auto-login-session "xfce.desktop")))

[Data Type]sddm-configuration
This data type represents the configuration of the SDDM login manager. The avail-
able fields are:

sddm (default: sddm)
The SDDM package to use.

display-server (default: "x11")
Select display server to use for the greeter. Valid values are ‘"x11"’ or
‘"wayland"’.

numlock (default: "on")
Valid values are ‘"on"’, ‘"off"’ or ‘"none"’.

https://github.com/sddm/sddm
https://github.com/sddm/sddm

Chapter 11: System Configuration 329

halt-command (default #~(string-append #$shepherd "/sbin/halt"))
Command to run when halting.

reboot-command (default #~(string-append #$shepherd "/sbin/reboot"))
Command to run when rebooting.

theme (default "maldives")
Theme to use. Default themes provided by SDDM are ‘"elarun"’,
‘"maldives"’ or ‘"maya"’.

themes-directory (default "/run/current-system/profile/share/sddm/themes")
Directory to look for themes.

faces-directory (default "/run/current-system/profile/share/sddm/faces")
Directory to look for faces.

default-path (default "/run/current-system/profile/bin")
Default PATH to use.

minimum-uid (default: 1000)
Minimum UID displayed in SDDM and allowed for log-in.

maximum-uid (default: 2000)
Maximum UID to display in SDDM.

remember-last-user? (default #t)
Remember last user.

remember-last-session? (default #t)
Remember last session.

hide-users (default "")
Usernames to hide from SDDM greeter.

hide-shells (default #~(string-append #$shadow "/sbin/nologin"))
Users with shells listed will be hidden from the SDDM greeter.

session-command (default #~(string-append #$sddm

"/share/sddm/scripts/wayland-session"))
Script to run before starting a wayland session.

sessions-directory (default
"/run/current-system/profile/share/wayland-sessions")

Directory to look for desktop files starting wayland sessions.

xorg-configuration (default (xorg-configuration))
Configuration of the Xorg graphical server.

xauth-path (default #~(string-append #$xauth "/bin/xauth"))
Path to xauth.

xephyr-path (default #~(string-append #$xorg-server "/bin/Xephyr"))
Path to Xephyr.

xdisplay-start (default #~(string-append #$sddm

"/share/sddm/scripts/Xsetup"))
Script to run after starting xorg-server.

Chapter 11: System Configuration 330

xdisplay-stop (default #~(string-append #$sddm

"/share/sddm/scripts/Xstop"))
Script to run before stopping xorg-server.

xsession-command (default: xinitrc)
Script to run before starting a X session.

xsessions-directory (default: "/run/current-system/profile/share/xsessions")
Directory to look for desktop files starting X sessions.

minimum-vt (default: 7)
Minimum VT to use.

auto-login-user (default "")
User account that will be automatically logged in. Setting this to the
empty string disables auto-login.

auto-login-session (default "")
The .desktop file name to use as the auto-login session, or the empty
string.

relogin? (default #f)
Relogin after logout.

[Variable]lightdm-service-type
This is the type of the service to run the LightDM display manager (https://github.
com/canonical/lightdm). Its value must be a lightdm-configuration record,
which is documented below. Among its distinguishing features are TigerVNC inte-
gration for easily remoting your desktop as well as support for the XDMCP protocol,
which can be used by remote clients to start a session from the login manager.

In its most basic form, it can be used simply as:

(service lightdm-service-type)

A more elaborate example making use of the VNC capabilities and enabling more
features and verbose logs could look like:

(service lightdm-service-type

(lightdm-configuration

(allow-empty-passwords? #t)

(xdmcp? #t)

(vnc-server? #t)

(vnc-server-command

(file-append tigervnc-server "/bin/Xvnc"

" -SecurityTypes None"))

(seats

(list (lightdm-seat-configuration

(name "*")

(user-session "ratpoison"))))))

[Data Type]lightdm-configuration
Available lightdm-configuration fields are:

lightdm (default: lightdm) (type: file-like)
The lightdm package to use.

https://github.com/canonical/lightdm
https://github.com/canonical/lightdm

Chapter 11: System Configuration 331

allow-empty-passwords? (default: #f) (type: boolean)
Whether users not having a password set can login.

debug? (default: #f) (type: boolean)
Enable verbose output.

xorg-configuration (type: xorg-configuration)
The default Xorg server configuration to use to generate the Xorg server
start script. It can be refined per seat via the xserver-command of the
<lightdm-seat-configuration> record, if desired.

greeters (type: list-of-greeter-configurations)
The LightDM greeter configurations specifying the greeters to use.

seats (type: list-of-seat-configurations)
The seat configurations to use. A LightDM seat is akin to a user.

xdmcp? (default: #f) (type: boolean)
Whether a XDMCP server should listen on port UDP 177.

xdmcp-listen-address (type: maybe-string)
The host or IP address the XDMCP server listens for incoming connec-
tions. When unspecified, listen on for any hosts/IP addresses.

vnc-server? (default: #f) (type: boolean)
Whether a VNC server is started.

vnc-server-command (type: file-like)
The Xvnc command to use for the VNC server, it’s possible to provide
extra options not otherwise exposed along the command, for example to
disable security:

(vnc-server-command (file-append tigervnc-server "/bin/Xvnc"

" -SecurityTypes None"))

Or to set a PasswordFile for the classic (unsecure) VncAuth mechanism:

(vnc-server-command (file-append tigervnc-server "/bin/Xvnc"

" -PasswordFile /var/lib/lightdm/.vnc/passwd"))

The password file should be manually created using the vncpasswd com-
mand. Note that LightDM will create new sessions for VNC users, which
means they need to authenticate in the same way as local users would.

vnc-server-listen-address (type: maybe-string)
The host or IP address the VNC server listens for incoming connections.
When unspecified, listen for any hosts/IP addresses.

vnc-server-port (default: 5900) (type: number)
The TCP port the VNC server should listen to.

extra-config (default: '()) (type: list-of-strings)
Extra configuration values to append to the LightDM configuration file.

[Data Type]lightdm-gtk-greeter-configuration
Available lightdm-gtk-greeter-configuration fields are:

lightdm-gtk-greeter (default: lightdm-gtk-greeter) (type: file-like)
The lightdm-gtk-greeter package to use.

Chapter 11: System Configuration 332

assets (default: (adwaita-icon-theme gnome-themes-extra

hicolor-icon-theme)) (type: list-of-file-likes)
The list of packages complementing the greeter, such as package providing
icon themes.

theme-name (default: "Adwaita") (type: string)
The name of the theme to use.

icon-theme-name (default: "Adwaita") (type: string)
The name of the icon theme to use.

cursor-theme-name (default: "Adwaita") (type: string)
The name of the cursor theme to use.

cursor-theme-size (default: 16) (type: number)
The size to use for the cursor theme.

allow-debugging? (type: maybe-boolean)
Set to #t to enable debug log level.

background (type: file-like)
The background image to use.

at-spi-enabled? (default: #f) (type: boolean)
Enable accessibility support through the Assistive Technology Service
Provider Interface (AT-SPI).

a11y-states (default: (contrast font keyboard reader)) (type:
list-of-a11y-states)

The accessibility features to enable, given as list of symbols.

reader (type: maybe-file-like)
The command to use to launch a screen reader.

extra-config (default: '()) (type: list-of-strings)
Extra configuration values to append to the LightDM GTK Greeter con-
figuration file.

[Data Type]lightdm-seat-configuration
Available lightdm-seat-configuration fields are:

name (type: seat-name)
The name of the seat. An asterisk (*) can be used in the name to apply
the seat configuration to all the seat names it matches.

user-session (type: maybe-string)
The session to use by default. The session name must be provided as a
lowercase string, such as "gnome", "ratpoison", etc.

type (default: local) (type: seat-type)
The type of the seat, either the local or xremote symbol.

autologin-user (type: maybe-string)
The username to automatically log in with by default.

Chapter 11: System Configuration 333

greeter-session (default: lightdm-gtk-greeter) (type: greeter-session)
The greeter session to use, specified as a symbol. Currently, only
lightdm-gtk-greeter is supported.

xserver-command (type: maybe-file-like)
The Xorg server command to run.

session-wrapper (type: file-like)
The xinitrc session wrapper to use.

extra-config (default: '()) (type: list-of-strings)
Extra configuration values to append to the seat configuration section.

[Data Type]xorg-configuration
This data type represents the configuration of the Xorg graphical display server. Note
that there is no Xorg service; instead, the X server is started by a “display manager”
such as GDM, SDDM, LightDM or SLiM. Thus, the configuration of these display
managers aggregates an xorg-configuration record.

modules (default: %default-xorg-modules)
This is a list of module packages loaded by the Xorg server—e.g., xf86-
video-vesa, xf86-input-keyboard, and so on.

fonts (default: %default-xorg-fonts)
This is a list of font directories to add to the server’s font path.

drivers (default: '())
This must be either the empty list, in which case Xorg chooses a graphics
driver automatically, or a list of driver names that will be tried in this
order—e.g., '("modesetting" "vesa").

resolutions (default: '())
When resolutions is the empty list, Xorg chooses an appropriate screen
resolution. Otherwise, it must be a list of resolutions—e.g., '((1024 768)

(640 480)).

keyboard-layout (default: #f)
If this is #f, Xorg uses the default keyboard layout—usually US English
(“qwerty”) for a 105-key PC keyboard.

Otherwise this must be a keyboard-layout object specifying the key-
board layout in use when Xorg is running. See Section 11.8 [Keyboard
Layout], page 259, for more information on how to specify the keyboard
layout.

extra-config (default: '())
This is a list of strings or objects appended to the configuration file. It
is used to pass extra text to be added verbatim to the configuration file.

server (default: xorg-server)
This is the package providing the Xorg server.

server-arguments (default: %default-xorg-server-arguments)
This is the list of command-line arguments to pass to the X server. The
default is -nolisten tcp.

Chapter 11: System Configuration 334

[Procedure]set-xorg-configuration config [login-manager-service-type]
Tell the log-in manager (of type login-manager-service-type) to use config, an <xorg-

configuration> record.

Since the Xorg configuration is embedded in the log-in manager’s configuration—e.g.,
gdm-configuration—this procedure provides a shorthand to set the Xorg configu-
ration.

[Procedure]xorg-start-command [config]
Return a startx script in which the modules, fonts, etc. specified in config, are
available. The result should be used in place of startx.

Usually the X server is started by a login manager.

[Variable]screen-locker-service-type
Type for a service that adds a package for a screen locker or screen saver to the set
of setuid programs and/or add a PAM entry for it. The value for this service is a
<screen-locker-configuration> object.

While the default behavior is to setup both a setuid program and PAM entry, these
two methods are redundant. Screen locker programs may not execute when PAM is
configured and setuid is set on their executable. In this case, using-setuid? can
be set to #f.

For example, to make XlockMore usable:

(service screen-locker-service-type

(screen-locker-configuration

(name "xlock")

(program (file-append xlockmore "/bin/xlock"))))

makes the good ol’ XlockMore usable.

For example, swaylock fails to execute when compiled with PAM support and setuid
enabled. One can thus disable setuid:

(service screen-locker-service-type

(screen-locker-configuration

(name "swaylock")

(program (file-append swaylock "/bin/swaylock"))

(using-pam? #t)

(using-setuid? #f)))

[Data Type]screen-locker-configuration
Available screen-locker-configuration fields are:

name (type: string)
Name of the screen locker.

program (type: file-like)
Path to the executable for the screen locker as a G-Expression.

allow-empty-password? (default: #f) (type: boolean)
Whether to allow empty passwords.

using-pam? (default: #t) (type: boolean)
Whether to setup PAM entry.

Chapter 11: System Configuration 335

using-setuid? (default: #t) (type: boolean)
Whether to setup program as setuid binary.

11.10.8 Printing Services

The (gnu services cups) module provides a Guix service definition for the CUPS printing
service. To add printer support to a Guix system, add a cups-service to the operating
system definition:

[Variable]cups-service-type
The service type for the CUPS print server. Its value should be a valid CUPS con-
figuration (see below). To use the default settings, simply write:

(service cups-service-type)

The CUPS configuration controls the basic things about your CUPS installation: what
interfaces it listens on, what to do if a print job fails, how much logging to do, and so on.
To actually add a printer, you have to visit the http://localhost:631 URL, or use a tool
such as GNOME’s printer configuration services. By default, configuring a CUPS service
will generate a self-signed certificate if needed, for secure connections to the print server.

Suppose you want to enable the Web interface of CUPS and also add support for Epson
printers via the epson-inkjet-printer-escpr package and for HP printers via the hplip-
minimal package. You can do that directly, like this (you need to use the (gnu packages

cups) module):

(service cups-service-type

(cups-configuration

(web-interface? #t)

(extensions

(list cups-filters epson-inkjet-printer-escpr hplip-minimal))))

Note: If you wish to use the Qt5 based GUI which comes with the hplip package
then it is suggested that you install the hplip package, either in your OS
configuration file or as your user.

The available configuration parameters follow. Each parameter definition is preceded
by its type; for example, ‘string-list foo’ indicates that the foo parameter should be
specified as a list of strings. There is also a way to specify the configuration as a string, if
you have an old cupsd.conf file that you want to port over from some other system; see
the end for more details.

Available cups-configuration fields are:

[cups-configuration parameter]package cups
The CUPS package.

[cups-configuration parameter]package-list extensions (default: (list
brlaser cups-filters epson-inkjet-printer-escpr
foomatic-filters hplip-minimal splix))

Drivers and other extensions to the CUPS package.

[cups-configuration parameter]files-configuration files-configuration
Configuration of where to write logs, what directories to use for print spools, and
related privileged configuration parameters.

http://localhost:631

Chapter 11: System Configuration 336

Available files-configuration fields are:

[files-configuration parameter]log-location access-log
Defines the access log filename. Specifying a blank filename disables access log
generation. The value stderr causes log entries to be sent to the standard
error file when the scheduler is running in the foreground, or to the system log
daemon when run in the background. The value syslog causes log entries to be
sent to the system log daemon. The server name may be included in filenames
using the string %s, as in /var/log/cups/%s-access_log.

Defaults to ‘"/var/log/cups/access_log"’.

[files-configuration parameter]file-name cache-dir
Where CUPS should cache data.

Defaults to ‘"/var/cache/cups"’.

[files-configuration parameter]string config-file-perm
Specifies the permissions for all configuration files that the scheduler writes.

Note that the permissions for the printers.conf file are currently masked to
only allow access from the scheduler user (typically root). This is done because
printer device URIs sometimes contain sensitive authentication information that
should not be generally known on the system. There is no way to disable this
security feature.

Defaults to ‘"0640"’.

[files-configuration parameter]log-location error-log
Defines the error log filename. Specifying a blank filename disables error log
generation. The value stderr causes log entries to be sent to the standard
error file when the scheduler is running in the foreground, or to the system log
daemon when run in the background. The value syslog causes log entries to be
sent to the system log daemon. The server name may be included in filenames
using the string %s, as in /var/log/cups/%s-error_log.

Defaults to ‘"/var/log/cups/error_log"’.

[files-configuration parameter]string fatal-errors
Specifies which errors are fatal, causing the scheduler to exit. The kind strings
are:

none No errors are fatal.

all All of the errors below are fatal.

browse Browsing initialization errors are fatal, for example failed connec-
tions to the DNS-SD daemon.

config Configuration file syntax errors are fatal.

listen Listen or Port errors are fatal, except for IPv6 failures on the loop-
back or any addresses.

log Log file creation or write errors are fatal.

Chapter 11: System Configuration 337

permissions

Bad startup file permissions are fatal, for example shared TLS cer-
tificate and key files with world-read permissions.

Defaults to ‘"all -browse"’.

[files-configuration parameter]boolean file-device?
Specifies whether the file pseudo-device can be used for new printer queues.
The URI file:///dev/null is always allowed.

Defaults to ‘#f’.

[files-configuration parameter]string group
Specifies the group name or ID that will be used when executing external pro-
grams.

Defaults to ‘"lp"’.

[files-configuration parameter]string log-file-group
Specifies the group name or ID that will be used for log files.

Defaults to ‘"lpadmin"’.

[files-configuration parameter]string log-file-perm
Specifies the permissions for all log files that the scheduler writes.

Defaults to ‘"0644"’.

[files-configuration parameter]log-location page-log
Defines the page log filename. Specifying a blank filename disables page log
generation. The value stderr causes log entries to be sent to the standard
error file when the scheduler is running in the foreground, or to the system log
daemon when run in the background. The value syslog causes log entries to be
sent to the system log daemon. The server name may be included in filenames
using the string %s, as in /var/log/cups/%s-page_log.

Defaults to ‘"/var/log/cups/page_log"’.

[files-configuration parameter]string remote-root
Specifies the username that is associated with unauthenticated accesses by
clients claiming to be the root user. The default is remroot.

Defaults to ‘"remroot"’.

[files-configuration parameter]file-name request-root
Specifies the directory that contains print jobs and other HTTP request data.

Defaults to ‘"/var/spool/cups"’.

[files-configuration parameter]sandboxing sandboxing
Specifies the level of security sandboxing that is applied to print filters, back-
ends, and other child processes of the scheduler; either relaxed or strict.
This directive is currently only used/supported on macOS.

Defaults to ‘strict’.

file:///dev/null

Chapter 11: System Configuration 338

[files-configuration parameter]file-name server-keychain
Specifies the location of TLS certificates and private keys. CUPS will look for
public and private keys in this directory: .crt files for PEM-encoded certificates
and corresponding .key files for PEM-encoded private keys.

Defaults to ‘"/etc/cups/ssl"’.

[files-configuration parameter]file-name server-root
Specifies the directory containing the server configuration files.

Defaults to ‘"/etc/cups"’.

[files-configuration parameter]boolean sync-on-close?
Specifies whether the scheduler calls fsync(2) after writing configuration or state
files.

Defaults to ‘#f’.

[files-configuration parameter]space-separated-string-list
system-group

Specifies the group(s) to use for @SYSTEM group authentication.

[files-configuration parameter]file-name temp-dir
Specifies the directory where temporary files are stored.

Defaults to ‘"/var/spool/cups/tmp"’.

[files-configuration parameter]string user
Specifies the user name or ID that is used when running external programs.

Defaults to ‘"lp"’.

[files-configuration parameter]string set-env
Set the specified environment variable to be passed to child processes.

Defaults to ‘"variable value"’.

[cups-configuration parameter]access-log-level access-log-level
Specifies the logging level for the AccessLog file. The config level logs when printers
and classes are added, deleted, or modified and when configuration files are accessed
or updated. The actions level logs when print jobs are submitted, held, released,
modified, or canceled, and any of the conditions for config. The all level logs all
requests.

Defaults to ‘actions’.

[cups-configuration parameter]boolean auto-purge-jobs?
Specifies whether to purge job history data automatically when it is no longer required
for quotas.

Defaults to ‘#f’.

[cups-configuration parameter]comma-separated-string-list
browse-dns-sd-sub-types

Specifies a list of DNS-SD sub-types to advertise for each shared printer.

The default ‘(list "_cups" "_print" "_universal")’ tells clients that CUPS shar-
ing, IPP Everywhere, AirPrint, and Mopria are supported.

Chapter 11: System Configuration 339

[cups-configuration parameter]browse-local-protocols
browse-local-protocols

Specifies which protocols to use for local printer sharing.

Defaults to ‘dnssd’.

[cups-configuration parameter]boolean browse-web-if?
Specifies whether the CUPS web interface is advertised.

Defaults to ‘#f’.

[cups-configuration parameter]boolean browsing?
Specifies whether shared printers are advertised.

Defaults to ‘#f’.

[cups-configuration parameter]default-auth-type default-auth-type
Specifies the default type of authentication to use.

Defaults to ‘Basic’.

[cups-configuration parameter]default-encryption default-encryption
Specifies whether encryption will be used for authenticated requests.

Defaults to ‘Required’.

[cups-configuration parameter]string default-language
Specifies the default language to use for text and web content.

Defaults to ‘"en"’.

[cups-configuration parameter]string default-paper-size
Specifies the default paper size for new print queues. ‘"Auto"’ uses a locale-specific
default, while ‘"None"’ specifies there is no default paper size. Specific size names are
typically ‘"Letter"’ or ‘"A4"’.

Defaults to ‘"Auto"’.

[cups-configuration parameter]string default-policy
Specifies the default access policy to use.

Defaults to ‘"default"’.

[cups-configuration parameter]boolean default-shared?
Specifies whether local printers are shared by default.

Defaults to ‘#t’.

[cups-configuration parameter]non-negative-integer
dirty-clean-interval

Specifies the delay for updating of configuration and state files, in seconds. A value of
0 causes the update to happen as soon as possible, typically within a few milliseconds.

Defaults to ‘30’.

Chapter 11: System Configuration 340

[cups-configuration parameter]error-policy error-policy
Specifies what to do when an error occurs. Possible values are abort-job, which
will discard the failed print job; retry-job, which will retry the job at a later time;
retry-current-job, which retries the failed job immediately; and stop-printer,
which stops the printer.

Defaults to ‘stop-printer’.

[cups-configuration parameter]non-negative-integer filter-limit
Specifies the maximum cost of filters that are run concurrently, which can be used
to minimize disk, memory, and CPU resource problems. A limit of 0 disables filter
limiting. An average print to a non-PostScript printer needs a filter limit of about
200. A PostScript printer needs about half that (100). Setting the limit below these
thresholds will effectively limit the scheduler to printing a single job at any time.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer filter-nice
Specifies the scheduling priority of filters that are run to print a job. The nice value
ranges from 0, the highest priority, to 19, the lowest priority.

Defaults to ‘0’.

[cups-configuration parameter]host-name-lookups host-name-lookups
Specifies whether to do reverse lookups on connecting clients. The double setting
causes cupsd to verify that the hostname resolved from the address matches one of
the addresses returned for that hostname. Double lookups also prevent clients with
unregistered addresses from connecting to your server. Only set this option to #t or
double if absolutely required.

Defaults to ‘#f’.

[cups-configuration parameter]non-negative-integer job-kill-delay
Specifies the number of seconds to wait before killing the filters and backend associated
with a canceled or held job.

Defaults to ‘30’.

[cups-configuration parameter]non-negative-integer job-retry-interval
Specifies the interval between retries of jobs in seconds. This is typically used for fax
queues but can also be used with normal print queues whose error policy is retry-job
or retry-current-job.

Defaults to ‘30’.

[cups-configuration parameter]non-negative-integer job-retry-limit
Specifies the number of retries that are done for jobs. This is typically used for fax
queues but can also be used with normal print queues whose error policy is retry-job
or retry-current-job.

Defaults to ‘5’.

[cups-configuration parameter]boolean keep-alive?
Specifies whether to support HTTP keep-alive connections.

Defaults to ‘#t’.

Chapter 11: System Configuration 341

[cups-configuration parameter]non-negative-integer limit-request-body
Specifies the maximum size of print files, IPP requests, and HTML form data. A
limit of 0 disables the limit check.

Defaults to ‘0’.

[cups-configuration parameter]multiline-string-list listen
Listens on the specified interfaces for connections. Valid values are of the form ad-
dress:port, where address is either an IPv6 address enclosed in brackets, an IPv4
address, or * to indicate all addresses. Values can also be file names of local UNIX
domain sockets. The Listen directive is similar to the Port directive but allows you
to restrict access to specific interfaces or networks.

[cups-configuration parameter]location-access-control-list
location-access-controls

Specifies a set of additional access controls.

Available location-access-controls fields are:

[location-access-controls parameter]file-name path
Specifies the URI path to which the access control applies.

[location-access-controls parameter]access-control-list
access-controls

Access controls for all access to this path, in the same format as the access-

controls of operation-access-control.

Defaults to ‘'()’.

[location-access-controls parameter]method-access-control-list
method-access-controls

Access controls for method-specific access to this path.

Defaults to ‘'()’.

Available method-access-controls fields are:

[method-access-controls parameter]boolean reverse?
If #t, apply access controls to all methods except the listed methods.
Otherwise apply to only the listed methods.

Defaults to ‘#f’.

[method-access-controls parameter]method-list methods
Methods to which this access control applies.

Defaults to ‘'()’.

[method-access-controls parameter]access-control-list
access-controls

Access control directives, as a list of strings. Each string should be one
directive, such as ‘"Order allow,deny"’.

Defaults to ‘'()’.

Chapter 11: System Configuration 342

[cups-configuration parameter]non-negative-integer log-debug-history
Specifies the number of debugging messages that are retained for logging if an error
occurs in a print job. Debug messages are logged regardless of the LogLevel setting.

Defaults to ‘100’.

[cups-configuration parameter]log-level log-level
Specifies the level of logging for the ErrorLog file. The value none stops all logging
while debug2 logs everything.

Defaults to ‘info’.

[cups-configuration parameter]log-time-format log-time-format
Specifies the format of the date and time in the log files. The value standard logs
whole seconds while usecs logs microseconds.

Defaults to ‘standard’.

[cups-configuration parameter]non-negative-integer max-clients
Specifies the maximum number of simultaneous clients that are allowed by the sched-
uler.

Defaults to ‘100’.

[cups-configuration parameter]non-negative-integer
max-clients-per-host

Specifies the maximum number of simultaneous clients that are allowed from a single
address.

Defaults to ‘100’.

[cups-configuration parameter]non-negative-integer max-copies
Specifies the maximum number of copies that a user can print of each job.

Defaults to ‘9999’.

[cups-configuration parameter]non-negative-integer max-hold-time
Specifies the maximum time a job may remain in the indefinite hold state before
it is canceled. A value of 0 disables cancellation of held jobs.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer max-jobs
Specifies the maximum number of simultaneous jobs that are allowed. Set to 0 to
allow an unlimited number of jobs.

Defaults to ‘500’.

[cups-configuration parameter]non-negative-integer
max-jobs-per-printer

Specifies the maximum number of simultaneous jobs that are allowed per printer. A
value of 0 allows up to max-jobs per printer.

Defaults to ‘0’.

Chapter 11: System Configuration 343

[cups-configuration parameter]non-negative-integer max-jobs-per-user
Specifies the maximum number of simultaneous jobs that are allowed per user. A
value of 0 allows up to max-jobs per user.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer max-job-time
Specifies the maximum time a job may take to print before it is canceled, in seconds.
Set to 0 to disable cancellation of “stuck” jobs.

Defaults to ‘10800’.

[cups-configuration parameter]non-negative-integer max-log-size
Specifies the maximum size of the log files before they are rotated, in bytes. The
value 0 disables log rotation.

Defaults to ‘1048576’.

[cups-configuration parameter]non-negative-integer max-subscriptions
Specifies the maximum number of simultaneous event subscriptions that are allowed.
Set to ‘0’ to allow an unlimited number of subscriptions.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer
max-subscriptions-per-job

Specifies the maximum number of simultaneous event subscriptions that are allowed
per job. A value of ‘0’ allows up to max-subscriptions per job.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer
max-subscriptions-per-printer

Specifies the maximum number of simultaneous event subscriptions that are allowed
per printer. A value of ‘0’ allows up to max-subscriptions per printer.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer
max-subscriptions-per-user

Specifies the maximum number of simultaneous event subscriptions that are allowed
per user. A value of ‘0’ allows up to max-subscriptions per user.

Defaults to ‘0’.

[cups-configuration parameter]non-negative-integer
multiple-operation-timeout

Specifies the maximum amount of time to allow between files in a multiple file print
job, in seconds.

Defaults to ‘900’.

[cups-configuration parameter]environment-variables
environment-variables

Passes the specified environment variable(s) to child processes; a list of strings.

Defaults to ‘'()’.

Chapter 11: System Configuration 344

[cups-configuration parameter]policy-configuration-list policies
Specifies named access control policies.

Available policy-configuration fields are:

[policy-configuration parameter]string name
Name of the policy.

[policy-configuration parameter]string job-private-access
Specifies an access list for a job’s private values. @ACL maps to the printer’s
requesting-user-name-allowed or requesting-user-name-denied values. @OWNER

maps to the job’s owner. @SYSTEM maps to the groups listed for the
system-group field of the files-configuration, which is reified into the
cups-files.conf(5) file. Other possible elements of the access list include
specific user names, and @group to indicate members of a specific group. The
access list may also be simply all or default.

Defaults to ‘"@OWNER @SYSTEM"’.

[policy-configuration parameter]string job-private-values
Specifies the list of job values to make private, or all, default, or none.

Defaults to ‘"job-name job-originating-host-name job-originating-user-name

phone"’.

[policy-configuration parameter]string
subscription-private-access

Specifies an access list for a subscription’s private values. @ACL maps to the
printer’s requesting-user-name-allowed or requesting-user-name-denied values.
@OWNER maps to the job’s owner. @SYSTEM maps to the groups listed for the
system-group field of the files-configuration, which is reified into the
cups-files.conf(5) file. Other possible elements of the access list include
specific user names, and @group to indicate members of a specific group. The
access list may also be simply all or default.

Defaults to ‘"@OWNER @SYSTEM"’.

[policy-configuration parameter]string
subscription-private-values

Specifies the list of job values to make private, or all, default, or none.

Defaults to ‘"notify-events notify-pull-method notify-recipient-uri

notify-subscriber-user-name notify-user-data"’.

[policy-configuration parameter]operation-access-control-list
access-controls

Access control by IPP operation.

Defaults to ‘'()’.

[cups-configuration parameter]boolean-or-non-negative-integer
preserve-job-files

Specifies whether job files (documents) are preserved after a job is printed. If a
numeric value is specified, job files are preserved for the indicated number of seconds
after printing. Otherwise a boolean value applies indefinitely.

Chapter 11: System Configuration 345

Defaults to ‘86400’.

[cups-configuration parameter]boolean-or-non-negative-integer
preserve-job-history

Specifies whether the job history is preserved after a job is printed. If a numeric
value is specified, the job history is preserved for the indicated number of seconds
after printing. If #t, the job history is preserved until the MaxJobs limit is reached.

Defaults to ‘#t’.

[cups-configuration parameter]comma-separated-string-list-or-#f
ready-paper-sizes

Specifies a list of potential paper sizes that are reported as ready, that is: loaded.
The actual list will contain only the sizes that each printer supports.

The default value of #f is a special case: CUPS will use ‘(list \"Letter\"

\"Legal\" \"Tabloid\" \"4x6\" \"Env10\")’ if the default paper size is
\"Letter\", and ‘(list \"A3\" \"A4\" \"A5\" \"A6\" \"EnvDL\")’ otherwise.

[cups-configuration parameter]non-negative-integer reload-timeout
Specifies the amount of time to wait for job completion before restarting the scheduler.

Defaults to ‘30’.

[cups-configuration parameter]string server-admin
Specifies the email address of the server administrator.

Defaults to ‘"root@localhost.localdomain"’.

[cups-configuration parameter]host-name-list-or-* server-alias
The ServerAlias directive is used for HTTP Host header validation when clients con-
nect to the scheduler from external interfaces. Using the special name * can expose
your system to known browser-based DNS rebinding attacks, even when accessing
sites through a firewall. If the auto-discovery of alternate names does not work, we
recommend listing each alternate name with a ServerAlias directive instead of using
*.

Defaults to ‘*’.

[cups-configuration parameter]string server-name
Specifies the fully-qualified host name of the server.

Defaults to ‘"localhost"’.

[cups-configuration parameter]server-tokens server-tokens
Specifies what information is included in the Server header of HTTP responses. None
disables the Server header. ProductOnly reports CUPS. Major reports CUPS 2. Minor
reports CUPS 2.0. Minimal reports CUPS 2.0.0. OS reports CUPS 2.0.0 (uname)

where uname is the output of the uname command. Full reports CUPS 2.0.0 (uname)

IPP/2.0.

Defaults to ‘Minimal’.

Chapter 11: System Configuration 346

[cups-configuration parameter]multiline-string-list ssl-listen
Listens on the specified interfaces for encrypted connections. Valid values are of the
form address:port, where address is either an IPv6 address enclosed in brackets, an
IPv4 address, or * to indicate all addresses.

Defaults to ‘'()’.

[cups-configuration parameter]ssl-options ssl-options
Sets encryption options. By default, CUPS only supports encryption using TLS v1.0
or higher using known secure cipher suites. Security is reduced when Allow options
are used, and enhanced when Deny options are used. The AllowRC4 option enables the
128-bit RC4 cipher suites, which are required for some older clients. The AllowSSL3
option enables SSL v3.0, which is required for some older clients that do not support
TLS v1.0. The DenyCBC option disables all CBC cipher suites. The DenyTLS1.0

option disables TLS v1.0 support - this sets the minimum protocol version to TLS
v1.1.

Defaults to ‘'()’.

[cups-configuration parameter]boolean strict-conformance?
Specifies whether the scheduler requires clients to strictly adhere to the IPP specifi-
cations.

Defaults to ‘#f’.

[cups-configuration parameter]non-negative-integer timeout
Specifies the HTTP request timeout, in seconds.

Defaults to ‘900’.

[cups-configuration parameter]boolean web-interface?
Specifies whether the web interface is enabled.

Defaults to ‘#f’.

At this point you’re probably thinking “oh dear, Guix manual, I like you but you can
stop already with the configuration options”. Indeed. However, one more point: it could
be that you have an existing cupsd.conf that you want to use. In that case, you can pass
an opaque-cups-configuration as the configuration of a cups-service-type.

Available opaque-cups-configuration fields are:

[opaque-cups-configuration parameter]package cups
The CUPS package.

[opaque-cups-configuration parameter]string cupsd.conf
The contents of the cupsd.conf, as a string.

[opaque-cups-configuration parameter]string cups-files.conf
The contents of the cups-files.conf file, as a string.

For example, if your cupsd.conf and cups-files.conf are in strings of the same name,
you could instantiate a CUPS service like this:

(service cups-service-type

Chapter 11: System Configuration 347

(opaque-cups-configuration

(cupsd.conf cupsd.conf)

(cups-files.conf cups-files.conf)))

11.10.9 Desktop Services

The (gnu services desktop) module provides services that are usually useful in the con-
text of a “desktop” setup—that is, on a machine running a graphical display server, possibly
with graphical user interfaces, etc. It also defines services that provide specific desktop en-
vironments like GNOME, Xfce or MATE.

To simplify things, the module defines a variable containing the set of services that users
typically expect on a machine with a graphical environment and networking:

[Variable]%desktop-services
This is a list of services that builds upon %base-services and adds or adjusts services
for a typical “desktop” setup.

In particular, it adds a graphical login manager (see Section 11.10.7 [X Window],
page 325), screen lockers, a network management tool (see Section 11.10.5 [Network-
ing Services], page 301) with modem support (see Section 11.10.5 [Networking Ser-
vices], page 301), energy and color management services, the elogind login and seat
manager, the Polkit privilege service, the GeoClue location service, the AccountsSer-
vice daemon that allows authorized users change system passwords, a NTP client (see
Section 11.10.5 [Networking Services], page 301) and the Avahi daemon.

The %desktop-services variable can be used as the services field of an operating-

system declaration (see Section 11.3 [operating-system Reference], page 242).

Additionally, the gnome-desktop-service-type, xfce-desktop-service,
mate-desktop-service-type, lxqt-desktop-service-type and enlightenment-

desktop-service-type procedures can add GNOME, Xfce, MATE and/or Enlightenment
to a system. To “add GNOME” means that system-level services like the backlight
adjustment helpers and the power management utilities are added to the system, extending
polkit and dbus appropriately, allowing GNOME to operate with elevated privileges
on a limited number of special-purpose system interfaces. Additionally, adding a service
made by gnome-desktop-service-type adds the GNOME metapackage to the system
profile. Likewise, adding the Xfce service not only adds the xfce metapackage to the
system profile, but it also gives the Thunar file manager the ability to open a “root-mode”
file management window, if the user authenticates using the administrator’s password
via the standard polkit graphical interface. To “add MATE” means that polkit and
dbus are extended appropriately, allowing MATE to operate with elevated privileges on
a limited number of special-purpose system interfaces. Additionally, adding a service of
type mate-desktop-service-type adds the MATE metapackage to the system profile.
“Adding Enlightenment” means that dbus is extended appropriately, and several of
Enlightenment’s binaries are set as setuid, allowing Enlightenment’s screen locker and
other functionality to work as expected.

The desktop environments in Guix use the Xorg display server by default. If you’d like to
use the newer display server protocol called Wayland, you need to enable Wayland support in
GDM (see [wayland-gdm], page 325). Another solution is to use the sddm-service instead

Chapter 11: System Configuration 348

of GDM as the graphical login manager. You should then select the “GNOME (Wayland)”
session in SDDM. Alternatively you can also try starting GNOME on Wayland manually
from a TTY with the command “XDG SESSION TYPE=wayland exec dbus-run-session
gnome-session“. Currently only GNOME has support for Wayland.

[Variable]gnome-desktop-service-type
This is the type of the service that adds the GNOME (https://www.gnome.org)
desktop environment. Its value is a gnome-desktop-configuration object (see be-
low).

This service adds the gnome package to the system profile, and extends polkit with
the actions from gnome-settings-daemon.

[Data Type]gnome-desktop-configuration
Configuration record for the GNOME desktop environment. Available
gnome-desktop-configuration fields are:

core-services (type: list-of-packages)
A list of packages that the GNOME Shell and applications may rely on.

shell (type: list-of-packages)
A list of packages that constitute the GNOME Shell, without applications.

utilities (type: list-of-packages)
A list of packages that serve as applications to use on top of the GNOME
Shell.

gnome (type: maybe-package)
This field used to be the only configuration point and specified a GNOME
meta-package to install system-wide. Since the meta-package itself pro-
vides neither sources nor the actual packages and is only used to propagate
them, this field is deprecated.

extra-packages (type: list-of-packages)
A list of GNOME-adjacent packages to also include. This field is intended
for users to add their own packages to their GNOME experience. Note,
that it already includes some packages that are considered essential by
some (most?) GNOME users.

udev-ignorelist (default: ()) (type: list-of-strings)
A list of regular expressions denoting udev rules or hardware file names
provided by any package that should not be installed. By default, every
udev rule and hardware file specified by any package referenced in the
other fields are installed.

polkit-ignorelist (default: ()) (type: list-of-strings)
A list of regular expressions denoting polkit rules provided by any package
that should not be installed. By default, every polkit rule added by any
package referenced in the other fields are installed.

[Variable]plasma-desktop-service-type
This is the type of the service that adds the Plasma (https://kde.org/
plasma-desktop/) desktop environment. Its value is a plasma-desktop-

configuration object (see below).

https://www.gnome.org
https://kde.org/plasma-desktop/
https://kde.org/plasma-desktop/

Chapter 11: System Configuration 349

This service adds the plasma package to the system profile.

[Data Type]plasma-desktop-configuration
Configuration record for the Plasma desktop environment.

plasma (default: plasma)
The Plasma package to use.

[Variable]xfce-desktop-service-type
This is the type of a service to run the https://xfce.org/ (Xfce) desktop environment.
Its value is an xfce-desktop-configuration object (see below).

This service adds the xfce package to the system profile, and extends polkit with the
ability for thunar to manipulate the file system as root from within a user session,
after the user has authenticated with the administrator’s password.

Note that xfce4-panel and its plugin packages should be installed in the same pro-
file to ensure compatibility. When using this service, you should add extra plugins
(xfce4-whiskermenu-plugin, xfce4-weather-plugin, etc.) to the packages field
of your operating-system.

[Data Type]xfce-desktop-configuration
Configuration record for the Xfce desktop environment.

xfce (default: xfce)
The Xfce package to use.

[Variable]mate-desktop-service-type
This is the type of the service that runs the MATE desktop environment (https://
mate-desktop.org/). Its value is a mate-desktop-configuration object (see be-
low).

This service adds the mate package to the system profile, and extends polkit with the
actions from mate-settings-daemon.

[Data Type]mate-desktop-configuration
Configuration record for the MATE desktop environment.

mate (default: mate)
The MATE package to use.

[Variable]lxqt-desktop-service-type
This is the type of the service that runs the LXQt desktop environment (https://
lxqt-project.org). Its value is a lxqt-desktop-configuration object (see below).

This service adds the lxqt package to the system profile.

[Data Type]lxqt-desktop-configuration
Configuration record for the LXQt desktop environment.

lxqt (default: lxqt)
The LXQT package to use.

Xfce
https://mate-desktop.org/
https://mate-desktop.org/
https://lxqt-project.org
https://lxqt-project.org

Chapter 11: System Configuration 350

[Variable]sugar-desktop-service-type
This is the type of the service that runs the Sugar desktop environment (https://
www.sugarlabs.org). Its value is a sugar-desktop-configuration object (see be-
low).

This service adds the sugar package to the system profile, as well as any selected
Sugar activities. By default it only includes a minimal set of activities.

[Data Type]sugar-desktop-configuration
Configuration record for the Sugar desktop environment.

sugar (default: sugar)
The Sugar package to use.

gobject-introspection (default: gobject-introspection)
The gobject-introspection package to use. This package is used to
access libraries installed as dependencies of Sugar activities.

activities (default: (list sugar-help-activity))
A list of Sugar activities to install.

The following example configures the Sugar desktop environment with a number of useful
activities:

(use-modules (gnu))

(use-package-modules sugar)

(use-service-modules desktop)

(operating-system

...

(services (cons* (service sugar-desktop-service-type

(sugar-desktop-configuration

(activities (list sugar-browse-activity

sugar-help-activity

sugar-jukebox-activity

sugar-typing-turtle-activity))))

%desktop-services))

...)

[Variable]enlightenment-desktop-service-type
Return a service that adds the enlightenment package to the system profile, and
extends dbus with actions from efl.

[Data Type]enlightenment-desktop-service-configuration

enlightenment (default: enlightenment)
The enlightenment package to use.

Because the GNOME, Xfce and MATE desktop services pull in so many packages, the de-
fault %desktop-services variable doesn’t include any of them by default. To add GNOME,
Xfce or MATE, just cons them onto %desktop-services in the services field of your
operating-system:

(use-modules (gnu))

https://www.sugarlabs.org
https://www.sugarlabs.org

Chapter 11: System Configuration 351

(use-service-modules desktop)

(operating-system

...

;; cons* adds items to the list given as its last argument.

(services (cons* (service gnome-desktop-service-type)

(service xfce-desktop-service)

%desktop-services))

...)

These desktop environments will then be available as options in the graphical login
window.

The actual service definitions included in %desktop-services and provided by (gnu

services dbus) and (gnu services desktop) are described below.

[Variable]dbus-root-service-type
Type for a service that runs the D-Bus “system bus”.7

The value for this service type is a <dbus-configuration> record.

[Data Type]dbus-configuration
Data type representing the configuration for dbus-root-service-type.

dbus (default: dbus) (type: file-like)
Package object for dbus.

services (default: '()) (type: list)
List of packages that provide an etc/dbus-1/system.d directory con-
taining additional D-Bus configuration and policy files. For example, to
allow avahi-daemon to use the system bus, services must be equal to
(list avahi).

verbose? (default: #f) (type: boolean)
When #t, D-Bus is launched with environment variable ‘DBUS_VERBOSE’
set to ‘1’. A verbose-enabled D-Bus package such as dbus-verbose should
be provided to dbus in this scenario. The verbose output is logged to
/var/log/dbus-daemon.log.

Elogind

Elogind (https://github.com/elogind/elogind) is a login and seat management daemon
that also handles most system-level power events for a computer, for example suspending
the system when a lid is closed, or shutting it down when the power button is pressed.

It also provides a D-Bus interface that can be used to know which users are logged in,
know what kind of sessions they have open, suspend the system, inhibit system suspend,
reboot the system, and other tasks.

[Variable]elogind-service-type
Type of the service that runs elogind, a login and seat management daemon. The
value for this service is a <elogind-configuration> object.

7 D-Bus (https://dbus.freedesktop.org/) is an inter-process communication facility. Its system bus is
used to allow system services to communicate and to be notified of system-wide events.

https://github.com/elogind/elogind
https://dbus.freedesktop.org/

Chapter 11: System Configuration 352

[Data Type]elogind-configuration
Data type representing the configuration of elogind.

elogind (default: elogind) (type: file-like)
...

kill-user-processes? (default: #f) (type: boolean)
...

kill-only-users (default: '()) (type: list)
...

kill-exclude-users (default: '("root")) (type: list-of-string)
...

inhibit-delay-max-seconds (default: 5) (type: integer)
...

handle-power-key (default: 'poweroff) (type: symbol)
...

handle-suspend-key (default: 'suspend) (type: symbol)
...

handle-hibernate-key (default: 'hibernate) (type: symbol)
...

handle-lid-switch (default: 'suspend) (type: symbol)
...

handle-lid-switch-docked (default: 'ignore) (type: symbol)
...

handle-lid-switch-external-power (default: *unspecified*) (type: symbol)
...

power-key-ignore-inhibited? (default: #f) (type: boolean)
...

suspend-key-ignore-inhibited? (default: #f) (type: boolean)
...

hibernate-key-ignore-inhibited? (default: #f) (type: boolean)
...

lid-switch-ignore-inhibited? (default: #t) (type: boolean)
...

holdoff-timeout-seconds (default: 30) (type: integer)
...

idle-action (default: 'ignore) (type: symbol)
...

idle-action-seconds (default: (* 30 60)) (type: integer)
...

Chapter 11: System Configuration 353

runtime-directory-size-percent (default: 10) (type: integer)
...

runtime-directory-size (default: #f) (type: integer)
...

remove-ipc? (default: #t) (type: boolean)
...

suspend-state (default: '("mem" "standby" "freeze")) (type: list)
...

suspend-mode (default: '()) (type: list)
...

hibernate-state (default: '("disk")) (type: list)
...

hibernate-mode (default: '("platform" "shutdown")) (type: list)
...

hybrid-sleep-state (default: '("disk")) (type: list)
...

hybrid-sleep-mode (default: '("suspend" "platform" "shutdown")) (type: list)
...

[Variable]accountsservice-service-type
Type for the service that runs AccountsService, a system service that can list avail-
able accounts, change their passwords, and so on. AccountsService integrates with
PolicyKit to enable unprivileged users to acquire the capability to modify their
system configuration. See AccountsService (https://www.freedesktop.org/wiki/
Software/AccountsService/) for more information.

The value for this service is a file-like object, by default it is set to accountsservice

(the package object for AccountsService).

[Variable]polkit-service-type
Type for the service that runs the Polkit privilege management service (https://
www.freedesktop.org/wiki/Software/polkit/), which allows system administra-
tors to grant access to privileged operations in a structured way. By querying the
Polkit service, a privileged system component can know when it should grant addi-
tional capabilities to ordinary users. For example, an ordinary user can be granted
the capability to suspend the system if the user is logged in locally.

The value for this service is a <polkit-configuration> object.

[Variable]polkit-wheel-service
Service that adds the wheel group as admins to the Polkit service. This makes it so
that users in the wheel group are queried for their own passwords when performing
administrative actions instead of root’s, similar to the behaviour used by sudo.

[Variable]upower-service-type
Service that runs upowerd (https://upower.freedesktop.org/), a system-wide
monitor for power consumption and battery levels, with the given configuration
settings.

https://www.freedesktop.org/wiki/Software/AccountsService/
https://www.freedesktop.org/wiki/Software/AccountsService/
https://www.freedesktop.org/wiki/Software/polkit/
https://www.freedesktop.org/wiki/Software/polkit/
https://upower.freedesktop.org/

Chapter 11: System Configuration 354

It implements the org.freedesktop.UPower D-Bus interface, and is notably used by
GNOME.

[Data Type]upower-configuration
Data type representation the configuration for UPower.

upower (default: upower)
Package to use for upower.

watts-up-pro? (default: #f)
Enable the Watts Up Pro device.

poll-batteries? (default: #t)
Enable polling the kernel for battery level changes.

ignore-lid? (default: #f)
Ignore the lid state, this can be useful if it’s incorrect on a device.

use-percentage-for-policy? (default: #t)
Whether to use a policy based on battery percentage rather than on
estimated time left. A policy based on battery percentage is usually
more reliable.

percentage-low (default: 20)
When use-percentage-for-policy? is #t, this sets the percentage at
which the battery is considered low.

percentage-critical (default: 5)
When use-percentage-for-policy? is #t, this sets the percentage at
which the battery is considered critical.

percentage-action (default: 2)
When use-percentage-for-policy? is #t, this sets the percentage at
which action will be taken.

time-low (default: 1200)
When use-time-for-policy? is #f, this sets the time remaining in sec-
onds at which the battery is considered low.

time-critical (default: 300)
When use-time-for-policy? is #f, this sets the time remaining in sec-
onds at which the battery is considered critical.

time-action (default: 120)
When use-time-for-policy? is #f, this sets the time remaining in sec-
onds at which action will be taken.

critical-power-action (default: 'hybrid-sleep)
The action taken when percentage-action or time-action is reached
(depending on the configuration of use-percentage-for-policy?).

Possible values are:

• 'power-off

• 'hibernate

• 'hybrid-sleep.

Chapter 11: System Configuration 355

[Variable]udisks-service-type
Type for the service that runs UDisks (https://udisks.freedesktop.org/docs/
latest/), a disk management daemon that provides user interfaces with notifica-
tions and ways to mount/unmount disks. Programs that talk to UDisks include the
udisksctl command, part of UDisks, and GNOME Disks. Note that Udisks relies
on the mount command, so it will only be able to use the file-system utilities installed
in the system profile. For example if you want to be able to mount NTFS file-systems
in read and write fashion, you’ll need to have ntfs-3g installed system-wide.

The value for this service is a <udisks-configuration> object.

[Data Type]udisks-configuration
Data type representing the configuration for udisks-service-type.

udisks (default: udisks) (type: file-like)
Package object for UDisks.

[Variable]colord-service-type
This is the type of the service that runs colord, a system service with a D-Bus
interface to manage the color profiles of input and output devices such as screens
and scanners. It is notably used by the GNOME Color Manager graphical tool. See
the colord web site (https://www.freedesktop.org/software/colord/) for more
information.

[Variable]sane-service-type
This service provides access to scanners via SANE (http://www.sane-project.org)
by installing the necessary udev rules. It is included in %desktop-services (see Sec-
tion 11.10.9 [Desktop Services], page 347) and relies by default on sane-backends-

minimal package (see below) for hardware support.

[Variable]sane-backends-minimal
The default package which the sane-service-type installs. It supports many recent
scanners.

[Variable]sane-backends
This package includes support for all scanners that sane-backends-minimal sup-
ports, plus older Hewlett-Packard scanners supported by hplip package. In order
to use this on a system which relies on %desktop-services, you may use modify-

services (see Section 11.19.3 [Service Reference], page 618) as illustrated below:

(use-modules (gnu))

(use-service-modules

...

desktop)

(use-package-modules

...

scanner)

(define %my-desktop-services

;; List of desktop services that supports a broader range of scanners.

(modify-services %desktop-services

https://udisks.freedesktop.org/docs/latest/
https://udisks.freedesktop.org/docs/latest/
https://www.freedesktop.org/software/colord/
http://www.sane-project.org

Chapter 11: System Configuration 356

(sane-service-type _ => sane-backends)))

(operating-system

...

(services %my-desktop-services))

[Procedure]geoclue-application name [#:allowed? #t] [#:system? #f]
[#:users ’()]

Return a configuration allowing an application to access GeoClue location data. name
is the Desktop ID of the application, without the .desktop part. If allowed? is true,
the application will have access to location information by default. The boolean
system? value indicates whether an application is a system component or not. Finally
users is a list of UIDs of all users for which this application is allowed location info
access. An empty users list means that all users are allowed.

[Variable]%standard-geoclue-applications
The standard list of well-known GeoClue application configurations, granting author-
ity to the GNOME date-and-time utility to ask for the current location in order to
set the time zone, and allowing the IceCat and Epiphany web browsers to request
location information. IceCat and Epiphany both query the user before allowing a
web page to know the user’s location.

[Variable]geoclue-service-type
Type for the service that runs the GeoClue (https://wiki.freedesktop.org/www/
Software/GeoClue/) location service. This service provides a D-Bus interface to al-
low applications to request access to a user’s physical location, and optionally to add
information to online location databases.

The value for this service is a <geoclue-configuration> object.

[Variable]bluetooth-service-type
This is the type for the Linux Bluetooth Protocol Stack (https://bluez.org/)
(BlueZ) system, which generates the /etc/bluetooth/main.conf configuration file.
The value for this type is a bluetooth-configuration record as in this example:

(service bluetooth-service-type)

See below for details about bluetooth-configuration.

[Data Type]bluetooth-configuration
Data type representing the configuration for bluetooth-service.

bluez (default: bluez)
bluez package to use.

name (default: "BlueZ")
Default adapter name.

class (default: #x000000)
Default device class. Only the major and minor device class bits are
considered.

https://wiki.freedesktop.org/www/Software/GeoClue/
https://wiki.freedesktop.org/www/Software/GeoClue/
https://bluez.org/

Chapter 11: System Configuration 357

discoverable-timeout (default: 180)
How long to stay in discoverable mode before going back to
non-discoverable. The value is in seconds.

always-pairable? (default: #f)
Always allow pairing even if there are no agents registered.

pairable-timeout (default: 0)
How long to stay in pairable mode before going back to non-discoverable.
The value is in seconds.

device-id (default: #f)
Use vendor id source (assigner), vendor, product and version information
for DID profile support. The values are separated by ":" and assigner,
VID, PID and version.

Possible values are:

• #f to disable it,

• "assigner:1234:5678:abcd", where assigner is either usb (default)
or bluetooth.

reverse-service-discovery? (default: #t)
Do reverse service discovery for previously unknown devices that connect
to us. For BR/EDR this option is really only needed for qualification
since the BITE tester doesn’t like us doing reverse SDP for some test
cases, for LE this disables the GATT client functionally so it can be used
in system which can only operate as peripheral.

name-resolving? (default: #t)
Enable name resolving after inquiry. Set it to #f if you don’t need remote
devices name and want shorter discovery cycle.

debug-keys? (default: #f)
Enable runtime persistency of debug link keys. Default is false which
makes debug link keys valid only for the duration of the connection that
they were created for.

controller-mode (default: 'dual)
Restricts all controllers to the specified transport. 'dual means both
BR/EDR and LE are enabled (if supported by the hardware).

Possible values are:

• 'dual

• 'bredr

• 'le

multi-profile (default: 'off)
Enables Multi Profile Specification support. This allows to specify if sys-
tem supports only Multiple Profiles Single Device (MPSD) configuration
or both Multiple Profiles Single Device (MPSD) and Multiple Profiles
Multiple Devices (MPMD) configurations.

Chapter 11: System Configuration 358

Possible values are:

• 'off

• 'single

• 'multiple

fast-connectable? (default: #f)
Permanently enables the Fast Connectable setting for adapters that sup-
port it. When enabled other devices can connect faster to us, however
the tradeoff is increased power consumptions. This feature will fully work
only on kernel version 4.1 and newer.

privacy (default: 'off)
Default privacy settings.

• 'off: Disable local privacy

• 'network/on: A device will only accept advertising packets from
peer devices that contain private addresses. It may not be compatible
with some legacy devices since it requires the use of RPA(s) all the
time

• 'device: A device in device privacy mode is only concerned about
the privacy of the device and will accept advertising packets from
peer devices that contain their Identity Address as well as ones that
contain a private address, even if the peer device has distributed its
IRK in the past

and additionally, if controller-mode is set to 'dual:

• 'limited-network: Apply Limited Discoverable Mode to advertis-
ing, which follows the same policy as to BR/EDR that publishes the
identity address when discoverable, and Network Privacy Mode for
scanning

• 'limited-device: Apply Limited Discoverable Mode to advertising,
which follows the same policy as to BR/EDR that publishes the
identity address when discoverable, and Device Privacy Mode for
scanning.

just-works-repairing (default: 'never)
Specify the policy to the JUST-WORKS repairing initiated by peer.

Possible values:

• 'never

• 'confirm

• 'always

temporary-timeout (default: 30)
How long to keep temporary devices around. The value is in seconds. 0
disables the timer completely.

refresh-discovery? (default: #t)
Enables the device to issue an SDP request to update known services
when profile is connected.

Chapter 11: System Configuration 359

experimental (default: #f)
Enables experimental features and interfaces, alternatively a list of UUIDs
can be given.

Possible values:

• #t

• #f

• (list (uuid <uuid-1>) (uuid <uuid-2>) ...).

List of possible UUIDs:

• d4992530-b9ec-469f-ab01-6c481c47da1c: BlueZ Experimental
Debug,

• 671b10b5-42c0-4696-9227-eb28d1b049d6: BlueZ Experimental Si-
multaneous Central and Peripheral,

• 15c0a148-c273-11ea-b3de-0242ac130004: BlueZ Experimental
LL privacy,

• 330859bc-7506-492d-9370-9a6f0614037f: BlueZ Experimental
Bluetooth Quality Report,

• a6695ace-ee7f-4fb9-881a-5fac66c629af: BlueZ Experimental
Offload Codecs.

remote-name-request-retry-delay (default: 300)
The duration to avoid retrying to resolve a peer’s name, if the previous
try failed.

page-scan-type (default: #f)
BR/EDR Page scan activity type.

page-scan-interval (default: #f)
BR/EDR Page scan activity interval.

page-scan-window (default: #f)
BR/EDR Page scan activity window.

inquiry-scan-type (default: #f)
BR/EDR Inquiry scan activity type.

inquiry-scan-interval (default: #f)
BR/EDR Inquiry scan activity interval.

inquiry-scan-window (default: #f)
BR/EDR Inquiry scan activity window.

link-supervision-timeout (default: #f)
BR/EDR Link supervision timeout.

page-timeout (default: #f)
BR/EDR Page timeout.

min-sniff-interval (default: #f)
BR/EDR minimum sniff interval.

Chapter 11: System Configuration 360

max-sniff-interval (default: #f)
BR/EDR maximum sniff interval.

min-advertisement-interval (default: #f)
LE minimum advertisement interval (used for legacy advertisement only).

max-advertisement-interval (default: #f)
LE maximum advertisement interval (used for legacy advertisement only).

multi-advertisement-rotation-interval (default: #f)
LE multiple advertisement rotation interval.

scan-interval-auto-connect (default: #f)
LE scanning interval used for passive scanning supporting auto connect.

scan-window-auto-connect (default: #f)
LE scanning window used for passive scanning supporting auto connect.

scan-interval-suspend (default: #f)
LE scanning interval used for active scanning supporting wake from sus-
pend.

scan-window-suspend (default: #f)
LE scanning window used for active scanning supporting wake from sus-
pend.

scan-interval-discovery (default: #f)
LE scanning interval used for active scanning supporting discovery.

scan-window-discovery (default: #f)
LE scanning window used for active scanning supporting discovery.

scan-interval-adv-monitor (default: #f)
LE scanning interval used for passive scanning supporting the advertise-
ment monitor APIs.

scan-window-adv-monitor (default: #f)
LE scanning window used for passive scanning supporting the advertise-
ment monitor APIs.

scan-interval-connect (default: #f)
LE scanning interval used for connection establishment.

scan-window-connect (default: #f)
LE scanning window used for connection establishment.

min-connection-interval (default: #f)
LE default minimum connection interval. This value is superseded by any
specific value provided via the Load Connection Parameters interface.

max-connection-interval (default: #f)
LE default maximum connection interval. This value is superseded by any
specific value provided via the Load Connection Parameters interface.

connection-latency (default: #f)
LE default connection latency. This value is superseded by any specific
value provided via the Load Connection Parameters interface.

Chapter 11: System Configuration 361

connection-supervision-timeout (default: #f)
LE default connection supervision timeout. This value is superseded by
any specific value provided via the Load Connection Parameters interface.

autoconnect-timeout (default: #f)
LE default autoconnect timeout. This value is superseded by any specific
value provided via the Load Connection Parameters interface.

adv-mon-allowlist-scan-duration (default: 300)
Allowlist scan duration during interleaving scan. Only used when scan-
ning for ADV monitors. The units are msec.

adv-mon-no-filter-scan-duration (default: 500)
No filter scan duration during interleaving scan. Only used when scanning
for ADV monitors. The units are msec.

enable-adv-mon-interleave-scan? (default: #t)
Enable/Disable Advertisement Monitor interleave scan for power saving.

cache (default: 'always)
GATT attribute cache.

Possible values are:

• 'always: Always cache attributes even for devices not paired, this is
recommended as it is best for interoperability, with more consistent
reconnection times and enables proper tracking of notifications for
all devices

• 'yes: Only cache attributes of paired devices

• 'no: Never cache attributes.

key-size (default: 0)
Minimum required Encryption Key Size for accessing secured character-
istics.

Possible values are:

• 0: Don’t care

• 7 <= N <= 16

exchange-mtu (default: 517)
Exchange MTU size. Possible values are:

• 23 <= N <= 517

att-channels (default: 3)
Number of ATT channels. Possible values are:

• 1: Disables EATT

• 2 <= N <= 5

session-mode (default: 'basic)
AVDTP L2CAP signalling channel mode.

Possible values are:

• 'basic: Use L2CAP basic mode

Chapter 11: System Configuration 362

• 'ertm: Use L2CAP enhanced retransmission mode.

stream-mode (default: 'basic)
AVDTP L2CAP transport channel mode.

Possible values are:

• 'basic: Use L2CAP basic mode

• 'streaming: Use L2CAP streaming mode.

reconnect-uuids (default: '())
The ReconnectUUIDs defines the set of remote services that should try
to be reconnected to in case of a link loss (link supervision timeout). The
policy plugin should contain a sane set of values by default, but this list
can be overridden here. By setting the list to empty the reconnection
feature gets disabled.

Possible values:

• '()

• (list (uuid <uuid-1>) (uuid <uuid-2>) ...).

reconnect-attempts (default: 7)
Defines the number of attempts to reconnect after a link lost. Setting the
value to 0 disables reconnecting feature.

reconnect-intervals (default: '(1 2 4 8 16 32 64))
Defines a list of intervals in seconds to use in between attempts. If the
number of attempts defined in reconnect-attempts is bigger than the list
of intervals the last interval is repeated until the last attempt.

auto-enable? (default: #f)
Defines option to enable all controllers when they are found. This includes
adapters present on start as well as adapters that are plugged in later on.

resume-delay (default: 2)
Audio devices that were disconnected due to suspend will be reconnected
on resume. resume-delay determines the delay between when the con-
troller resumes from suspend and a connection attempt is made. A longer
delay is better for better co-existence with Wi-Fi. The value is in seconds.

rssi-sampling-period (default: #xFF)
Default RSSI Sampling Period. This is used when a client registers an
advertisement monitor and leaves the RSSISamplingPeriod unset.

Possible values are:

• #x0: Report all advertisements

• N = #xXX: Report advertisements every N x 100 msec (range: #x01
to #xFE)

• #xFF: Report only one advertisement per device during monitoring
period.

Chapter 11: System Configuration 363

[Variable]gnome-keyring-service-type
This is the type of the service that adds the GNOME Keyring (https://wiki.gnome.
org/Projects/GnomeKeyring). Its value is a gnome-keyring-configuration object
(see below).

This service adds the gnome-keyring package to the system profile and extends PAM
with entries using pam_gnome_keyring.so, unlocking a user’s login keyring when they
log in or setting its password with passwd.

[Data Type]gnome-keyring-configuration
Configuration record for the GNOME Keyring service.

keyring (default: gnome-keyring)
The GNOME keyring package to use.

pam-services

A list of (service . kind) pairs denoting PAM services to extend, where
service is the name of an existing service to extend and kind is one of
login or passwd.

If login is given, it adds an optional pam_gnome_keyring.so to the auth
block without arguments and to the session block with auto_start. If
passwd is given, it adds an optional pam_gnome_keyring.so to the pass-
word block without arguments.

By default, this field contains “gdm-password” with the value login and
“passwd” is with the value passwd.

[Variable]seatd-service-type
seatd (https://sr.ht/~kennylevinsen/seatd/) is a minimal seat management dae-
mon.

Seat management takes care of mediating access to shared devices (graphics, input),
without requiring the applications needing access to be root.

(append

(list

;; make sure seatd is running

(service seatd-service-type))

;; normally one would want %base-services

%base-services)

seatd operates over a UNIX domain socket, with libseat providing the client side
of the protocol. Applications that acquire access to the shared resources via seatd

(e.g. sway) need to be able to talk to this socket. This can be achieved by adding the
user they run under to the group owning seatd’s socket (usually “seat”), like so:

(user-account

(name "alice")

(group "users")

(supplementary-groups '("wheel" ; allow use of sudo, etc.

"seat" ; seat management

https://wiki.gnome.org/Projects/GnomeKeyring
https://wiki.gnome.org/Projects/GnomeKeyring
https://sr.ht/~kennylevinsen/seatd/

Chapter 11: System Configuration 364

"audio" ; sound card

"video" ; video devices such as webcams

"cdrom")) ; the good ol' CD-ROM

(comment "Bob's sister"))

Depending on your setup, you will have to not only add regular users, but also system
users to this group. For instance, some greetd greeters require graphics and therefore
also need to negotiate with seatd.

[Data Type]seatd-configuration
Configuration record for the seatd daemon service.

seatd (default: seatd)
The seatd package to use.

group (default: ‘"seat"’)
Group to own the seatd socket.

socket (default: ‘"/run/seatd.sock"’)
Where to create the seatd socket.

logfile (default: ‘"/var/log/seatd.log"’)
Log file to write to.

loglevel (default: ‘"error"’)
Log level to output logs. Possible values: ‘"silent"’, ‘"error"’, ‘"info"’
and ‘"debug"’.

11.10.10 Sound Services

The (gnu services sound) module provides a service to configure the Advanced Linux
Sound Architecture (ALSA) system, which makes PulseAudio the preferred ALSA output
driver.

[Variable]alsa-service-type
This is the type for the Advanced Linux Sound Architecture (https://
alsa-project.org/) (ALSA) system, which generates the /etc/asound.conf

configuration file. The value for this type is a alsa-configuration record as in this
example:

(service alsa-service-type)

See below for details about alsa-configuration.

[Data Type]alsa-configuration
Data type representing the configuration for alsa-service.

alsa-plugins (default: alsa-plugins)
alsa-plugins package to use.

pulseaudio? (default: #t)
Whether ALSA applications should transparently be made to use the
PulseAudio (https://www.pulseaudio.org/) sound server.

Using PulseAudio allows you to run several sound-producing applications
at the same time and to individual control them via pavucontrol, among
other things.

https://alsa-project.org/
https://alsa-project.org/
https://www.pulseaudio.org/

Chapter 11: System Configuration 365

extra-options (default: "")
String to append to the /etc/asound.conf file.

Individual users who want to override the system configuration of ALSA can do it with
the ~/.asoundrc file:

In guix, we have to specify the absolute path for plugins.

pcm_type.jack {

lib "/home/alice/.guix-profile/lib/alsa-lib/libasound_module_pcm_jack.so"

}

Routing ALSA to jack:

<http://jackaudio.org/faq/routing_alsa.html>.

pcm.rawjack {

type jack

playback_ports {

0 system:playback_1

1 system:playback_2

}

capture_ports {

0 system:capture_1

1 system:capture_2

}

}

pcm.!default {

type plug

slave {

pcm "rawjack"

}

}

See https://www.alsa-project.org/main/index.php/Asoundrc for the details.

[Variable]pulseaudio-service-type
This is the type for the PulseAudio (https://www.pulseaudio.org/)
sound server. It exists to allow system overrides of the default settings via
pulseaudio-configuration, see below.

Warning: This service overrides per-user configuration files. If you want
PulseAudio to honor configuration files in ~/.config/pulse you have to
unset the environment variables PULSE_CONFIG and PULSE_CLIENTCONFIG

in your ~/.bash_profile.

Warning: This service on its own does not ensure, that the pulseaudio

package exists on your machine. It merely adds configuration files for
it, as detailed below. In the (admittedly unlikely) case, that you find
yourself without a pulseaudio package, consider enabling it through the
alsa-service-type above.

https://www.alsa-project.org/main/index.php/Asoundrc
https://www.pulseaudio.org/

Chapter 11: System Configuration 366

[Data Type]pulseaudio-configuration
Data type representing the configuration for pulseaudio-service.

client-conf (default: '())
List of settings to set in client.conf. Accepts a list of strings or symbol-
value pairs. A string will be inserted as-is with a newline added. A pair
will be formatted as “key = value”, again with a newline added.

daemon-conf (default: '((flat-volumes . no)))
List of settings to set in daemon.conf, formatted just like client-conf.

script-file (default: (file-append pulseaudio "/etc/pulse/default.pa"))
Script file to use as default.pa. In case the extra-script-

files field below is used, an .include directive pointing to
/etc/pulse/default.pa.d is appended to the provided script.

extra-script-files (default: '())
A list of file-like objects defining extra PulseAudio scripts to run at the
initialization of the pulseaudio daemon, after the main script-file.
The scripts are deployed to the /etc/pulse/default.pa.d directory;
they should have the ‘.pa’ file name extension. For a reference of the
available commands, refer to man pulse-cli-syntax.

system-script-file (default: (file-append pulseaudio

"/etc/pulse/system.pa"))
Script file to use as system.pa.

The example below sets the default PulseAudio card profile, the default sink and the
default source to use for a old SoundBlaster Audigy sound card:

(pulseaudio-configuration

(extra-script-files

(list (plain-file "audigy.pa"

(string-append "\

set-card-profile alsa_card.pci-0000_01_01.0 \

output:analog-surround-40+input:analog-mono

set-default-source alsa_input.pci-0000_01_01.0.analog-mono

set-default-sink alsa_output.pci-0000_01_01.0.analog-surround-40\n")))))

Note that pulseaudio-service-type is part of %desktop-services; if your oper-
ating system declaration was derived from one of the desktop templates, you’ll want
to adjust the above example to modify the existing pulseaudio-service-type via
modify-services (see Section 11.19.3 [Service Reference], page 618), instead of defin-
ing a new one.

[Variable]ladspa-service-type
This service sets the LADSPA PATH variable, so that programs, which respect it,
e.g. PulseAudio, can load LADSPA plugins.

The following example will setup the service to enable modules from the swh-plugins
package:

(service ladspa-service-type

(ladspa-configuration (plugins (list swh-plugins))))

Chapter 11: System Configuration 367

See http://plugin.org.uk/ladspa-swh/docs/ladspa-swh.html for the details.

11.10.11 File Search Services

The services in this section populate file databases that let you search for files on your
machine. These services are provided by the (gnu services admin) module.

The first one, file-database-service-type, periodically runs the venerable updatedb
command (see Section “Invoking updatedb” in GNU Findutils). That command populates
a database of file names that you can then search with the locate command (see Section
“Invoing locate” in GNU Findutils), as in this example:

locate important-notes.txt

You can enable this service with its default settings by adding this snippet to your
operating system services:

(service file-database-service-type)

This updates the database once a week, excluding files from /gnu/store—these are more
usefully handled by guix locate (see Section 5.5 [Invoking guix locate], page 50). You can
of course provide a custom configuration, as described below.

[Variable]file-database-service-type
This is the type of the file database service, which runs updatedb periodically. Its
associated value must be a file-database-configuration record, as described be-
low.

[Data Type]file-database-configuration
Record type for the file-database-service-type configuration, with the following
fields:

package (default: findutils)
The GNU Findutils package from which the updatedb command is taken.

schedule (default: %default-file-database-update-schedule)
String or G-exp denoting an mcron schedule for the periodic updatedb

job (see Section “Guile Syntax” in GNU mcron).

excluded-directories (default
%default-file-database-excluded-directories)

List of regular expressions of directories to ignore when building the file
database. By default, this includes /tmp and /gnu/store; the latter
should instead be indexed by guix locate (see Section 5.5 [Invoking guix
locate], page 50). This list is passed to the --prunepaths option of
updatedb (see Section “Invoking updatedb” in GNU Findutils).

The second service, package-database-service-type, builds the database used by
guix locate, which lets you search for packages that contain a given file (see Section 5.5
[Invoking guix locate], page 50). The service periodically updates a system-wide database,
which will be readily available to anyone running guix locate on the system. To use this
service with its default settings, add this snippet to your service list:

(service package-database-service-type)

This will run guix locate --update once a week.

http://plugin.org.uk/ladspa-swh/docs/ladspa-swh.html

Chapter 11: System Configuration 368

[Variable]package-database-service-type
This is the service type for periodic guix locate updates (see Section 5.5 [Invoking
guix locate], page 50). Its value must be a package-database-configuration record,
as shown below.

[Data Type]package-database-configuration
Data type to configure periodic package database updates. It has the following fields:

package (default: guix)
The Guix package to use.

schedule (default: %default-package-database-update-schedule)
String or G-exp denoting an mcron schedule for the periodic guix locate

--update job (see Section “Guile Syntax” in GNU mcron).

method (default: 'store)
Indexing method for guix locate. The default value, 'store, yields a
more complete database but is relatively expensive in terms of CPU and
input/output.

channels (default: #~%default-channels)
G-exp denoting the channels to use when updating the database (see
Chapter 6 [Channels], page 66).

11.10.12 Database Services

The (gnu services databases) module provides the following services.

PostgreSQL

[Variable]postgresql-service-type
The service type for the PostgreSQL database server. Its value should be a valid
postgresql-configuration object, documented below. The following example de-
scribes a PostgreSQL service with the default configuration.

(service postgresql-service-type

(postgresql-configuration

(postgresql postgresql-10)))

If the services fails to start, it may be due to an incompatible cluster already present
in data-directory. Adjust it (or, if you don’t need the cluster anymore, delete data-
directory), then restart the service.

Peer authentication is used by default and the postgres user account has no shell,
which prevents the direct execution of psql commands as this user. To use psql, you
can temporarily log in as postgres using a shell, create a PostgreSQL superuser with
the same name as one of the system users and then create the associated database.

sudo -u postgres -s /bin/sh

createuser --interactive

createdb $MY_USER_LOGIN # Replace appropriately.

[Data Type]postgresql-configuration
Data type representing the configuration for the postgresql-service-type.

Chapter 11: System Configuration 369

postgresql (default: postgresql-10)
PostgreSQL package to use for the service.

port (default: 5432)
Port on which PostgreSQL should listen.

locale (default: "en_US.utf8")
Locale to use as the default when creating the database cluster.

config-file (default: (postgresql-config-file))
The configuration file to use when running PostgreSQL. The default
behaviour uses the postgresql-config-file record with the default values
for the fields.

log-directory (default: "/var/log/postgresql")
The directory where pg_ctl output will be written in a file named "pg_

ctl.log". This file can be useful to debug PostgreSQL configuration
errors for instance.

data-directory (default: "/var/lib/postgresql/data")
Directory in which to store the data.

extension-packages (default: '())
Additional extensions are loaded from packages listed in extension-
packages. Extensions are available at runtime. For instance, to create a
geographic database using the postgis extension, a user can configure
the postgresql-service as in this example:

(use-package-modules databases geo)

(operating-system

...

;; postgresql is required to run `psql' but postgis is not required for

;; proper operation.

(packages (cons* postgresql %base-packages))

(services

(cons*

(service postgresql-service-type

(postgresql-configuration

(postgresql postgresql-10)

(extension-packages (list postgis))))

%base-services)))

Then the extension becomes visible and you can initialise an empty geo-
graphic database in this way:

psql -U postgres

> create database postgistest;

> \connect postgistest;

> create extension postgis;

> create extension postgis_topology;

Chapter 11: System Configuration 370

There is no need to add this field for contrib extensions such as hstore
or dblink as they are already loadable by postgresql. This field is only
required to add extensions provided by other packages.

create-account? (default: #t)
Whether or not the postgres user and group should be created.

uid (default: #f)
Explicitly specify the UID of the postgres daemon account. You nor-
mally do not need to specify this, in which case a free UID will be auto-
matically assigned.

One situation where this option might be useful is if the data-directory
is located on a mounted network share.

gid (default: #f)
Explicitly specify the GID of the postgres group.

[Data Type]postgresql-config-file
Data type representing the PostgreSQL configuration file. As shown in the following
example, this can be used to customize the configuration of PostgreSQL. Note that
you can use any G-expression or filename in place of this record, if you already have
a configuration file you’d like to use for example.

(service postgresql-service-type

(postgresql-configuration

(config-file

(postgresql-config-file

(log-destination "stderr")

(hba-file

(plain-file "pg_hba.conf"

"

local all all trust

host all all 127.0.0.1/32 md5

host all all ::1/128 md5"))

(extra-config

'(("session_preload_libraries" "auto_explain")

("random_page_cost" 2)

("auto_explain.log_min_duration" "100 ms")

("work_mem" "500 MB")

("logging_collector" #t)

("log_directory" "/var/log/postgresql")))))))

log-destination (default: "syslog")
The logging method to use for PostgreSQL. Multiple values are accepted,
separated by commas.

hba-file (default: %default-postgres-hba)
Filename or G-expression for the host-based authentication configuration.

ident-file (default: %default-postgres-ident)
Filename or G-expression for the user name mapping configuration.

Chapter 11: System Configuration 371

socket-directory (default: "/var/run/postgresql")
Specifies the directory of the Unix-domain socket(s) on which PostgreSQL
is to listen for connections from client applications. If set to "" Post-
greSQL does not listen on any Unix-domain sockets, in which case only
TCP/IP sockets can be used to connect to the server.

By default, the #false value means the PostgreSQL default value will be
used, which is currently ‘/tmp’.

extra-config (default: '())
List of additional keys and values to include in the PostgreSQL config
file. Each entry in the list should be a list where the first element is the
key, and the remaining elements are the values.

The values can be numbers, booleans or strings and will be mapped to
PostgreSQL parameters types Boolean, String, Numeric, Numeric with

Unit and Enumerated described here (https://www.postgresql.org/
docs/current/config-setting.html).

[Variable]postgresql-role-service-type
This service allows to create PostgreSQL roles and databases after PostgreSQL service
start. Here is an example of its use.

(service postgresql-role-service-type

(postgresql-role-configuration

(roles

(list (postgresql-role

(name "test")

(create-database? #t))))))

This service can be extended with extra roles, as in this example:

(service-extension postgresql-role-service-type

(const (postgresql-role

(name "alice")

(create-database? #t))))

[Data Type]postgresql-role
PostgreSQL manages database access permissions using the concept of roles. A role
can be thought of as either a database user, or a group of database users, depending
on how the role is set up. Roles can own database objects (for example, tables) and
can assign privileges on those objects to other roles to control who has access to which
objects.

name The role name.

permissions (default: '(createdb login))
The role permissions list. Supported permissions are bypassrls,
createdb, createrole, login, replication and superuser.

create-database? (default: #f)
whether to create a database with the same name as the role.

encoding (default: "UTF8")
The character set to use for storing text in the database.

https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/config-setting.html

Chapter 11: System Configuration 372

collation (default: "en_US.utf8")
The string sort order locale setting.

ctype (default: "en_US.utf8")
The character classification locale setting.

template (default: "template1")
The default template to copy the new database from when creating it. Use
"template0" for a pristine database with no system-local modifications.

[Data Type]postgresql-role-configuration
Data type representing the configuration of postgresql-role-service-type.

host (default: "/var/run/postgresql")
The PostgreSQL host to connect to.

log (default: "/var/log/postgresql_roles.log")
File name of the log file.

roles (default: '())
The initial PostgreSQL roles to create.

MariaDB/MySQL

[Variable]mysql-service-type
This is the service type for a MySQL or MariaDB database server. Its value is a
mysql-configuration object that specifies which package to use, as well as various
settings for the mysqld daemon.

[Data Type]mysql-configuration
Data type representing the configuration of mysql-service-type.

mysql (default: mariadb)
Package object of the MySQL database server, can be either mariadb or
mysql.

For MySQL, a temporary root password will be displayed at activation
time. For MariaDB, the root password is empty.

bind-address (default: "127.0.0.1")
The IP on which to listen for network connections. Use "0.0.0.0" to
bind to all available network interfaces.

port (default: 3306)
TCP port on which the database server listens for incoming connections.

socket (default: "/run/mysqld/mysqld.sock")
Socket file to use for local (non-network) connections.

extra-content (default: "")
Additional settings for the my.cnf configuration file.

extra-environment (default: #~'())
List of environment variables passed to the mysqld process.

Chapter 11: System Configuration 373

auto-upgrade? (default: #t)
Whether to automatically run mysql_upgrade after starting the service.
This is necessary to upgrade the system schema after “major” updates
(such as switching from MariaDB 10.4 to 10.5), but can be disabled if
you would rather do that manually.

Memcached

[Variable]memcached-service-type
This is the service type for the Memcached (https://memcached.org/) service,
which provides a distributed in memory cache. The value for the service type is
a memcached-configuration object.

(service memcached-service-type)

[Data Type]memcached-configuration
Data type representing the configuration of memcached.

memcached (default: memcached)
The Memcached package to use.

interfaces (default: '("0.0.0.0"))
Network interfaces on which to listen.

tcp-port (default: 11211)
Port on which to accept connections.

udp-port (default: 11211)
Port on which to accept UDP connections on, a value of 0 will disable
listening on a UDP socket.

additional-options (default: '())
Additional command line options to pass to memcached.

Redis

[Variable]redis-service-type
This is the service type for the Redis (https://redis.io/) key/value store, whose
value is a redis-configuration object.

[Data Type]redis-configuration
Data type representing the configuration of redis.

redis (default: redis)
The Redis package to use.

bind (default: "127.0.0.1")
Network interface on which to listen.

port (default: 6379)
Port on which to accept connections on, a value of 0 will disable listening
on a TCP socket.

working-directory (default: "/var/lib/redis")
Directory in which to store the database and related files.

https://memcached.org/
https://redis.io/

Chapter 11: System Configuration 374

11.10.13 Mail Services

The (gnu services mail) module provides Guix service definitions for email services:
IMAP, POP3, and LMTP servers, as well as mail transport agents (MTAs). Lots of
acronyms! These services are detailed in the subsections below.

Dovecot Service

[Variable]dovecot-service-type
Type for the service that runs the Dovecot IMAP/POP3/LMTP mail server, whose
value is a <dovecot-configuration> object.

By default, Dovecot does not need much configuration; the default configuration object
created by (dovecot-configuration) will suffice if your mail is delivered to ~/Maildir. A
self-signed certificate will be generated for TLS-protected connections, though Dovecot will
also listen on cleartext ports by default. There are a number of options, though, which mail
administrators might need to change, and as is the case with other services, Guix allows
the system administrator to specify these parameters via a uniform Scheme interface.

For example, to specify that mail is located at maildir~/.mail, one would instantiate
the Dovecot service like this:

(service dovecot-service-type

(dovecot-configuration

(mail-location "maildir:~/.mail")))

The available configuration parameters follow. Each parameter definition is preceded
by its type; for example, ‘string-list foo’ indicates that the foo parameter should be
specified as a list of strings. There is also a way to specify the configuration as a string, if
you have an old dovecot.conf file that you want to port over from some other system; see
the end for more details.

Available dovecot-configuration fields are:

[dovecot-configuration parameter]package dovecot
The dovecot package.

[dovecot-configuration parameter]comma-separated-string-list listen
A list of IPs or hosts where to listen for connections. ‘*’ listens on all IPv4 interfaces,
‘::’ listens on all IPv6 interfaces. If you want to specify non-default ports or anything
more complex, customize the address and port fields of the ‘inet-listener’ of the
specific services you are interested in.

[dovecot-configuration parameter]protocol-configuration-list protocols
List of protocols we want to serve. Available protocols include ‘imap’, ‘pop3’, and
‘lmtp’.

Available protocol-configuration fields are:

[protocol-configuration parameter]string name
The name of the protocol.

Chapter 11: System Configuration 375

[protocol-configuration parameter]string auth-socket-path
UNIX socket path to the master authentication server to find users.
This is used by imap (for shared users) and lda. It defaults to
‘"/var/run/dovecot/auth-userdb"’.

[protocol-configuration parameter]boolean imap-metadata?
Whether to enable the IMAP METADATA extension as defined in RFC 5464
(https://tools.ietf.org/html/rfc5464), which provides a means for
clients to set and retrieve per-mailbox, per-user metadata and annotations
over IMAP.

If this is ‘#t’, you must also specify a dictionary via the mail-attribute-dict
setting.

Defaults to ‘#f’.

[protocol-configuration parameter]space-separated-string-list
managesieve-notify-capabilities

Which NOTIFY capabilities to report to clients that first connect to the Man-
ageSieve service, before authentication. These may differ from the capabilities
offered to authenticated users. If this field is left empty, report what the Sieve
interpreter supports by default.

Defaults to ‘'()’.

[protocol-configuration parameter]space-separated-string-list
managesieve-sieve-capability

Which SIEVE capabilities to report to clients that first connect to the Mana-
geSieve service, before authentication. These may differ from the capabilities
offered to authenticated users. If this field is left empty, report what the Sieve
interpreter supports by default.

Defaults to ‘'()’.

[protocol-configuration parameter]space-separated-string-list
mail-plugins

Space separated list of plugins to load.

[protocol-configuration parameter]non-negative-integer
mail-max-userip-connections

Maximum number of IMAP connections allowed for a user from each IP address.
NOTE: The username is compared case-sensitively. Defaults to ‘10’.

[dovecot-configuration parameter]service-configuration-list services
List of services to enable. Available services include ‘imap’, ‘imap-login’, ‘pop3’,
‘pop3-login’, ‘auth’, and ‘lmtp’.

Available service-configuration fields are:

[service-configuration parameter]string kind
The service kind. Valid values include director, imap-login, pop3-login,
lmtp, imap, pop3, auth, auth-worker, dict, tcpwrap, quota-warning, or any-
thing else.

https://tools.ietf.org/html/rfc5464
https://tools.ietf.org/html/rfc5464

Chapter 11: System Configuration 376

[service-configuration parameter]listener-configuration-list
listeners

Listeners for the service. A listener is either a unix-listener-configuration,
a fifo-listener-configuration, or an inet-listener-configuration. De-
faults to ‘'()’.

Available unix-listener-configuration fields are:

[unix-listener-configuration parameter]string path
Path to the file, relative to base-dir field. This is also used as the section
name.

[unix-listener-configuration parameter]string mode
The access mode for the socket. Defaults to ‘"0600"’.

[unix-listener-configuration parameter]string user
The user to own the socket. Defaults to ‘""’.

[unix-listener-configuration parameter]string group
The group to own the socket. Defaults to ‘""’.

Available fifo-listener-configuration fields are:

[fifo-listener-configuration parameter]string path
Path to the file, relative to base-dir field. This is also used as the section
name.

[fifo-listener-configuration parameter]string mode
The access mode for the socket. Defaults to ‘"0600"’.

[fifo-listener-configuration parameter]string user
The user to own the socket. Defaults to ‘""’.

[fifo-listener-configuration parameter]string group
The group to own the socket. Defaults to ‘""’.

Available inet-listener-configuration fields are:

[inet-listener-configuration parameter]string protocol
The protocol to listen for.

[inet-listener-configuration parameter]string address
The address on which to listen, or empty for all addresses. Defaults to
‘""’.

[inet-listener-configuration parameter]non-negative-integer
port

The port on which to listen.

[inet-listener-configuration parameter]boolean ssl?
Whether to use SSL for this service; ‘yes’, ‘no’, or ‘required’. Defaults
to ‘#t’.

Chapter 11: System Configuration 377

[service-configuration parameter]non-negative-integer
client-limit

Maximum number of simultaneous client connections per process. Once this
number of connections is received, the next incoming connection will prompt
Dovecot to spawn another process. If set to 0, default-client-limit is used
instead.

Defaults to ‘0’.

[service-configuration parameter]non-negative-integer
service-count

Number of connections to handle before starting a new process. Typically the
only useful values are 0 (unlimited) or 1. 1 is more secure, but 0 is faster.
<doc/wiki/LoginProcess.txt>. Defaults to ‘1’.

[service-configuration parameter]non-negative-integer
process-limit

Maximum number of processes that can exist for this service. If set to 0,
default-process-limit is used instead.

Defaults to ‘0’.

[service-configuration parameter]non-negative-integer
process-min-avail

Number of processes to always keep waiting for more connections. Defaults to
‘0’.

[service-configuration parameter]non-negative-integer vsz-limit
If you set ‘service-count 0’, you probably need to grow this. Defaults to
‘256000000’.

[dovecot-configuration parameter]dict-configuration dict
Dict configuration, as created by the dict-configuration constructor.

Available dict-configuration fields are:

[dict-configuration parameter]free-form-fields entries
A list of key-value pairs that this dict should hold. Defaults to ‘'()’.

[dovecot-configuration parameter]passdb-configuration-list passdbs
A list of passdb configurations, each one created by the passdb-configuration con-
structor.

Available passdb-configuration fields are:

[passdb-configuration parameter]string driver
The driver that the passdb should use. Valid values include ‘pam’, ‘passwd’,
‘shadow’, ‘bsdauth’, and ‘static’. Defaults to ‘"pam"’.

[passdb-configuration parameter]space-separated-string-list args
Space separated list of arguments to the passdb driver. Defaults to ‘""’.

Chapter 11: System Configuration 378

[dovecot-configuration parameter]userdb-configuration-list userdbs
List of userdb configurations, each one created by the userdb-configuration con-
structor.

Available userdb-configuration fields are:

[userdb-configuration parameter]string driver
The driver that the userdb should use. Valid values include ‘passwd’ and
‘static’. Defaults to ‘"passwd"’.

[userdb-configuration parameter]space-separated-string-list args
Space separated list of arguments to the userdb driver. Defaults to ‘""’.

[userdb-configuration parameter]free-form-args override-fields
Override fields from passwd. Defaults to ‘'()’.

[dovecot-configuration parameter]plugin-configuration
plugin-configuration

Plug-in configuration, created by the plugin-configuration constructor.

[dovecot-configuration parameter]list-of-namespace-configuration
namespaces

List of namespaces. Each item in the list is created by the namespace-configuration
constructor.

Available namespace-configuration fields are:

[namespace-configuration parameter]string name
Name for this namespace.

[namespace-configuration parameter]string type
Namespace type: ‘private’, ‘shared’ or ‘public’. Defaults to ‘"private"’.

[namespace-configuration parameter]string separator
Hierarchy separator to use. You should use the same separator for all names-
paces or some clients get confused. ‘/’ is usually a good one. The default
however depends on the underlying mail storage format. Defaults to ‘""’.

[namespace-configuration parameter]string prefix
Prefix required to access this namespace. This needs to be different for all
namespaces. For example ‘Public/’. Defaults to ‘""’.

[namespace-configuration parameter]string location
Physical location of the mailbox. This is in the same format as mail location,
which is also the default for it. Defaults to ‘""’.

[namespace-configuration parameter]boolean inbox?
There can be only one INBOX, and this setting defines which namespace has
it. Defaults to ‘#f’.

Chapter 11: System Configuration 379

[namespace-configuration parameter]boolean hidden?
If namespace is hidden, it’s not advertised to clients via NAMESPACE exten-
sion. You’ll most likely also want to set ‘list? #f’. This is mostly useful when
converting from another server with different namespaces which you want to
deprecate but still keep working. For example you can create hidden names-
paces with prefixes ‘~/mail/’, ‘~%u/mail/’ and ‘mail/’. Defaults to ‘#f’.

[namespace-configuration parameter]boolean list?
Show the mailboxes under this namespace with the LIST command. This makes
the namespace visible for clients that do not support the NAMESPACE exten-
sion. The special children value lists child mailboxes, but hides the namespace
prefix. Defaults to ‘#t’.

[namespace-configuration parameter]boolean subscriptions?
Namespace handles its own subscriptions. If set to #f, the parent namespace
handles them. The empty prefix should always have this as #t). Defaults to
‘#t’.

[namespace-configuration parameter]mailbox-configuration-list
mailboxes

List of predefined mailboxes in this namespace. Defaults to ‘'()’.

Available mailbox-configuration fields are:

[mailbox-configuration parameter]string name
Name for this mailbox.

[mailbox-configuration parameter]string auto
‘create’ will automatically create this mailbox. ‘subscribe’ will both
create and subscribe to the mailbox. Defaults to ‘"no"’.

[mailbox-configuration parameter]space-separated-string-list
special-use

List of IMAP SPECIAL-USE attributes as specified by RFC 6154. Valid
values are \All, \Archive, \Drafts, \Flagged, \Junk, \Sent, and
\Trash. Defaults to ‘'()’.

[dovecot-configuration parameter]file-name base-dir
Base directory where to store runtime data. Defaults to ‘"/var/run/dovecot/"’.

[dovecot-configuration parameter]string login-greeting
Greeting message for clients. Defaults to ‘"Dovecot ready."’.

[dovecot-configuration parameter]space-separated-string-list
login-trusted-networks

List of trusted network ranges. Connections from these IPs are allowed to
override their IP addresses and ports (for logging and for authentication checks).
‘disable-plaintext-auth’ is also ignored for these networks. Typically you would
specify your IMAP proxy servers here. Defaults to ‘'()’.

Chapter 11: System Configuration 380

[dovecot-configuration parameter]space-separated-string-list
login-access-sockets

List of login access check sockets (e.g. tcpwrap). Defaults to ‘'()’.

[dovecot-configuration parameter]boolean verbose-proctitle?
Show more verbose process titles (in ps). Currently shows user name and IP address.
Useful for seeing who is actually using the IMAP processes (e.g. shared mailboxes or
if the same uid is used for multiple accounts). Defaults to ‘#f’.

[dovecot-configuration parameter]boolean shutdown-clients?
Should all processes be killed when Dovecot master process shuts down. Setting this
to #f means that Dovecot can be upgraded without forcing existing client connections
to close (although that could also be a problem if the upgrade is e.g. due to a security
fix). Defaults to ‘#t’.

[dovecot-configuration parameter]non-negative-integer
doveadm-worker-count

If non-zero, run mail commands via this many connections to doveadm server, instead
of running them directly in the same process. Defaults to ‘0’.

[dovecot-configuration parameter]string doveadm-socket-path
UNIX socket or host:port used for connecting to doveadm server. Defaults to
‘"doveadm-server"’.

[dovecot-configuration parameter]space-separated-string-list
import-environment

List of environment variables that are preserved on Dovecot startup and passed down
to all of its child processes. You can also give key=value pairs to always set specific
settings.

[dovecot-configuration parameter]boolean disable-plaintext-auth?
Disable LOGIN command and all other plaintext authentications unless SSL/TLS is
used (LOGINDISABLED capability). Note that if the remote IP matches the local
IP (i.e. you’re connecting from the same computer), the connection is considered
secure and plaintext authentication is allowed. See also the ‘ssl=required’ setting.
Defaults to ‘#t’.

[dovecot-configuration parameter]non-negative-integer auth-cache-size
Authentication cache size (e.g. ‘#e10e6’). 0 means it’s disabled. Note that bsdauth,
PAM and vpopmail require ‘cache-key’ to be set for caching to be used. Defaults to
‘0’.

[dovecot-configuration parameter]string auth-cache-ttl
Time to live for cached data. After TTL expires the cached record is no longer used,
except if the main database lookup returns internal failure. We also try to handle
password changes automatically: If user’s previous authentication was successful,
but this one wasn’t, the cache isn’t used. For now this works only with plaintext
authentication. Defaults to ‘"1 hour"’.

Chapter 11: System Configuration 381

[dovecot-configuration parameter]string auth-cache-negative-ttl
TTL for negative hits (user not found, password mismatch). 0 disables caching them
completely. Defaults to ‘"1 hour"’.

[dovecot-configuration parameter]space-separated-string-list
auth-realms

List of realms for SASL authentication mechanisms that need them. You can leave
it empty if you don’t want to support multiple realms. Many clients simply use the
first one listed here, so keep the default realm first. Defaults to ‘'()’.

[dovecot-configuration parameter]string auth-default-realm
Default realm/domain to use if none was specified. This is used for both SASL realms
and appending @domain to username in plaintext logins. Defaults to ‘""’.

[dovecot-configuration parameter]string auth-username-chars
List of allowed characters in username. If the user-given username contains a charac-
ter not listed in here, the login automatically fails. This is just an extra check to make
sure user can’t exploit any potential quote escaping vulnerabilities with SQL/LDAP
databases. If you want to allow all characters, set this value to empty. Defaults to
‘"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890.-_@"’.

[dovecot-configuration parameter]string auth-username-translation
Username character translations before it’s looked up from databases. The value
contains series of from -> to characters. For example ‘#@/@’ means that ‘#’ and ‘/’
characters are translated to ‘@’. Defaults to ‘""’.

[dovecot-configuration parameter]string auth-username-format
Username formatting before it’s looked up from databases. You can use the standard
variables here, e.g. %Lu would lowercase the username, %n would drop away the
domain if it was given, or ‘%n-AT-%d’ would change the ‘@’ into ‘-AT-’. This translation
is done after ‘auth-username-translation’ changes. Defaults to ‘"%Lu"’.

[dovecot-configuration parameter]string auth-master-user-separator
If you want to allow master users to log in by specifying the master username
within the normal username string (i.e. not using SASL mechanism’s support
for it), you can specify the separator character here. The format is then
<username><separator><master username>. UW-IMAP uses ‘*’ as the separator, so
that could be a good choice. Defaults to ‘""’.

[dovecot-configuration parameter]string auth-anonymous-username
Username to use for users logging in with ANONYMOUS SASL mechanism. Defaults
to ‘"anonymous"’.

[dovecot-configuration parameter]non-negative-integer
auth-worker-max-count

Maximum number of dovecot-auth worker processes. They’re used to execute blocking
passdb and userdb queries (e.g. MySQL and PAM). They’re automatically created
and destroyed as needed. Defaults to ‘30’.

Chapter 11: System Configuration 382

[dovecot-configuration parameter]string auth-gssapi-hostname
Host name to use in GSSAPI principal names. The default is to use the name returned
by gethostname(). Use ‘$ALL’ (with quotes) to allow all keytab entries. Defaults to
‘""’.

[dovecot-configuration parameter]string auth-krb5-keytab
Kerberos keytab to use for the GSSAPI mechanism. Will use the system default
(usually /etc/krb5.keytab) if not specified. You may need to change the auth
service to run as root to be able to read this file. Defaults to ‘""’.

[dovecot-configuration parameter]boolean auth-use-winbind?
Do NTLM and GSS-SPNEGO authentication using Samba’s winbind daemon and
‘ntlm-auth’ helper. <doc/wiki/Authentication/Mechanisms/Winbind.txt>. Defaults
to ‘#f’.

[dovecot-configuration parameter]file-name auth-winbind-helper-path
Path for Samba’s ‘ntlm-auth’ helper binary. Defaults to ‘"/usr/bin/ntlm_auth"’.

[dovecot-configuration parameter]string auth-failure-delay
Time to delay before replying to failed authentications. Defaults to ‘"2 secs"’.

[dovecot-configuration parameter]boolean auth-ssl-require-client-cert?
Require a valid SSL client certificate or the authentication fails. Defaults to ‘#f’.

[dovecot-configuration parameter]boolean auth-ssl-username-from-cert?
Take the username from client’s SSL certificate, using X509_NAME_get_text_by_

NID() which returns the subject’s DN’s CommonName. Defaults to ‘#f’.

[dovecot-configuration parameter]space-separated-string-list
auth-mechanisms

List of wanted authentication mechanisms. Supported mechanisms are: ‘plain’,
‘login’, ‘digest-md5’, ‘cram-md5’, ‘ntlm’, ‘rpa’, ‘apop’, ‘anonymous’, ‘gssapi’, ‘otp’,
‘skey’, and ‘gss-spnego’. See also the ‘disable-plaintext-auth’ setting.

[dovecot-configuration parameter]space-separated-string-list
director-servers

List of IPs or hostnames to all director servers, including ourself. Ports can
be specified as ip:port. The default port is the same as what director service’s
‘inet-listener’ is using. Defaults to ‘'()’.

[dovecot-configuration parameter]space-separated-string-list
director-mail-servers

List of IPs or hostnames to all backend mail servers. Ranges are allowed too, like
10.0.0.10-10.0.0.30. Defaults to ‘'()’.

[dovecot-configuration parameter]string director-user-expire
How long to redirect users to a specific server after it no longer has any connections.
Defaults to ‘"15 min"’.

Chapter 11: System Configuration 383

[dovecot-configuration parameter]string director-username-hash
How the username is translated before being hashed. Useful values include %Ln if
user can log in with or without @domain, %Ld if mailboxes are shared within domain.
Defaults to ‘"%Lu"’.

[dovecot-configuration parameter]string log-path
Log file to use for error messages. ‘syslog’ logs to syslog, ‘/dev/stderr’ logs to
stderr. Defaults to ‘"syslog"’.

[dovecot-configuration parameter]string info-log-path
Log file to use for informational messages. Defaults to ‘log-path’. Defaults to ‘""’.

[dovecot-configuration parameter]string debug-log-path
Log file to use for debug messages. Defaults to ‘info-log-path’. Defaults to ‘""’.

[dovecot-configuration parameter]string syslog-facility
Syslog facility to use if you’re logging to syslog. Usually if you don’t want to use
‘mail’, you’ll use local0..local7. Also other standard facilities are supported. Defaults
to ‘"mail"’.

[dovecot-configuration parameter]boolean auth-verbose?
Log unsuccessful authentication attempts and the reasons why they failed. Defaults
to ‘#f’.

[dovecot-configuration parameter]string auth-verbose-passwords
In case of password mismatches, log the attempted password. Valid values are no,
plain and sha1. sha1 can be useful for detecting brute force password attempts vs.
user simply trying the same password over and over again. You can also truncate the
value to n chars by appending ":n" (e.g. sha1:6). Defaults to ‘"no"’.

[dovecot-configuration parameter]boolean auth-debug?
Even more verbose logging for debugging purposes. Shows for example SQL queries.
Defaults to ‘#f’.

[dovecot-configuration parameter]boolean auth-debug-passwords?
In case of password mismatches, log the passwords and used scheme so the problem
can be debugged. Enabling this also enables ‘auth-debug’. Defaults to ‘#f’.

[dovecot-configuration parameter]boolean mail-debug?
Enable mail process debugging. This can help you figure out why Dovecot isn’t finding
your mails. Defaults to ‘#f’.

[dovecot-configuration parameter]boolean verbose-ssl?
Show protocol level SSL errors. Defaults to ‘#f’.

[dovecot-configuration parameter]string log-timestamp
Prefix for each line written to log file. % codes are in strftime(3) format. Defaults to
‘"\"%b %d %H:%M:%S \""’.

Chapter 11: System Configuration 384

[dovecot-configuration parameter]space-separated-string-list
login-log-format-elements

List of elements we want to log. The elements which have a non-empty variable value
are joined together to form a comma-separated string.

[dovecot-configuration parameter]string login-log-format
Login log format. %s contains ‘login-log-format-elements’ string, %$ contains
the data we want to log. Defaults to ‘"%$: %s"’.

[dovecot-configuration parameter]string mail-log-prefix
Log prefix for mail processes. See doc/wiki/Variables.txt for list of possible variables
you can use. Defaults to ‘"\"%s(%u)<%{pid}><%{session}>: \""’.

[dovecot-configuration parameter]string deliver-log-format
Format to use for logging mail deliveries. You can use variables:

%$ Delivery status message (e.g. ‘saved to INBOX’)

%m Message-ID

%s Subject

%f From address

%p Physical size

%w Virtual size.

Defaults to ‘"msgid=%m: %$"’.

[dovecot-configuration parameter]string mail-location
Location for users’ mailboxes. The default is empty, which means that Dovecot tries
to find the mailboxes automatically. This won’t work if the user doesn’t yet have any
mail, so you should explicitly tell Dovecot the full location.

If you’re using mbox, giving a path to the INBOX file (e.g. /var/mail/%u) isn’t
enough. You’ll also need to tell Dovecot where the other mailboxes are kept.
This is called the root mail directory, and it must be the first path given in the
‘mail-location’ setting.

There are a few special variables you can use, e.g.:

‘%u’ username

‘%n’ user part in user@domain, same as %u if there’s no domain

‘%d’ domain part in user@domain, empty if there’s no domain

‘%h’ home director

See doc/wiki/Variables.txt for full list. Some examples:

‘maildir:~/Maildir’
‘mbox:~/mail:INBOX=/var/mail/%u’
‘mbox:/var/mail/%d/%1n/%n:INDEX=/var/indexes/%d/%1n/%’

Defaults to ‘""’.

Chapter 11: System Configuration 385

[dovecot-configuration parameter]string mail-uid
System user and group used to access mails. If you use multiple, userdb can over-
ride these by returning uid or gid fields. You can use either numbers or names.
<doc/wiki/UserIds.txt>. Defaults to ‘""’.

[dovecot-configuration parameter]string mail-gid
Defaults to ‘""’.

[dovecot-configuration parameter]string mail-privileged-group
Group to enable temporarily for privileged operations. Currently this is used only
with INBOX when either its initial creation or dotlocking fails. Typically this is set
to ‘"mail"’ to give access to /var/mail. Defaults to ‘""’.

[dovecot-configuration parameter]string mail-access-groups
Grant access to these supplementary groups for mail processes. Typically these
are used to set up access to shared mailboxes. Note that it may be dangerous
to set these if users can create symlinks (e.g. if ‘mail’ group is set here, ln -s

/var/mail ~/mail/var could allow a user to delete others’ mailboxes, or ln -s

/secret/shared/box ~/mail/mybox would allow reading it). Defaults to ‘""’.

[dovecot-configuration parameter]string mail-attribute-dict
The location of a dictionary used to store IMAP METADATA as defined by RFC 5464
(https://tools.ietf.org/html/rfc5464).

The IMAP METADATA commands are available only if the “imap” protocol config-
uration’s imap-metadata? field is ‘#t’.

Defaults to ‘""’.

[dovecot-configuration parameter]boolean mail-full-filesystem-access?
Allow full file system access to clients. There’s no access checks other than what
the operating system does for the active UID/GID. It works with both maildir and
mboxes, allowing you to prefix mailboxes names with e.g. /path/ or ~user/. Defaults
to ‘#f’.

[dovecot-configuration parameter]boolean mmap-disable?
Don’t use mmap() at all. This is required if you store indexes to shared file systems
(NFS or clustered file system). Defaults to ‘#f’.

[dovecot-configuration parameter]boolean dotlock-use-excl?
Rely on ‘O_EXCL’ to work when creating dotlock files. NFS supports ‘O_EXCL’ since
version 3, so this should be safe to use nowadays by default. Defaults to ‘#t’.

[dovecot-configuration parameter]string mail-fsync
When to use fsync() or fdatasync() calls:

optimized

Whenever necessary to avoid losing important data

always Useful with e.g. NFS when write()s are delayed

never Never use it (best performance, but crashes can lose data).

Defaults to ‘"optimized"’.

https://tools.ietf.org/html/rfc5464
https://tools.ietf.org/html/rfc5464

Chapter 11: System Configuration 386

[dovecot-configuration parameter]boolean mail-nfs-storage?
Mail storage exists in NFS. Set this to yes to make Dovecot flush NFS caches whenever
needed. If you’re using only a single mail server this isn’t needed. Defaults to ‘#f’.

[dovecot-configuration parameter]boolean mail-nfs-index?
Mail index files also exist in NFS. Setting this to yes requires ‘mmap-disable? #t’
and ‘fsync-disable? #f’. Defaults to ‘#f’.

[dovecot-configuration parameter]string lock-method
Locking method for index files. Alternatives are fcntl, flock and dotlock. Dotlock-
ing uses some tricks which may create more disk I/O than other locking methods.
NFS users: flock doesn’t work, remember to change ‘mmap-disable’. Defaults to
‘"fcntl"’.

[dovecot-configuration parameter]file-name mail-temp-dir
Directory in which LDA/LMTP temporarily stores incoming mails >128 kB. Defaults
to ‘"/tmp"’.

[dovecot-configuration parameter]non-negative-integer first-valid-uid
Valid UID range for users. This is mostly to make sure that users can’t log in as
daemons or other system users. Note that denying root logins is hardcoded to dovecot
binary and can’t be done even if ‘first-valid-uid’ is set to 0. Defaults to ‘500’.

[dovecot-configuration parameter]non-negative-integer last-valid-uid
Defaults to ‘0’.

[dovecot-configuration parameter]non-negative-integer first-valid-gid
Valid GID range for users. Users having non-valid GID as primary group ID aren’t
allowed to log in. If user belongs to supplementary groups with non-valid GIDs, those
groups are not set. Defaults to ‘1’.

[dovecot-configuration parameter]non-negative-integer last-valid-gid
Defaults to ‘0’.

[dovecot-configuration parameter]non-negative-integer
mail-max-keyword-length

Maximum allowed length for mail keyword name. It’s only forced when trying to
create new keywords. Defaults to ‘50’.

[dovecot-configuration parameter]colon-separated-file-name-list
valid-chroot-dirs

List of directories under which chrooting is allowed for mail processes (i.e. /var/mail
will allow chrooting to /var/mail/foo/bar too). This setting doesn’t affect
‘login-chroot’ ‘mail-chroot’ or auth chroot settings. If this setting is empty, ‘/./’
in home dirs are ignored. WARNING: Never add directories here which local users
can modify, that may lead to root exploit. Usually this should be done only if you
don’t allow shell access for users. <doc/wiki/Chrooting.txt>. Defaults to ‘'()’.

Chapter 11: System Configuration 387

[dovecot-configuration parameter]string mail-chroot
Default chroot directory for mail processes. This can be overridden for specific users
in user database by giving ‘/./’ in user’s home directory (e.g. ‘/home/./user’ ch-
roots into /home). Note that usually there is no real need to do chrooting, Dove-
cot doesn’t allow users to access files outside their mail directory anyway. If your
home directories are prefixed with the chroot directory, append ‘/.’ to ‘mail-chroot’.
<doc/wiki/Chrooting.txt>. Defaults to ‘""’.

[dovecot-configuration parameter]file-name auth-socket-path
UNIX socket path to master authentication server to find users. This is used by imap
(for shared users) and lda. Defaults to ‘"/var/run/dovecot/auth-userdb"’.

[dovecot-configuration parameter]file-name mail-plugin-dir
Directory where to look up mail plugins. Defaults to ‘"/usr/lib/dovecot"’.

[dovecot-configuration parameter]space-separated-string-list
mail-plugins

List of plugins to load for all services. Plugins specific to IMAP, LDA, etc. are added
to this list in their own .conf files. Defaults to ‘'()’.

[dovecot-configuration parameter]non-negative-integer
mail-cache-min-mail-count

The minimum number of mails in a mailbox before updates are done to cache file.
This allows optimizing Dovecot’s behavior to do less disk writes at the cost of more
disk reads. Defaults to ‘0’.

[dovecot-configuration parameter]string mailbox-idle-check-interval
When IDLE command is running, mailbox is checked once in a while to see if there
are any new mails or other changes. This setting defines the minimum time to wait
between those checks. Dovecot can also use dnotify, inotify and kqueue to find out
immediately when changes occur. Defaults to ‘"30 secs"’.

[dovecot-configuration parameter]boolean mail-save-crlf?
Save mails with CR+LF instead of plain LF. This makes sending those mails take
less CPU, especially with sendfile() syscall with Linux and FreeBSD. But it also
creates a bit more disk I/O which may just make it slower. Also note that if other
software reads the mboxes/maildirs, they may handle the extra CRs wrong and cause
problems. Defaults to ‘#f’.

[dovecot-configuration parameter]boolean maildir-stat-dirs?
By default LIST command returns all entries in maildir beginning with a dot. En-
abling this option makes Dovecot return only entries which are directories. This is
done by stat()ing each entry, so it causes more disk I/O. (For systems setting struct
‘dirent->d_type’ this check is free and it’s done always regardless of this setting).
Defaults to ‘#f’.

[dovecot-configuration parameter]boolean maildir-copy-with-hardlinks?
When copying a message, do it with hard links whenever possible. This makes the
performance much better, and it’s unlikely to have any side effects. Defaults to ‘#t’.

Chapter 11: System Configuration 388

[dovecot-configuration parameter]boolean maildir-very-dirty-syncs?
Assume Dovecot is the only MUA accessing Maildir: Scan cur/ directory only when
its mtime changes unexpectedly or when we can’t find the mail otherwise. Defaults
to ‘#f’.

[dovecot-configuration parameter]space-separated-string-list
mbox-read-locks

Which locking methods to use for locking mbox. There are four available:

dotlock Create <mailbox>.lock file. This is the oldest and most NFS-safe solution.
If you want to use /var/mail/ like directory, the users will need write
access to that directory.

dotlock-try

Same as dotlock, but if it fails because of permissions or because there
isn’t enough disk space, just skip it.

fcntl Use this if possible. Works with NFS too if lockd is used.

flock May not exist in all systems. Doesn’t work with NFS.

lockf May not exist in all systems. Doesn’t work with NFS.

You can use multiple locking methods; if you do the order they’re declared in is im-
portant to avoid deadlocks if other MTAs/MUAs are using multiple locking methods
as well. Some operating systems don’t allow using some of them simultaneously.

[dovecot-configuration parameter]space-separated-string-list
mbox-write-locks

[dovecot-configuration parameter]string mbox-lock-timeout
Maximum time to wait for lock (all of them) before aborting. Defaults to ‘"5 mins"’.

[dovecot-configuration parameter]string mbox-dotlock-change-timeout
If dotlock exists but the mailbox isn’t modified in any way, override the lock file after
this much time. Defaults to ‘"2 mins"’.

[dovecot-configuration parameter]boolean mbox-dirty-syncs?
When mbox changes unexpectedly we have to fully read it to find out what changed.
If the mbox is large this can take a long time. Since the change is usually just a
newly appended mail, it’d be faster to simply read the new mails. If this setting is
enabled, Dovecot does this but still safely fallbacks to re-reading the whole mbox file
whenever something in mbox isn’t how it’s expected to be. The only real downside to
this setting is that if some other MUA changes message flags, Dovecot doesn’t notice
it immediately. Note that a full sync is done with SELECT, EXAMINE, EXPUNGE
and CHECK commands. Defaults to ‘#t’.

[dovecot-configuration parameter]boolean mbox-very-dirty-syncs?
Like ‘mbox-dirty-syncs’, but don’t do full syncs even with SELECT, EXAMINE,
EXPUNGE or CHECK commands. If this is set, ‘mbox-dirty-syncs’ is ignored.
Defaults to ‘#f’.

Chapter 11: System Configuration 389

[dovecot-configuration parameter]boolean mbox-lazy-writes?
Delay writing mbox headers until doing a full write sync (EXPUNGE and CHECK
commands and when closing the mailbox). This is especially useful for POP3 where
clients often delete all mails. The downside is that our changes aren’t immediately
visible to other MUAs. Defaults to ‘#t’.

[dovecot-configuration parameter]non-negative-integer
mbox-min-index-size

If mbox size is smaller than this (e.g. 100k), don’t write index files. If an index file
already exists it’s still read, just not updated. Defaults to ‘0’.

[dovecot-configuration parameter]non-negative-integer
mdbox-rotate-size

Maximum dbox file size until it’s rotated. Defaults to ‘10000000’.

[dovecot-configuration parameter]string mdbox-rotate-interval
Maximum dbox file age until it’s rotated. Typically in days. Day begins from mid-
night, so 1d = today, 2d = yesterday, etc. 0 = check disabled. Defaults to ‘"1d"’.

[dovecot-configuration parameter]boolean mdbox-preallocate-space?
When creating new mdbox files, immediately preallocate their size to
‘mdbox-rotate-size’. This setting currently works only in Linux with some file
systems (ext4, xfs). Defaults to ‘#f’.

[dovecot-configuration parameter]string mail-attachment-dir
sdbox and mdbox support saving mail attachments to external files, which also allows
single instance storage for them. Other backends don’t support this for now.

WARNING: This feature hasn’t been tested much yet. Use at your own risk.

Directory root where to store mail attachments. Disabled, if empty. Defaults to ‘""’.

[dovecot-configuration parameter]non-negative-integer
mail-attachment-min-size

Attachments smaller than this aren’t saved externally. It’s also possible to write a
plugin to disable saving specific attachments externally. Defaults to ‘128000’.

[dovecot-configuration parameter]string mail-attachment-fs
File system backend to use for saving attachments:

posix No SiS done by Dovecot (but this might help FS’s own deduplication)

sis posix SiS with immediate byte-by-byte comparison during saving

sis-queue posix

SiS with delayed comparison and deduplication.

Defaults to ‘"sis posix"’.

[dovecot-configuration parameter]string mail-attachment-hash
Hash format to use in attachment filenames. You can add any text and variables:
%{md4}, %{md5}, %{sha1}, %{sha256}, %{sha512}, %{size}. Variables can be trun-
cated, e.g. %{sha256:80} returns only first 80 bits. Defaults to ‘"%{sha1}"’.

Chapter 11: System Configuration 390

[dovecot-configuration parameter]non-negative-integer
default-process-limit

Defaults to ‘100’.

[dovecot-configuration parameter]non-negative-integer
default-client-limit

Defaults to ‘1000’.

[dovecot-configuration parameter]non-negative-integer
default-vsz-limit

Default VSZ (virtual memory size) limit for service processes. This is mainly intended
to catch and kill processes that leak memory before they eat up everything. Defaults
to ‘256000000’.

[dovecot-configuration parameter]string default-login-user
Login user is internally used by login processes. This is the most untrusted user in
Dovecot system. It shouldn’t have access to anything at all. Defaults to ‘"dovenull"’.

[dovecot-configuration parameter]string default-internal-user
Internal user is used by unprivileged processes. It should be separate from login user,
so that login processes can’t disturb other processes. Defaults to ‘"dovecot"’.

[dovecot-configuration parameter]string ssl?
SSL/TLS support: yes, no, required. <doc/wiki/SSL.txt>. Defaults to ‘"required"’.

[dovecot-configuration parameter]string ssl-cert
PEM encoded X.509 SSL/TLS certificate (public key). Defaults to
‘"</etc/dovecot/default.pem"’.

[dovecot-configuration parameter]string ssl-key
PEM encoded SSL/TLS private key. The key is opened before dropping root
privileges, so keep the key file unreadable by anyone but root. Defaults to
‘"</etc/dovecot/private/default.pem"’.

[dovecot-configuration parameter]string ssl-key-password
If key file is password protected, give the password here. Alternatively give it when
starting dovecot with -p parameter. Since this file is often world-readable, you may
want to place this setting instead to a different. Defaults to ‘""’.

[dovecot-configuration parameter]string ssl-ca
PEM encoded trusted certificate authority. Set this only if you intend to use
‘ssl-verify-client-cert? #t’. The file should contain the CA certificate(s)
followed by the matching CRL(s). (e.g. ‘ssl-ca </etc/ssl/certs/ca.pem’).
Defaults to ‘""’.

[dovecot-configuration parameter]boolean ssl-require-crl?
Require that CRL check succeeds for client certificates. Defaults to ‘#t’.

[dovecot-configuration parameter]boolean ssl-verify-client-cert?
Request client to send a certificate. If you also want to require it, set
‘auth-ssl-require-client-cert? #t’ in auth section. Defaults to ‘#f’.

Chapter 11: System Configuration 391

[dovecot-configuration parameter]string ssl-cert-username-field
Which field from certificate to use for username. commonName and
x500UniqueIdentifier are the usual choices. You’ll also need to set
‘auth-ssl-username-from-cert? #t’. Defaults to ‘"commonName"’.

[dovecot-configuration parameter]string ssl-min-protocol
Minimum SSL protocol version to accept. Defaults to ‘"TLSv1"’.

[dovecot-configuration parameter]string ssl-cipher-list
SSL ciphers to use. Defaults to ‘"ALL:!kRSA:!SRP:!kDHd:!DSS:!aNULL:!eNULL:!EXPORT:!DES:!3DES:!MD5:!PSK:!RC4:!ADH:!LOW@STRENGTH"’.

[dovecot-configuration parameter]string ssl-crypto-device
SSL crypto device to use, for valid values run "openssl engine". Defaults to ‘""’.

[dovecot-configuration parameter]string postmaster-address
Address to use when sending rejection mails. %d expands to recipient domain. De-
faults to ‘"postmaster@%d"’.

[dovecot-configuration parameter]string hostname
Hostname to use in various parts of sent mails (e.g. in Message-Id) and in LMTP
replies. Default is the system’s real hostname@domain. Defaults to ‘""’.

[dovecot-configuration parameter]boolean quota-full-tempfail?
If user is over quota, return with temporary failure instead of bouncing the mail.
Defaults to ‘#f’.

[dovecot-configuration parameter]file-name sendmail-path
Binary to use for sending mails. Defaults to ‘"/usr/sbin/sendmail"’.

[dovecot-configuration parameter]string submission-host
If non-empty, send mails via this SMTP host[:port] instead of sendmail. Defaults to
‘""’.

[dovecot-configuration parameter]string rejection-subject
Subject: header to use for rejection mails. You can use the same variables as for
‘rejection-reason’ below. Defaults to ‘"Rejected: %s"’.

[dovecot-configuration parameter]string rejection-reason
Human readable error message for rejection mails. You can use variables:

%n CRLF

%r reason

%s original subject

%t recipient

Defaults to ‘"Your message to <%t> was automatically rejected:%n%r"’.

[dovecot-configuration parameter]string recipient-delimiter
Delimiter character between local-part and detail in email address. Defaults to ‘"+"’.

Chapter 11: System Configuration 392

[dovecot-configuration parameter]string lda-original-recipient-header
Header where the original recipient address (SMTP’s RCPT TO: address) is taken
from if not available elsewhere. With dovecot-lda -a parameter overrides this. A
commonly used header for this is X-Original-To. Defaults to ‘""’.

[dovecot-configuration parameter]boolean lda-mailbox-autocreate?
Should saving a mail to a nonexistent mailbox automatically create it?. Defaults to
‘#f’.

[dovecot-configuration parameter]boolean lda-mailbox-autosubscribe?
Should automatically created mailboxes be also automatically subscribed?. Defaults
to ‘#f’.

[dovecot-configuration parameter]non-negative-integer
imap-max-line-length

Maximum IMAP command line length. Some clients generate very long command
lines with huge mailboxes, so you may need to raise this if you get "Too long argu-
ment" or "IMAP command line too large" errors often. Defaults to ‘64000’.

[dovecot-configuration parameter]string imap-logout-format
IMAP logout format string:

%i total number of bytes read from client

%o total number of bytes sent to client.

See doc/wiki/Variables.txt for a list of all the variables you can
use. Defaults to ‘"in=%i out=%o deleted=%{deleted} expunged=%{expunged}

trashed=%{trashed} hdr_count=%{fetch_hdr_count} hdr_bytes=%{fetch_hdr_bytes}

body_count=%{fetch_body_count} body_bytes=%{fetch_body_bytes}"’.

[dovecot-configuration parameter]string imap-capability
Override the IMAP CAPABILITY response. If the value begins with ’+’, add the
given capabilities on top of the defaults (e.g. +XFOO XBAR). Defaults to ‘""’.

[dovecot-configuration parameter]string imap-idle-notify-interval
How long to wait between "OK Still here" notifications when client is IDLEing.
Defaults to ‘"2 mins"’.

[dovecot-configuration parameter]string imap-id-send
ID field names and values to send to clients. Using * as the value makes Dovecot use
the default value. The following fields have default values currently: name, version,
os, os-version, support-url, support-email. Defaults to ‘""’.

[dovecot-configuration parameter]string imap-id-log
ID fields sent by client to log. * means everything. Defaults to ‘""’.

[dovecot-configuration parameter]space-separated-string-list
imap-client-workarounds

Workarounds for various client bugs:

delay-newmail

Send EXISTS/RECENT new mail notifications only when replying to
NOOP and CHECK commands. Some clients ignore them otherwise, for

Chapter 11: System Configuration 393

example OSX Mail (<v2.1). Outlook Express breaks more badly though,
without this it may show user "Message no longer in server" errors. Note
that OE6 still breaks even with this workaround if synchronization is set
to "Headers Only".

tb-extra-mailbox-sep

Thunderbird gets somehow confused with LAYOUT=fs (mbox and dbox)
and adds extra ‘/’ suffixes to mailbox names. This option causes Dovecot
to ignore the extra ‘/’ instead of treating it as invalid mailbox name.

tb-lsub-flags

Show \Noselect flags for LSUB replies with LAYOUT=fs (e.g. mbox).
This makes Thunderbird realize they aren’t selectable and show them
greyed out, instead of only later giving "not selectable" popup error.

Defaults to ‘'()’.

[dovecot-configuration parameter]string imap-urlauth-host
Host allowed in URLAUTH URLs sent by client. "*" allows all. Defaults to ‘""’.

Whew! Lots of configuration options. The nice thing about it though is that Guix has
a complete interface to Dovecot’s configuration language. This allows not only a nice way
to declare configurations, but also offers reflective capabilities as well: users can write code
to inspect and transform configurations from within Scheme.

However, it could be that you just want to get a dovecot.conf up and running. In
that case, you can pass an opaque-dovecot-configuration as the #:config parameter
to dovecot-service. As its name indicates, an opaque configuration does not have easy
reflective capabilities.

Available opaque-dovecot-configuration fields are:

[opaque-dovecot-configuration parameter]package dovecot
The dovecot package.

[opaque-dovecot-configuration parameter]string string
The contents of the dovecot.conf, as a string.

For example, if your dovecot.conf is just the empty string, you could instantiate a
dovecot service like this:

(dovecot-service #:config

(opaque-dovecot-configuration

(string "")))

OpenSMTPD Service

[Variable]opensmtpd-service-type
This is the type of the OpenSMTPD (https://www.opensmtpd.org) service, whose
value should be an opensmtpd-configuration object as in this example:

(service opensmtpd-service-type

(opensmtpd-configuration

(config-file (local-file "./my-smtpd.conf"))))

https://www.opensmtpd.org

Chapter 11: System Configuration 394

[Data Type]opensmtpd-configuration
Data type representing the configuration of opensmtpd.

package (default: opensmtpd)
Package object of the OpenSMTPD SMTP server.

shepherd-requirement (default: '())
This option can be used to provide a list of symbols naming Shepherd
services that this service will depend on, such as 'networking if you want
to configure OpenSMTPD to listen on non-loopback interfaces.

config-file (default: %default-opensmtpd-config-file)
File-like object of the OpenSMTPD configuration file to use. By default
it listens on the loopback network interface, and allows for mail from
users and daemons on the local machine, as well as permitting email to
remote servers. Run man smtpd.conf for more information.

setgid-commands? (default: #t)
Make the following commands setgid to smtpq so they can be executed:
smtpctl, sendmail, send-mail, makemap, mailq, and newaliases. See
Section 11.11 [Setuid Programs], page 587, for more information on setgid
programs.

Exim Service

[Variable]exim-service-type
This is the type of the Exim (https://exim.org) mail transfer agent (MTA), whose
value should be an exim-configuration object as in this example:

(service exim-service-type

(exim-configuration

(config-file (local-file "./my-exim.conf"))))

In order to use an exim-service-type service you must also have a mail-aliases-

service-type service present in your operating-system (even if it has no aliases).

[Data Type]exim-configuration
Data type representing the configuration of exim.

package (default: exim)
Package object of the Exim server.

config-file (default: #f)
File-like object of the Exim configuration file to use. If its value is #f then
use the default configuration file from the package provided in package.
The resulting configuration file is loaded after setting the exim_user and
exim_group configuration variables.

Getmail service

[Variable]getmail-service-type
This is the type of the Getmail (http://pyropus.ca/software/getmail/) mail re-
triever, whose value should be a getmail-configuration.

https://exim.org
http://pyropus.ca/software/getmail/

Chapter 11: System Configuration 395

Available getmail-configuration fields are:

[getmail-configuration parameter]symbol name
A symbol to identify the getmail service.

Defaults to ‘"unset"’.

[getmail-configuration parameter]package package
The getmail package to use.

[getmail-configuration parameter]string user
The user to run getmail as.

Defaults to ‘"getmail"’.

[getmail-configuration parameter]string group
The group to run getmail as.

Defaults to ‘"getmail"’.

[getmail-configuration parameter]string directory
The getmail directory to use.

Defaults to ‘"/var/lib/getmail/default"’.

[getmail-configuration parameter]getmail-configuration-file rcfile
The getmail configuration file to use.

Available getmail-configuration-file fields are:

[getmail-configuration-file parameter]getmail-retriever-configuration
retriever

What mail account to retrieve mail from, and how to access that account.

Available getmail-retriever-configuration fields are:

[getmail-retriever-configuration parameter]string type
The type of mail retriever to use. Valid values include ‘passwd’ and
‘static’.

Defaults to ‘"SimpleIMAPSSLRetriever"’.

[getmail-retriever-configuration parameter]string server
Username to login to the mail server with.

Defaults to ‘unset’.

[getmail-retriever-configuration parameter]string username
Username to login to the mail server with.

Defaults to ‘unset’.

[getmail-retriever-configuration parameter]non-negative-integer
port

Port number to connect to.

Defaults to ‘#f’.

Chapter 11: System Configuration 396

[getmail-retriever-configuration parameter]string password
Override fields from passwd.

Defaults to ‘""’.

[getmail-retriever-configuration parameter]list
password-command

Override fields from passwd.

Defaults to ‘'()’.

[getmail-retriever-configuration parameter]string keyfile
PEM-formatted key file to use for the TLS negotiation.

Defaults to ‘""’.

[getmail-retriever-configuration parameter]string certfile
PEM-formatted certificate file to use for the TLS negotiation.

Defaults to ‘""’.

[getmail-retriever-configuration parameter]string ca-certs
CA certificates to use.

Defaults to ‘""’.

[getmail-retriever-configuration parameter]parameter-alist
extra-parameters

Extra retriever parameters.

Defaults to ‘'()’.

[getmail-configuration-file parameter]getmail-destination-configuration
destination

What to do with retrieved messages.

Available getmail-destination-configuration fields are:

[getmail-destination-configuration parameter]string type
The type of mail destination. Valid values include ‘Maildir’, ‘Mboxrd’
and ‘MDA_external’.

Defaults to ‘unset’.

[getmail-destination-configuration parameter]string-or-filelike
path

The path option for the mail destination. The behaviour depends on the
chosen type.

Defaults to ‘""’.

[getmail-destination-configuration parameter]parameter-alist
extra-parameters

Extra destination parameters

Defaults to ‘'()’.

Chapter 11: System Configuration 397

[getmail-configuration-file parameter]getmail-options-configuration
options

Configure getmail.

Available getmail-options-configuration fields are:

[getmail-options-configuration parameter]non-negative-integer
verbose

If set to ‘0’, getmail will only print warnings and errors. A value of
‘1’ means that messages will be printed about retrieving and deleting
messages. If set to ‘2’, getmail will print messages about each of its
actions.

Defaults to ‘1’.

[getmail-options-configuration parameter]boolean read-all
If true, getmail will retrieve all available messages. Otherwise it will only
retrieve messages it hasn’t seen previously.

Defaults to ‘#t’.

[getmail-options-configuration parameter]boolean delete
If set to true, messages will be deleted from the server after retrieving
and successfully delivering them. Otherwise, messages will be left on the
server.

Defaults to ‘#f’.

[getmail-options-configuration parameter]non-negative-integer
delete-after

Getmail will delete messages this number of days after seeing them, if
they have been delivered. This means messages will be left on the server
this number of days after delivering them. A value of ‘0’ disabled this
feature.

Defaults to ‘0’.

[getmail-options-configuration parameter]non-negative-integer
delete-bigger-than

Delete messages larger than this of bytes after retrieving them, even if
the delete and delete-after options are disabled. A value of ‘0’ disables
this feature.

Defaults to ‘0’.

[getmail-options-configuration parameter]non-negative-integer
max-bytes-per-session

Retrieve messages totalling up to this number of bytes before closing the
session with the server. A value of ‘0’ disables this feature.

Defaults to ‘0’.

[getmail-options-configuration parameter]non-negative-integer
max-message-size

Don’t retrieve messages larger than this number of bytes. A value of ‘0’
disables this feature.

Chapter 11: System Configuration 398

Defaults to ‘0’.

[getmail-options-configuration parameter]boolean delivered-to
If true, getmail will add a Delivered-To header to messages.

Defaults to ‘#t’.

[getmail-options-configuration parameter]boolean received
If set, getmail adds a Received header to the messages.

Defaults to ‘#t’.

[getmail-options-configuration parameter]string message-log
Getmail will record a log of its actions to the named file. A value of ‘""’
disables this feature.

Defaults to ‘""’.

[getmail-options-configuration parameter]boolean
message-log-syslog

If true, getmail will record a log of its actions using the system logger.

Defaults to ‘#f’.

[getmail-options-configuration parameter]boolean
message-log-verbose

If true, getmail will log information about messages not retrieved and the
reason for not retrieving them, as well as starting and ending information
lines.

Defaults to ‘#f’.

[getmail-options-configuration parameter]parameter-alist
extra-parameters

Extra options to include.

Defaults to ‘'()’.

[getmail-configuration parameter]list idle
A list of mailboxes that getmail should wait on the server for new mail notifications.
This depends on the server supporting the IDLE extension.

Defaults to ‘'()’.

[getmail-configuration parameter]list environment-variables
Environment variables to set for getmail.

Defaults to ‘'()’.

Mail Aliases Service

[Variable]mail-aliases-service-type
This is the type of the service which provides /etc/aliases, specifying how to deliver
mail to users on this system.

(service mail-aliases-service-type

'(("postmaster" "bob")

("bob" "bob@example.com" "bob@example2.com")))

Chapter 11: System Configuration 399

The configuration for a mail-aliases-service-type service is an association list de-
noting how to deliver mail that comes to this system. Each entry is of the form (alias

addresses ...), with alias specifying the local alias and addresses specifying where to
deliver this user’s mail.

The aliases aren’t required to exist as users on the local system. In the above example,
there doesn’t need to be a postmaster entry in the operating-system’s user-accounts
in order to deliver the postmaster mail to bob (which subsequently would deliver mail to
bob@example.com and bob@example2.com).

GNU Mailutils IMAP4 Daemon

[Variable]imap4d-service-type
This is the type of the GNU Mailutils IMAP4 Daemon (see Section “imap4d” in
GNU Mailutils Manual), whose value should be an imap4d-configuration object as
in this example:

(service imap4d-service-type

(imap4d-configuration

(config-file (local-file "imap4d.conf"))))

[Data Type]imap4d-configuration
Data type representing the configuration of imap4d.

package (default: mailutils)
The package that provides imap4d.

config-file (default: %default-imap4d-config-file)
File-like object of the configuration file to use, by default it will listen
on TCP port 143 of localhost. See Section “Conf-imap4d” in GNU
Mailutils Manual, for details.

Radicale Service

[Variable]radicale-service-type
This is the type of the Radicale (https://radicale.org) CalDAV/CardDAV server
whose value should be a radicale-configuration.

[Data Type]radicale-configuration
Data type representing the configuration of radicale.

package (default: radicale)
The package that provides radicale.

config-file (default: %default-radicale-config-file)
File-like object of the configuration file to use, by default it will
listen on TCP port 5232 of localhost and use the htpasswd file at
/var/lib/radicale/users with no (plain) encryption.

Rspamd Service

[Variable]rspamd-service-type
This is the type of the Rspamd (https://rspamd.com/) filtering system whose value
should be a rspamd-configuration.

https://radicale.org
https://rspamd.com/

Chapter 11: System Configuration 400

[Data Type]rspamd-configuration
Available rspamd-configuration fields are:

package (default: rspamd) (type: file-like)
The package that provides rspamd.

config-file (default: %default-rspamd-config-file) (type: file-like)
File-like object of the configuration file to use. By default all workers
are enabled except fuzzy and they are binded to their usual ports, e.g
localhost:11334, localhost:11333 and so on

local.d-files (default: ()) (type: directory-tree)
Configuration files in local.d, provided as a list of two element lists where
the first element is the filename and the second one is a file-like object.
Settings in these files will be merged with the defaults.

override.d-files (default: ()) (type: directory-tree)
Configuration files in override.d, provided as a list of two element lists
where the first element is the filename and the second one is a file-like
object. Settings in these files will override the defaults.

user (default: %default-rspamd-account) (type: user-account)
The user to run rspamd as.

group (default: %default-rspamd-group) (type: user-group)
The group to run rspamd as.

debug? (default: #f) (type: boolean)
Force debug output.

insecure? (default: #f) (type: boolean)
Ignore running workers as privileged users.

skip-template? (default: #f) (type: boolean)
Do not apply Jinja templates.

shepherd-requirements (default: (loopback)) (type: list-of-symbols)
This is a list of symbols naming Shepherd services that this service will
depend on.

11.10.14 Messaging Services

The (gnu services messaging) module provides Guix service definitions for messaging
services. Currently it provides the following services:

Prosody Service

[Variable]prosody-service-type
This is the type for the Prosody XMPP communication server (https://prosody.
im). Its value must be a prosody-configuration record as in this example:

(service prosody-service-type

(prosody-configuration

(modules-enabled (cons* "groups" "mam" %default-modules-enabled))

https://prosody.im
https://prosody.im

Chapter 11: System Configuration 401

(int-components

(list

(int-component-configuration

(hostname "conference.example.net")

(plugin "muc")

(mod-muc (mod-muc-configuration)))))

(virtualhosts

(list

(virtualhost-configuration

(domain "example.net"))))))

See below for details about prosody-configuration.

By default, Prosody does not need much configuration. Only one virtualhosts field is
needed: it specifies the domain you wish Prosody to serve.

You can perform various sanity checks on the generated configuration with the
prosodyctl check command.

Prosodyctl will also help you to import certificates from the letsencrypt directory so
that the prosody user can access them. See https://prosody.im/doc/letsencrypt.

prosodyctl --root cert import /etc/certs

The available configuration parameters follow. Each parameter definition is preceded
by its type; for example, ‘string-list foo’ indicates that the foo parameter should be
specified as a list of strings. Types starting with maybe- denote parameters that won’t show
up in prosody.cfg.lua when their value is left unspecified.

There is also a way to specify the configuration as a string, if you have an old
prosody.cfg.lua file that you want to port over from some other system; see the end for
more details.

The file-object type designates either a file-like object (see Section 8.12
[G-Expressions], page 159) or a file name.

Available prosody-configuration fields are:

[prosody-configuration parameter]package prosody
The Prosody package.

[prosody-configuration parameter]file-name data-path
Location of the Prosody data storage directory. See https://prosody.im/doc/

configure. Defaults to ‘"/var/lib/prosody"’.

[prosody-configuration parameter]file-object-list plugin-paths
Additional plugin directories. They are searched in all the specified paths in order.
See https://prosody.im/doc/plugins_directory. Defaults to ‘'()’.

[prosody-configuration parameter]file-name certificates
Every virtual host and component needs a certificate so that clients and servers can
securely verify its identity. Prosody will automatically load certificates/keys from the
directory specified here. Defaults to ‘"/etc/prosody/certs"’.

https://prosody.im/doc/letsencrypt
https://prosody.im/doc/configure
https://prosody.im/doc/configure
https://prosody.im/doc/plugins_directory

Chapter 11: System Configuration 402

[prosody-configuration parameter]string-list admins
This is a list of accounts that are admins for the server. Note that you must create the
accounts separately. See https://prosody.im/doc/admins and https://prosody.

im/doc/creating_accounts. Example: (admins '("user1@example.com"

"user2@example.net")) Defaults to ‘'()’.

[prosody-configuration parameter]boolean use-libevent?
Enable use of libevent for better performance under high load. See https://prosody.
im/doc/libevent. Defaults to ‘#f’.

[prosody-configuration parameter]module-list modules-enabled
This is the list of modules Prosody will load on startup. It looks for mod_

modulename.lua in the plugins folder, so make sure that exists too. Documentation
on modules can be found at: https://prosody.im/doc/modules. Defaults
to ‘'("roster" "saslauth" "tls" "dialback" "disco" "carbons" "private"

"blocklist" "vcard" "version" "uptime" "time" "ping" "pep" "register"

"admin_adhoc")’.

[prosody-configuration parameter]string-list modules-disabled
‘"offline"’, ‘"c2s"’ and ‘"s2s"’ are auto-loaded, but should you want to disable
them then add them to this list. Defaults to ‘'()’.

[prosody-configuration parameter]file-object groups-file
Path to a text file where the shared groups are defined. If this path is empty then
‘mod_groups’ does nothing. See https://prosody.im/doc/modules/mod_groups.
Defaults to ‘"/var/lib/prosody/sharedgroups.txt"’.

[prosody-configuration parameter]boolean allow-registration?
Disable account creation by default, for security. See https://prosody.im/doc/

creating_accounts. Defaults to ‘#f’.

[prosody-configuration parameter]maybe-ssl-configuration ssl
These are the SSL/TLS-related settings. Most of them are disabled so to use
Prosody’s defaults. If you do not completely understand these options, do not add
them to your config, it is easy to lower the security of your server using them. See
https://prosody.im/doc/advanced_ssl_config.

Available ssl-configuration fields are:

[ssl-configuration parameter]maybe-string protocol
This determines what handshake to use.

[ssl-configuration parameter]maybe-file-name key
Path to your private key file.

[ssl-configuration parameter]maybe-file-name certificate
Path to your certificate file.

[ssl-configuration parameter]file-object capath
Path to directory containing root certificates that you wish Prosody
to trust when verifying the certificates of remote servers. Defaults to
‘"/etc/ssl/certs"’.

https://prosody.im/doc/admins
https://prosody.im/doc/creating_accounts
https://prosody.im/doc/creating_accounts
https://prosody.im/doc/libevent
https://prosody.im/doc/libevent
https://prosody.im/doc/modules
https://prosody.im/doc/modules/mod_groups
https://prosody.im/doc/creating_accounts
https://prosody.im/doc/creating_accounts
https://prosody.im/doc/advanced_ssl_config

Chapter 11: System Configuration 403

[ssl-configuration parameter]maybe-file-object cafile
Path to a file containing root certificates that you wish Prosody to trust. Similar
to capath but with all certificates concatenated together.

[ssl-configuration parameter]maybe-string-list verify
A list of verification options (these mostly map to OpenSSL’s set_verify()

flags).

[ssl-configuration parameter]maybe-string-list options
A list of general options relating to SSL/TLS. These map to OpenSSL’s set_
options(). For a full list of options available in LuaSec, see the LuaSec source.

[ssl-configuration parameter]maybe-non-negative-integer depth
How long a chain of certificate authorities to check when looking for a trusted
root certificate.

[ssl-configuration parameter]maybe-string ciphers
An OpenSSL cipher string. This selects what ciphers Prosody will offer to
clients, and in what order.

[ssl-configuration parameter]maybe-file-name dhparam
A path to a file containing parameters for Diffie-Hellman key exchange. You
can create such a file with: openssl dhparam -out /etc/prosody/certs/dh-

2048.pem 2048

[ssl-configuration parameter]maybe-string curve
Curve for Elliptic curve Diffie-Hellman. Prosody’s default is ‘"secp384r1"’.

[ssl-configuration parameter]maybe-string-list verifyext
A list of “extra” verification options.

[ssl-configuration parameter]maybe-string password
Password for encrypted private keys.

[prosody-configuration parameter]boolean c2s-require-encryption?
Whether to force all client-to-server connections to be encrypted or not. See https://
prosody.im/doc/modules/mod_tls. Defaults to ‘#f’.

[prosody-configuration parameter]string-list disable-sasl-mechanisms
Set of mechanisms that will never be offered. See https://prosody.im/doc/

modules/mod_saslauth. Defaults to ‘'("DIGEST-MD5")’.

[prosody-configuration parameter]string-list insecure-sasl-mechanisms
Set of mechanisms that will not be offered on unencrypted connections. See https://
prosody.im/doc/modules/mod_saslauth. Defaults to ‘'("PLAIN" "LOGIN")’.

[prosody-configuration parameter]boolean s2s-require-encryption?
Whether to force all server-to-server connections to be encrypted or not. See https://
prosody.im/doc/modules/mod_tls. Defaults to ‘#f’.

https://prosody.im/doc/modules/mod_tls
https://prosody.im/doc/modules/mod_tls
https://prosody.im/doc/modules/mod_saslauth
https://prosody.im/doc/modules/mod_saslauth
https://prosody.im/doc/modules/mod_saslauth
https://prosody.im/doc/modules/mod_saslauth
https://prosody.im/doc/modules/mod_tls
https://prosody.im/doc/modules/mod_tls

Chapter 11: System Configuration 404

[prosody-configuration parameter]boolean s2s-secure-auth?
Whether to require encryption and certificate authentication. This provides ideal se-
curity, but requires servers you communicate with to support encryption AND present
valid, trusted certificates. See https://prosody.im/doc/s2s#security. Defaults to
‘#f’.

[prosody-configuration parameter]string-list s2s-insecure-domains
Many servers don’t support encryption or have invalid or self-signed certificates. You
can list domains here that will not be required to authenticate using certificates. They
will be authenticated using DNS. See https://prosody.im/doc/s2s#security. De-
faults to ‘'()’.

[prosody-configuration parameter]string-list s2s-secure-domains
Even if you leave s2s-secure-auth? disabled, you can still require valid certifi-
cates for some domains by specifying a list here. See https://prosody.im/doc/

s2s#security. Defaults to ‘'()’.

[prosody-configuration parameter]string authentication
Select the authentication backend to use. The default provider stores passwords
in plaintext and uses Prosody’s configured data storage to store the authentication
data. If you do not trust your server please see https://prosody.im/doc/modules/
mod_auth_internal_hashed for information about using the hashed backend. See
also https://prosody.im/doc/authentication Defaults to ‘"internal_plain"’.

[prosody-configuration parameter]maybe-string log
Set logging options. Advanced logging configuration is not yet supported by the
Prosody service. See https://prosody.im/doc/logging. Defaults to ‘"*syslog"’.

[prosody-configuration parameter]file-name pidfile
File to write pid in. See https://prosody.im/doc/modules/mod_posix. Defaults
to ‘"/var/run/prosody/prosody.pid"’.

[prosody-configuration parameter]maybe-non-negative-integer
http-max-content-size

Maximum allowed size of the HTTP body (in bytes).

[prosody-configuration parameter]maybe-string http-external-url
Some modules expose their own URL in various ways. This URL is built from the
protocol, host and port used. If Prosody sits behind a proxy, the public URL will be
http-external-url instead. See https://prosody.im/doc/http#external_url.

[prosody-configuration parameter]virtualhost-configuration-list
virtualhosts

A host in Prosody is a domain on which user accounts can be created. For example
if you want your users to have addresses like ‘"john.smith@example.com"’ then you
need to add a host ‘"example.com"’. All options in this list will apply only to this
host.

Note: The name virtual host is used in configuration to avoid confu-
sion with the actual physical host that Prosody is installed on. A single

https://prosody.im/doc/s2s#security
https://prosody.im/doc/s2s#security
https://prosody.im/doc/s2s#security
https://prosody.im/doc/s2s#security
https://prosody.im/doc/modules/mod_auth_internal_hashed
https://prosody.im/doc/modules/mod_auth_internal_hashed
https://prosody.im/doc/authentication
https://prosody.im/doc/logging
https://prosody.im/doc/modules/mod_posix
https://prosody.im/doc/http#external_url

Chapter 11: System Configuration 405

Prosody instance can serve many domains, each one defined as a Virtu-
alHost entry in Prosody’s configuration. Conversely a server that hosts
a single domain would have just one VirtualHost entry.

See https://prosody.im/doc/configure#virtual_host_settings.

Available virtualhost-configuration fields are:

all these prosody-configuration fields: admins, use-libevent?, modules-

enabled, modules-disabled, groups-file, allow-registration?, ssl,
c2s-require-encryption?, disable-sasl-mechanisms, insecure-sasl-

mechanisms, s2s-require-encryption?, s2s-secure-auth?, s2s-insecure-

domains, s2s-secure-domains, authentication, log, http-max-content-size,
http-external-url, raw-content, plus:

[virtualhost-configuration parameter]string domain
Domain you wish Prosody to serve.

[prosody-configuration parameter]int-component-configuration-list
int-components

Components are extra services on a server which are available to clients, usually on
a subdomain of the main server (such as ‘"mycomponent.example.com"’). Exam-
ple components might be chatroom servers, user directories, or gateways to other
protocols.

Internal components are implemented with Prosody-specific plugins. To add an in-
ternal component, you simply fill the hostname field, and the plugin you wish to use
for the component.

See https://prosody.im/doc/components. Defaults to ‘'()’.

Available int-component-configuration fields are:

all these prosody-configuration fields: admins, use-libevent?, modules-

enabled, modules-disabled, groups-file, allow-registration?, ssl,
c2s-require-encryption?, disable-sasl-mechanisms, insecure-sasl-

mechanisms, s2s-require-encryption?, s2s-secure-auth?, s2s-insecure-

domains, s2s-secure-domains, authentication, log, http-max-content-size,
http-external-url, raw-content, plus:

[int-component-configuration parameter]string hostname
Hostname of the component.

[int-component-configuration parameter]string plugin
Plugin you wish to use for the component.

[int-component-configuration parameter]maybe-mod-muc-configuration
mod-muc

Multi-user chat (MUC) is Prosody’s module for allowing you to create hosted
chatrooms/conferences for XMPP users.

General information on setting up and using multi-user chatrooms can be found
in the “Chatrooms” documentation (https://prosody.im/doc/chatrooms),
which you should read if you are new to XMPP chatrooms.

See also https://prosody.im/doc/modules/mod_muc.

Available mod-muc-configuration fields are:

https://prosody.im/doc/configure#virtual_host_settings
https://prosody.im/doc/components
https://prosody.im/doc/chatrooms
https://prosody.im/doc/modules/mod_muc

Chapter 11: System Configuration 406

[mod-muc-configuration parameter]string name
The name to return in service discovery responses. Defaults to ‘"Prosody
Chatrooms"’.

[mod-muc-configuration parameter]string-or-boolean
restrict-room-creation

If ‘#t’, this will only allow admins to create new chatrooms. Otherwise
anyone can create a room. The value ‘"local"’ restricts room creation
to users on the service’s parent domain. E.g. ‘user@example.com’ can
create rooms on ‘rooms.example.com’. The value ‘"admin"’ restricts to
service administrators only. Defaults to ‘#f’.

[mod-muc-configuration parameter]non-negative-integer
max-history-messages

Maximum number of history messages that will be sent to the member
that has just joined the room. Defaults to ‘20’.

[prosody-configuration parameter]ext-component-configuration-list
ext-components

External components use XEP-0114, which most standalone components support.
To add an external component, you simply fill the hostname field. See https://

prosody.im/doc/components. Defaults to ‘'()’.

Available ext-component-configuration fields are:

all these prosody-configuration fields: admins, use-libevent?, modules-

enabled, modules-disabled, groups-file, allow-registration?, ssl,
c2s-require-encryption?, disable-sasl-mechanisms, insecure-sasl-

mechanisms, s2s-require-encryption?, s2s-secure-auth?, s2s-insecure-

domains, s2s-secure-domains, authentication, log, http-max-content-size,
http-external-url, raw-content, plus:

[ext-component-configuration parameter]string component-secret
Password which the component will use to log in.

[ext-component-configuration parameter]string hostname
Hostname of the component.

[prosody-configuration parameter]non-negative-integer-list
component-ports

Port(s) Prosody listens on for component connections. Defaults to ‘'(5347)’.

[prosody-configuration parameter]string component-interface
Interface Prosody listens on for component connections. Defaults to ‘"127.0.0.1"’.

[prosody-configuration parameter]maybe-raw-content raw-content
Raw content that will be added to the configuration file.

It could be that you just want to get a prosody.cfg.lua up and running. In that
case, you can pass an opaque-prosody-configuration record as the value of prosody-
service-type. As its name indicates, an opaque configuration does not have easy reflective
capabilities. Available opaque-prosody-configuration fields are:

https://prosody.im/doc/components
https://prosody.im/doc/components

Chapter 11: System Configuration 407

[opaque-prosody-configuration parameter]package prosody
The prosody package.

[opaque-prosody-configuration parameter]string prosody.cfg.lua
The contents of the prosody.cfg.lua to use.

For example, if your prosody.cfg.lua is just the empty string, you could instantiate a
prosody service like this:

(service prosody-service-type

(opaque-prosody-configuration

(prosody.cfg.lua "")))

BitlBee Service

BitlBee (https://bitlbee.org) is a gateway that provides an IRC interface to a variety
of messaging protocols such as XMPP.

[Variable]bitlbee-service-type
This is the service type for the BitlBee (https://bitlbee.org) IRC gateway dae-
mon. Its value is a bitlbee-configuration (see below).

To have BitlBee listen on port 6667 on localhost, add this line to your services:

(service bitlbee-service-type)

[Data Type]bitlbee-configuration
This is the configuration for BitlBee, with the following fields:

interface (default: "127.0.0.1")
port (default: 6667)

Listen on the network interface corresponding to the IP address specified
in interface, on port.

When interface is 127.0.0.1, only local clients can connect; when it is
0.0.0.0, connections can come from any networking interface.

bitlbee (default: bitlbee)
The BitlBee package to use.

plugins (default: '())
List of plugin packages to use—e.g., bitlbee-discord.

extra-settings (default: "")
Configuration snippet added as-is to the BitlBee configuration file.

Quassel Service

Quassel (https://quassel-irc.org/) is a distributed IRC client, meaning that one or
more clients can attach to and detach from the central core.

[Variable]quassel-service-type
This is the service type for the Quassel (https://quassel-irc.org/) IRC backend
daemon. Its value is a quassel-configuration (see below).

https://bitlbee.org
https://bitlbee.org
https://quassel-irc.org/
https://quassel-irc.org/

Chapter 11: System Configuration 408

[Data Type]quassel-configuration
This is the configuration for Quassel, with the following fields:

quassel (default: quassel)
The Quassel package to use.

interface (default: "::,0.0.0.0")
port (default: 4242)

Listen on the network interface(s) corresponding to the IPv4 or IPv6
interfaces specified in the comma delimited interface, on port.

loglevel (default: "Info")
The level of logging desired. Accepted values are Debug, Info, Warning
and Error.

11.10.15 Telephony Services

The (gnu services telephony) module contains Guix service definitions for telephony
services. Currently it provides the following services:

Jami

[Variable]jami-service-type
The service type for running Jami as a service. It takes a jami-configuration

object as a value, documented below. This section describes how to configure a Jami
server that can be used to host video (or audio) conferences, among other uses. The
following example demonstrates how to specify Jami account archives (backups) to
be provisioned automatically:

(service jami-service-type

(jami-configuration

(accounts

(list (jami-account

(archive "/etc/jami/unencrypted-account-1.gz"))

(jami-account

(archive "/etc/jami/unencrypted-account-2.gz"))))))

When the accounts field is specified, the Jami account files of the service found under
/var/lib/jami are recreated every time the service starts.

Jami accounts and their corresponding backup archives can be generated using the
jami or jami-gnome Jami clients. The accounts should not be password-protected,
but it is wise to ensure their files are only readable by ‘root’.

The next example shows how to declare that only some contacts should be allowed
to communicate with a given account:

(service jami-service-type

(jami-configuration

(accounts

(list (jami-account

(archive "/etc/jami/unencrypted-account-1.gz")

(peer-discovery? #t)

(rendezvous-point? #t)

Chapter 11: System Configuration 409

(allowed-contacts

'("1dbcb0f5f37324228235564b79f2b9737e9a008f"

"2dbcb0f5f37324228235564b79f2b9737e9a008f")))))))

In this mode, only the declared allowed-contacts can initiate communication with
the Jami account. This can be used, for example, with rendezvous point accounts to
create a private video conferencing space.

To put the system administrator in full control of the conferences hosted on their
system, the Jami service supports the following actions:

herd doc jami list-actions

(list-accounts

list-account-details

list-banned-contacts

list-contacts

list-moderators

add-moderator

ban-contact

enable-account

disable-account)

The above actions aim to provide the most valuable actions for moderation purposes,
not to cover the whole Jami API. Users wanting to interact with the Jami daemon
from Guile may be interested in experimenting with the (gnu build jami-service)

module, which powers the above Shepherd actions.

The add-moderator and ban-contact actions accept a contact fingerprint (40 char-
acters long hash) as first argument and an account fingerprint or username as second
argument:

herd add-moderator jami 1dbcb0f5f37324228235564b79f2b9737e9a008f \

f3345f2775ddfe07a4b0d95daea111d15fbc1199

herd list-moderators jami

Moderators for account f3345f2775ddfe07a4b0d95daea111d15fbc1199:

- 1dbcb0f5f37324228235564b79f2b9737e9a008f

In the case of ban-contact, the second username argument is optional; when omitted,
the account is banned from all Jami accounts:

herd ban-contact jami 1dbcb0f5f37324228235564b79f2b9737e9a008f

herd list-banned-contacts jami

Banned contacts for account f3345f2775ddfe07a4b0d95daea111d15fbc1199:

- 1dbcb0f5f37324228235564b79f2b9737e9a008f

Banned contacts are also stripped from their moderation privileges.

The disable-account action allows to completely disconnect an account from the
network, making it unreachable, while enable-account does the inverse. They accept
a single account username or fingerprint as first argument:

herd disable-account jami f3345f2775ddfe07a4b0d95daea111d15fbc1199

Chapter 11: System Configuration 410

herd list-accounts jami

The following Jami accounts are available:

- f3345f2775ddfe07a4b0d95daea111d15fbc1199 (dummy) [disabled]

The list-account-details action prints the detailed parameters of each accounts
in the Recutils format, which means the recsel command can be used to select
accounts of interest (see Section “Selection Expressions” in GNU recutils manual).
Note that period characters (‘.’) found in the account parameter keys are mapped
to underscores (‘_’) in the output, to meet the requirements of the Recutils format.
The following example shows how to print the account fingerprints for all accounts
operating in the rendezvous point mode:

herd list-account-details jami | \

recsel -p Account.username -e 'Account.rendezVous ~ "true"'

Account_username: f3345f2775ddfe07a4b0d95daea111d15fbc1199

The remaining actions should be self-explanatory.

The complete set of available configuration options is detailed below.

[Data Type]jami-configuration
Available jami-configuration fields are:

libjami (default: libjami) (type: package)
The Jami daemon package to use.

dbus (default: dbus-for-jami) (type: package)
The D-Bus package to use to start the required D-Bus session.

nss-certs (default: nss-certs) (type: package)
The nss-certs package to use to provide TLS certificates.

enable-logging? (default: #t) (type: boolean)
Whether to enable logging to syslog.

debug? (default: #f) (type: boolean)
Whether to enable debug level messages.

auto-answer? (default: #f) (type: boolean)
Whether to force automatic answer to incoming calls.

accounts (type: maybe-jami-account-list)
A list of Jami accounts to be (re-)provisioned every time the Jami daemon
service starts. When providing this field, the account directories under
/var/lib/jami/ are recreated every time the service starts, ensuring a
consistent state.

[Data Type]jami-account
Available jami-account fields are:

archive (type: string-or-computed-file)
The account archive (backup) file name of the account. This is used to
provision the account when the service starts. The account archive should

Chapter 11: System Configuration 411

not be encrypted. It is highly recommended to make it readable only to
the ‘root’ user (i.e., not in the store), to guard against leaking the secret
key material of the Jami account it contains.

allowed-contacts (type: maybe-account-fingerprint-list)
The list of allowed contacts for the account, entered as their 40 characters
long fingerprint. Messages or calls from accounts not in that list will be
rejected. When left specified, the configuration of the account archive is
used as-is with respect to contacts and public inbound calls/messaging
allowance, which typically defaults to allow any contact to communicate
with the account.

moderators (type: maybe-account-fingerprint-list)
The list of contacts that should have moderation privileges (to ban, mute,
etc. other users) in rendezvous conferences, entered as their 40 characters
long fingerprint. When left unspecified, the configuration of the account
archive is used as-is with respect to moderation, which typically defaults
to allow anyone to moderate.

rendezvous-point? (type: maybe-boolean)
Whether the account should operate in the rendezvous mode. In this
mode, all the incoming audio/video calls are mixed into a conference.
When left unspecified, the value from the account archive prevails.

peer-discovery? (type: maybe-boolean)
Whether peer discovery should be enabled. Peer discovery is used to
discover other OpenDHT nodes on the local network, which can be useful
to maintain communication between devices on such network even when
the connection to the Internet has been lost. When left unspecified, the
value from the account archive prevails.

bootstrap-hostnames (type: maybe-list-of-strings)
A list of hostnames or IPs pointing to OpenDHT nodes, that should be
used to initially join the OpenDHT network. When left unspecified, the
value from the account archive prevails.

name-server-uri (type: maybe-string)
The URI of the name server to use, that can be used to retrieve the
account fingerprint for a registered username.

Mumble server

This section describes how to set up and run a Mumble (https://mumble.info) server
(formerly known as Murmur).

[Variable]mumble-server-service-type
This is the service to run a Mumble server. It takes a mumble-server-configuration
object as its value, defined below.

[Data Type]mumble-server-configuration
The service type for the Mumble server. An example configuration can look like this:

(service mumble-server-service-type

https://mumble.info

Chapter 11: System Configuration 412

(mumble-server-configuration

(welcome-text

"Welcome to this Mumble server running on Guix!")

(cert-required? #t) ;disallow text password logins

(ssl-cert "/etc/certs/mumble.example.com/fullchain.pem")

(ssl-key "/etc/certs/mumble.example.com/privkey.pem")))

After reconfiguring your system, you can manually set the mumble-server SuperUser
password with the command that is printed during the activation phase.

It is recommended to register a normal Mumble user account and grant it admin
or moderator rights. You can use the mumble client to login as new normal user,
register yourself, and log out. For the next step login with the name SuperUser use
the SuperUser password that you set previously, and grant your newly registered
mumble user administrator or moderator rights and create some channels.

Available mumble-server-configuration fields are:

package (default: mumble)
Package that contains bin/mumble-server.

user (default: "mumble-server")
User who will run the Mumble-Server server.

group (default: "mumble-server")
Group of the user who will run the mumble-server server.

port (default: 64738)
Port on which the server will listen.

welcome-text (default: "")
Welcome text sent to clients when they connect.

server-password (default: "")
Password the clients have to enter in order to connect.

max-users (default: 100)
Maximum of users that can be connected to the server at once.

max-user-bandwidth (default: #f)
Maximum voice traffic a user can send per second.

database-file (default: "/var/lib/mumble-server/db.sqlite")
File name of the sqlite database. The service’s user will become the owner
of the directory.

log-file (default: "/var/log/mumble-server/mumble-server.log")
File name of the log file. The service’s user will become the owner of the
directory.

autoban-attempts (default: 10)
Maximum number of logins a user can make in autoban-timeframe with-
out getting auto banned for autoban-time.

autoban-timeframe (default: 120)
Timeframe for autoban in seconds.

Chapter 11: System Configuration 413

autoban-time (default: 300)
Amount of time in seconds for which a client gets banned when violating
the autoban limits.

opus-threshold (default: 100)
Percentage of clients that need to support opus before switching over to
opus audio codec.

channel-nesting-limit (default: 10)
How deep channels can be nested at maximum.

channelname-regex (default: #f)
A string in form of a Qt regular expression that channel names must
conform to.

username-regex (default: #f)
A string in form of a Qt regular expression that user names must conform
to.

text-message-length (default: 5000)
Maximum size in bytes that a user can send in one text chat message.

image-message-length (default: (* 128 1024))
Maximum size in bytes that a user can send in one image message.

cert-required? (default: #f)
If it is set to #t clients that use weak password authentication will not
be accepted. Users must have completed the certificate wizard to join.

remember-channel? (default: #f)
Should mumble-server remember the last channel each user was in when
they disconnected and put them into the remembered channel when they
rejoin.

allow-html? (default: #f)
Should html be allowed in text messages, user comments, and channel
descriptions.

allow-ping? (default: #f)
Setting to true exposes the current user count, the maximum user count,
and the server’s maximum bandwidth per client to unauthenticated users.
In the Mumble client, this information is shown in the Connect dialog.

Disabling this setting will prevent public listing of the server.

bonjour? (default: #f)
Should the server advertise itself in the local network through the bonjour
protocol.

send-version? (default: #f)
Should the mumble-server server version be exposed in ping requests.

log-days (default: 31)
Mumble also stores logs in the database, which are accessible via RPC.
The default is 31 days of months, but you can set this setting to 0 to keep
logs forever, or -1 to disable logging to the database.

Chapter 11: System Configuration 414

obfuscate-ips? (default: #t)
Should logged ips be obfuscated to protect the privacy of users.

ssl-cert (default: #f)
File name of the SSL/TLS certificate used for encrypted connections.

(ssl-cert "/etc/certs/example.com/fullchain.pem")

ssl-key (default: #f)
Filepath to the ssl private key used for encrypted connections.

(ssl-key "/etc/certs/example.com/privkey.pem")

ssl-dh-params (default: #f)
File name of a PEM-encoded file with Diffie-Hellman parameters for
the SSL/TLS encryption. Alternatively you set it to "@ffdhe2048",
"@ffdhe3072", "@ffdhe4096", "@ffdhe6144" or "@ffdhe8192" to use
bundled parameters from RFC 7919.

ssl-ciphers (default: #f)
The ssl-ciphers option chooses the cipher suites to make available for
use in SSL/TLS.

This option is specified using OpenSSL cipher list notation (https://
www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT).

It is recommended that you try your cipher string using ’openssl ciphers
<string>’ before setting it here, to get a feel for which cipher suites you
will get. After setting this option, it is recommend that you inspect your
Mumble server log to ensure that Mumble is using the cipher suites that
you expected it to.

Note: Changing this option may impact the backwards com-
patibility of your Mumble-Server server, and can remove the
ability for older Mumble clients to be able to connect to it.

public-registration (default: #f)
Must be a <mumble-server-public-registration-configuration>

record or #f.

You can optionally register your server in the public server list that the
mumble client shows on startup. You cannot register your server if you
have set a server-password, or set allow-ping to #f.

It might take a few hours until it shows up in the public list.

file (default: #f)
Optional alternative override for this configuration.

[Data Type]mumble-server-public-registration-configuration
Configuration for public registration of a mumble-server service.

name This is a display name for your server. Not to be confused with the
hostname.

password A password to identify your registration. Subsequent updates will need
the same password. Don’t lose your password.

https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT
https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT

Chapter 11: System Configuration 415

url This should be a http:// or https:// link to your web site.

hostname (default: #f)
By default your server will be listed by its IP address. If it is set your
server will be linked by this host name instead.

Deprecation notice: Due to historical reasons, all of the above mumble-server-
procedures are also exported with the murmur- prefix. It is recommended that
you switch to using mumble-server- going forward.

11.10.16 File-Sharing Services

The (gnu services file-sharing) module provides services that assist with transferring
files over peer-to-peer file-sharing networks.

Transmission Daemon Service

Transmission (https://transmissionbt.com/) is a flexible BitTorrent client that offers
a variety of graphical and command-line interfaces. A transmission-daemon-service-

type service provides Transmission’s headless variant, transmission-daemon, as a system
service, allowing users to share files via BitTorrent even when they are not logged in.

[Variable]transmission-daemon-service-type
The service type for the Transmission Daemon BitTorrent client. Its value must be a
transmission-daemon-configuration object as in this example:

(service transmission-daemon-service-type

(transmission-daemon-configuration

;; Restrict access to the RPC ("control") interface

(rpc-authentication-required? #t)

(rpc-username "transmission")

(rpc-password

(transmission-password-hash

"transmission" ; desired password

"uKd1uMs9")) ; arbitrary salt value

;; Accept requests from this and other hosts on the

;; local network

(rpc-whitelist-enabled? #t)

(rpc-whitelist '("::1" "127.0.0.1" "192.168.0.*"))

;; Limit bandwidth use during work hours

(alt-speed-down (* 1024 2)) ; 2 MB/s

(alt-speed-up 512) ; 512 kB/s

(alt-speed-time-enabled? #t)

(alt-speed-time-day 'weekdays)

(alt-speed-time-begin

(+ (* 60 8) 30)) ; 8:30 am

(alt-speed-time-end

(+ (* 60 (+ 12 5)) 30)))) ; 5:30 pm

https://transmissionbt.com/

Chapter 11: System Configuration 416

Once the service is started, users can interact with the daemon through its Web interface
(at http://localhost:9091/) or by using the transmission-remote command-line tool,
available in the transmission package. (Emacs users may want to also consider the emacs-
transmission package.) Both communicate with the daemon through its remote procedure
call (RPC) interface, which by default is available to all users on the system; you may wish
to change this by assigning values to the rpc-authentication-required?, rpc-username
and rpc-password settings, as shown in the example above and documented further below.

The value for rpc-password must be a password hash of the type generated and used
by Transmission clients. This can be copied verbatim from an existing settings.json

file, if another Transmission client is already being used. Otherwise, the transmission-

password-hash and transmission-random-salt procedures provided by this module can
be used to obtain a suitable hash value.

[Procedure]transmission-password-hash password salt
Returns a string containing the result of hashing password together with salt, in
the format recognized by Transmission clients for their rpc-password configuration
setting.

salt must be an eight-character string. The transmission-random-salt procedure
can be used to generate a suitable salt value at random.

[Procedure]transmission-random-salt
Returns a string containing a random, eight-character salt value of the type gener-
ated and used by Transmission clients, suitable for passing to the transmission-

password-hash procedure.

These procedures are accessible from within a Guile REPL started with the guix repl

command (see Section 8.13 [Invoking guix repl], page 168). This is useful for obtaining a
random salt value to provide as the second parameter to ‘transmission-password-hash‘, as
in this example session:

$ guix repl

scheme@(guix-user)> ,use (gnu services file-sharing)

scheme@(guix-user)> (transmission-random-salt)

$1 = "uKd1uMs9"

Alternatively, a complete password hash can generated in a single step:

scheme@(guix-user)> (transmission-password-hash "transmission"

(transmission-random-salt))

$2 = "{c8bbc6d1740cd8dc819a6e25563b67812c1c19c9VtFPfdsX"

The resulting string can be used as-is for the value of rpc-password, allowing the pass-
word to be kept hidden even in the operating-system configuration.

Torrent files downloaded by the daemon are directly accessible only to users in the
“transmission” user group, who receive read-only access to the directory specified by the
download-dir configuration setting (and also the directory specified by incomplete-dir, if
incomplete-dir-enabled? is #t). Downloaded files can be moved to another directory or
deleted altogether using transmission-remote with its --move and --remove-and-delete

options.

Chapter 11: System Configuration 417

If the watch-dir-enabled? setting is set to #t, users in the “transmission” group are
able also to place .torrent files in the directory specified by watch-dir to have the corre-
sponding torrents added by the daemon. (The trash-original-torrent-files? setting
controls whether the daemon deletes these files after processing them.)

Some of the daemon’s configuration settings can be changed temporarily by
transmission-remote and similar tools. To undo these changes, use the service’s reload
action to have the daemon reload its settings from disk:

herd reload transmission-daemon

The full set of available configuration settings is defined by the transmission-daemon-
configuration data type.

[Data Type]transmission-daemon-configuration
The data type representing configuration settings for Transmission Daemon. These
correspond directly to the settings recognized by Transmission clients in their
settings.json file.

Available transmission-daemon-configuration fields are:

[transmission-daemon-configuration parameter]package transmission
The Transmission package to use.

[transmission-daemon-configuration parameter]non-negative-integer
stop-wait-period

The period, in seconds, to wait when stopping the service for transmission-daemon
to exit before killing its process. This allows the daemon time to complete its house-
keeping and send a final update to trackers as it shuts down. On slow hosts, or hosts
with a slow network connection, this value may need to be increased.

Defaults to ‘10’.

[transmission-daemon-configuration parameter]string download-dir
The directory to which torrent files are downloaded.

Defaults to ‘"/var/lib/transmission-daemon/downloads"’.

[transmission-daemon-configuration parameter]boolean
incomplete-dir-enabled?

If #t, files will be held in incomplete-dir while their torrent is being downloaded,
then moved to download-dir once the torrent is complete. Otherwise, files for all
torrents (including those still being downloaded) will be placed in download-dir.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]maybe-string
incomplete-dir

The directory in which files from incompletely downloaded torrents will be held when
incomplete-dir-enabled? is #t.

Defaults to ‘disabled’.

Chapter 11: System Configuration 418

[transmission-daemon-configuration parameter]umask umask
The file mode creation mask used for downloaded files. (See the umask man page for
more information.)

Defaults to ‘18’.

[transmission-daemon-configuration parameter]boolean
rename-partial-files?

When #t, “.part” is appended to the name of partially downloaded files.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]preallocation-mode
preallocation

The mode by which space should be preallocated for downloaded files, one of none,
fast (or sparse) and full. Specifying full will minimize disk fragmentation at a
cost to file-creation speed.

Defaults to ‘fast’.

[transmission-daemon-configuration parameter]boolean watch-dir-enabled?
If #t, the directory specified by watch-dir will be watched for new .torrent files
and the torrents they describe added automatically (and the original files removed, if
trash-original-torrent-files? is #t).

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]maybe-string watch-dir
The directory to be watched for .torrent files indicating new torrents to be added,
when watch-dir-enabled is #t.

Defaults to ‘disabled’.

[transmission-daemon-configuration parameter]boolean
trash-original-torrent-files?

When #t, .torrent files will be deleted from the watch directory once their torrent
has been added (see watch-directory-enabled?).

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]boolean
speed-limit-down-enabled?

When #t, the daemon’s download speed will be limited to the rate specified by speed-
limit-down.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]non-negative-integer
speed-limit-down

The default global-maximum download speed, in kilobytes per second.

Defaults to ‘100’.

[transmission-daemon-configuration parameter]boolean
speed-limit-up-enabled?

When #t, the daemon’s upload speed will be limited to the rate specified by speed-

limit-up.

Defaults to ‘#f’.

Chapter 11: System Configuration 419

[transmission-daemon-configuration parameter]non-negative-integer
speed-limit-up

The default global-maximum upload speed, in kilobytes per second.

Defaults to ‘100’.

[transmission-daemon-configuration parameter]boolean alt-speed-enabled?
When #t, the alternate speed limits alt-speed-down and alt-speed-up are used (in
place of speed-limit-down and speed-limit-up, if they are enabled) to constrain
the daemon’s bandwidth usage. This can be scheduled to occur automatically at
certain times during the week; see alt-speed-time-enabled?.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]non-negative-integer
alt-speed-down

The alternate global-maximum download speed, in kilobytes per second.

Defaults to ‘50’.

[transmission-daemon-configuration parameter]non-negative-integer
alt-speed-up

The alternate global-maximum upload speed, in kilobytes per second.

Defaults to ‘50’.

[transmission-daemon-configuration parameter]boolean
alt-speed-time-enabled?

When #t, the alternate speed limits alt-speed-down and alt-speed-up will be
enabled automatically during the periods specified by alt-speed-time-day, alt-
speed-time-begin and alt-time-speed-end.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]day-list
alt-speed-time-day

The days of the week on which the alternate-speed schedule should be used, specified
either as a list of days (sunday, monday, and so on) or using one of the symbols
weekdays, weekends or all.

Defaults to ‘all’.

[transmission-daemon-configuration parameter]non-negative-integer
alt-speed-time-begin

The time of day at which to enable the alternate speed limits, expressed as a number
of minutes since midnight.

Defaults to ‘540’.

[transmission-daemon-configuration parameter]non-negative-integer
alt-speed-time-end

The time of day at which to disable the alternate speed limits, expressed as a number
of minutes since midnight.

Defaults to ‘1020’.

Chapter 11: System Configuration 420

[transmission-daemon-configuration parameter]string bind-address-ipv4
The IP address at which to listen for peer connections, or “0.0.0.0” to listen at all
available IP addresses.

Defaults to ‘"0.0.0.0"’.

[transmission-daemon-configuration parameter]string bind-address-ipv6
The IPv6 address at which to listen for peer connections, or “::” to listen at all
available IPv6 addresses.

Defaults to ‘"::"’.

[transmission-daemon-configuration parameter]boolean
peer-port-random-on-start?

If #t, when the daemon starts it will select a port at random on which to listen for
peer connections, from the range specified (inclusively) by peer-port-random-low

and peer-port-random-high. Otherwise, it listens on the port specified by peer-

port.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]port-number
peer-port-random-low

The lowest selectable port number when peer-port-random-on-start? is #t.

Defaults to ‘49152’.

[transmission-daemon-configuration parameter]port-number
peer-port-random-high

The highest selectable port number when peer-port-random-on-start is #t.

Defaults to ‘65535’.

[transmission-daemon-configuration parameter]port-number peer-port
The port on which to listen for peer connections when peer-port-random-on-start?

is #f.

Defaults to ‘51413’.

[transmission-daemon-configuration parameter]boolean
port-forwarding-enabled?

If #t, the daemon will attempt to configure port-forwarding on an upstream gateway
automatically using UPnP and NAT-PMP.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]encryption-mode encryption
The encryption preference for peer connections, one of prefer-unencrypted-

connections, prefer-encrypted-connections or require-encrypted-

connections.

Defaults to ‘prefer-encrypted-connections’.

Chapter 11: System Configuration 421

[transmission-daemon-configuration parameter]maybe-string
peer-congestion-algorithm

The TCP congestion-control algorithm to use for peer connections, specified using a
string recognized by the operating system in calls to setsockopt. When left unspec-
ified, the operating-system default is used.

Note that on GNU/Linux systems, the kernel must be configured to allow processes
to use a congestion-control algorithm not in the default set; otherwise, it will deny
these requests with “Operation not permitted”. To see which algorithms are available
on your system and which are currently permitted for use, look at the contents of the
files tcp_available_congestion_control and tcp_allowed_congestion_control

in the /proc/sys/net/ipv4 directory.

As an example, to have Transmission Daemon use the TCP Low Priority conges-
tion-control algorithm (http://www-ece.rice.edu/networks/TCP-LP/), you’ll need
to modify your kernel configuration to build in support for the algorithm, then update
your operating-system configuration to allow its use by adding a sysctl-service-

type service (or updating the existing one’s configuration) with lines like the following:

(service sysctl-service-type

(sysctl-configuration

(settings

("net.ipv4.tcp_allowed_congestion_control" .

"reno cubic lp"))))

The Transmission Daemon configuration can then be updated with

(peer-congestion-algorithm "lp")

and the system reconfigured to have the changes take effect.

Defaults to ‘disabled’.

[transmission-daemon-configuration parameter]tcp-type-of-service
peer-socket-tos

The type of service to request in outgoing TCP packets, one of default, low-cost,
throughput, low-delay and reliability.

Defaults to ‘default’.

[transmission-daemon-configuration parameter]non-negative-integer
peer-limit-global

The global limit on the number of connected peers.

Defaults to ‘200’.

[transmission-daemon-configuration parameter]non-negative-integer
peer-limit-per-torrent

The per-torrent limit on the number of connected peers.

Defaults to ‘50’.

[transmission-daemon-configuration parameter]non-negative-integer
upload-slots-per-torrent

The maximum number of peers to which the daemon will upload data simultaneously
for each torrent.

Defaults to ‘14’.

http://www-ece.rice.edu/networks/TCP-LP/
http://www-ece.rice.edu/networks/TCP-LP/

Chapter 11: System Configuration 422

[transmission-daemon-configuration parameter]non-negative-integer
peer-id-ttl-hours

The maximum lifespan, in hours, of the peer ID associated with each public torrent
before it is regenerated.

Defaults to ‘6’.

[transmission-daemon-configuration parameter]boolean blocklist-enabled?
When #t, the daemon will ignore peers mentioned in the blocklist it has most recently
downloaded from blocklist-url.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]maybe-string blocklist-url
The URL of a peer blocklist (in P2P-plaintext or eMule .dat format) to be periodically
downloaded and applied when blocklist-enabled? is #t.

Defaults to ‘disabled’.

[transmission-daemon-configuration parameter]boolean
download-queue-enabled?

If #t, the daemon will be limited to downloading at most download-queue-size

non-stalled torrents simultaneously.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]non-negative-integer
download-queue-size

The size of the daemon’s download queue, which limits the number of non-stalled
torrents it will download at any one time when download-queue-enabled? is #t.

Defaults to ‘5’.

[transmission-daemon-configuration parameter]boolean
seed-queue-enabled?

If #t, the daemon will be limited to seeding at most seed-queue-size non-stalled
torrents simultaneously.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]non-negative-integer
seed-queue-size

The size of the daemon’s seed queue, which limits the number of non-stalled torrents
it will seed at any one time when seed-queue-enabled? is #t.

Defaults to ‘10’.

[transmission-daemon-configuration parameter]boolean
queue-stalled-enabled?

When #t, the daemon will consider torrents for which it has not shared data in the
past queue-stalled-minutes minutes to be stalled and not count them against its
download-queue-size and seed-queue-size limits.

Defaults to ‘#t’.

Chapter 11: System Configuration 423

[transmission-daemon-configuration parameter]non-negative-integer
queue-stalled-minutes

The maximum period, in minutes, a torrent may be idle before it is considered to be
stalled, when queue-stalled-enabled? is #t.

Defaults to ‘30’.

[transmission-daemon-configuration parameter]boolean
ratio-limit-enabled?

When #t, a torrent being seeded will automatically be paused once it reaches the
ratio specified by ratio-limit.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]non-negative-rational
ratio-limit

The ratio at which a torrent being seeded will be paused, when ratio-limit-

enabled? is #t.

Defaults to ‘2.0’.

[transmission-daemon-configuration parameter]boolean
idle-seeding-limit-enabled?

When #t, a torrent being seeded will automatically be paused once it has been idle
for idle-seeding-limit minutes.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]non-negative-integer
idle-seeding-limit

The maximum period, in minutes, a torrent being seeded may be idle before it is
paused, when idle-seeding-limit-enabled? is #t.

Defaults to ‘30’.

[transmission-daemon-configuration parameter]boolean dht-enabled?
Enable the distributed hash table (DHT) protocol (http://bittorrent.org/beps/
bep_0005.html), which supports the use of trackerless torrents.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]boolean lpd-enabled?
Enable local peer discovery (https://en.wikipedia.org/wiki/
Local_Peer_Discovery) (LPD), which allows the discovery of peers on the local
network and may reduce the amount of data sent over the public Internet.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]boolean pex-enabled?
Enable peer exchange (https://en.wikipedia.org/wiki/Peer_exchange) (PEX),
which reduces the daemon’s reliance on external trackers and may improve its per-
formance.

Defaults to ‘#t’.

http://bittorrent.org/beps/bep_0005.html
http://bittorrent.org/beps/bep_0005.html
https://en.wikipedia.org/wiki/Local_Peer_Discovery
https://en.wikipedia.org/wiki/Local_Peer_Discovery
https://en.wikipedia.org/wiki/Peer_exchange

Chapter 11: System Configuration 424

[transmission-daemon-configuration parameter]boolean utp-enabled?
Enable the micro transport protocol (http://bittorrent.org/beps/bep_0029.
html) (uTP), which aims to reduce the impact of BitTorrent traffic on other users of
the local network while maintaining full utilization of the available bandwidth.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]boolean rpc-enabled?
If #t, enable the remote procedure call (RPC) interface, which allows remote control
of the daemon via its Web interface, the transmission-remote command-line client,
and similar tools.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]string rpc-bind-address
The IP address at which to listen for RPC connections, or “0.0.0.0” to listen at all
available IP addresses.

Defaults to ‘"0.0.0.0"’.

[transmission-daemon-configuration parameter]port-number rpc-port
The port on which to listen for RPC connections.

Defaults to ‘9091’.

[transmission-daemon-configuration parameter]string rpc-url
The path prefix to use in the RPC-endpoint URL.

Defaults to ‘"/transmission/"’.

[transmission-daemon-configuration parameter]boolean
rpc-authentication-required?

When #t, clients must authenticate (see rpc-username and rpc-password) when us-
ing the RPC interface. Note this has the side effect of disabling host-name whitelisting
(see rpc-host-whitelist-enabled?.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]maybe-string rpc-username
The username required by clients to access the RPC interface when rpc-

authentication-required? is #t.

Defaults to ‘disabled’.

[transmission-daemon-configuration parameter]maybe-transmission-password-hash
rpc-password

The password required by clients to access the RPC interface when rpc-

authentication-required? is #t. This must be specified using a password
hash in the format recognized by Transmission clients, either copied from an
existing settings.json file or generated using the transmission-password-hash

procedure.

Defaults to ‘disabled’.

http://bittorrent.org/beps/bep_0029.html
http://bittorrent.org/beps/bep_0029.html

Chapter 11: System Configuration 425

[transmission-daemon-configuration parameter]boolean
rpc-whitelist-enabled?

When #t, RPC requests will be accepted only when they originate from an address
specified in rpc-whitelist.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]string-list rpc-whitelist
The list of IP and IPv6 addresses from which RPC requests will be accepted when
rpc-whitelist-enabled? is #t. Wildcards may be specified using ‘*’.

Defaults to ‘'("127.0.0.1" "::1")’.

[transmission-daemon-configuration parameter]boolean
rpc-host-whitelist-enabled?

When #t, RPC requests will be accepted only when they are addressed to a host
named in rpc-host-whitelist. Note that requests to “localhost” or “localhost.”, or
to a numeric address, are always accepted regardless of these settings.

Note also this functionality is disabled when rpc-authentication-required? is #t.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]string-list
rpc-host-whitelist

The list of host names recognized by the RPC server when rpc-host-whitelist-

enabled? is #t.

Defaults to ‘'()’.

[transmission-daemon-configuration parameter]message-level
message-level

The minimum severity level of messages to be logged (to /var/log/transmission.log)
by the daemon, one of none (no logging), error, info and debug.

Defaults to ‘info’.

[transmission-daemon-configuration parameter]boolean
start-added-torrents?

When #t, torrents are started as soon as they are added; otherwise, they are added
in “paused” state.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]boolean
script-torrent-done-enabled?

When #t, the script specified by script-torrent-done-filename will be invoked
each time a torrent completes.

Defaults to ‘#f’.

[transmission-daemon-configuration parameter]maybe-file-object
script-torrent-done-filename

A file name or file-like object specifying a script to run each time a torrent completes,
when script-torrent-done-enabled? is #t.

Defaults to ‘disabled’.

Chapter 11: System Configuration 426

[transmission-daemon-configuration parameter]boolean
scrape-paused-torrents-enabled?

When #t, the daemon will scrape trackers for a torrent even when the torrent is
paused.

Defaults to ‘#t’.

[transmission-daemon-configuration parameter]non-negative-integer
cache-size-mb

The amount of memory, in megabytes, to allocate for the daemon’s in-memory cache.
A larger value may increase performance by reducing the frequency of disk I/O.

Defaults to ‘4’.

[transmission-daemon-configuration parameter]boolean prefetch-enabled?
When #t, the daemon will try to improve I/O performance by hinting to the operating
system which data is likely to be read next from disk to satisfy requests from peers.

Defaults to ‘#t’.

11.10.17 Monitoring Services

Tailon Service

Tailon (https://tailon.readthedocs.io/) is a web application for viewing and searching
log files.

The following example will configure the service with default values. By default, Tailon
can be accessed on port 8080 (http://localhost:8080).

(service tailon-service-type)

The following example customises more of the Tailon configuration, adding sed to the
list of allowed commands.

(service tailon-service-type

(tailon-configuration

(config-file

(tailon-configuration-file

(allowed-commands '("tail" "grep" "awk" "sed"))))))

[Data Type]tailon-configuration
Data type representing the configuration of Tailon. This type has the following pa-
rameters:

config-file (default: (tailon-configuration-file))
The configuration file to use for Tailon. This can be set to a
tailon-configuration-file record value, or any gexp (see Section 8.12
[G-Expressions], page 159).

For example, to instead use a local file, the local-file function can be
used:

(service tailon-service-type

(tailon-configuration

(config-file (local-file "./my-tailon.conf"))))

https://tailon.readthedocs.io/

Chapter 11: System Configuration 427

package (default: tailon)
The tailon package to use.

[Data Type]tailon-configuration-file
Data type representing the configuration options for Tailon. This type has the fol-
lowing parameters:

files (default: (list "/var/log"))
List of files to display. The list can include strings for a single file or
directory, or a list, where the first item is the name of a subsection, and
the remaining items are the files or directories in that subsection.

bind (default: "localhost:8080")
Address and port to which Tailon should bind on.

relative-root (default: #f)
URL path to use for Tailon, set to #f to not use a path.

allow-transfers? (default: #t)
Allow downloading the log files in the web interface.

follow-names? (default: #t)
Allow tailing of not-yet existent files.

tail-lines (default: 200)
Number of lines to read initially from each file.

allowed-commands (default: (list "tail" "grep" "awk"))
Commands to allow running. By default, sed is disabled.

debug? (default: #f)
Set debug? to #t to show debug messages.

wrap-lines (default: #t)
Initial line wrapping state in the web interface. Set to #t to initially wrap
lines (the default), or to #f to initially not wrap lines.

http-auth (default: #f)
HTTP authentication type to use. Set to #f to disable authentication
(the default). Supported values are "digest" or "basic".

users (default: #f)
If HTTP authentication is enabled (see http-auth), access will be re-
stricted to the credentials provided here. To configure users, use a list of
pairs, where the first element of the pair is the username, and the 2nd
element of the pair is the password.

(tailon-configuration-file

(http-auth "basic")

(users '(("user1" . "password1")

("user2" . "password2"))))

Chapter 11: System Configuration 428

Darkstat Service

Darkstat is a packet sniffer that captures network traffic, calculates statistics about usage,
and serves reports over HTTP.

[Variable]darkstat-service-type
This is the service type for the darkstat (https://unix4lyfe.org/darkstat/) ser-
vice, its value must be a darkstat-configuration record as in this example:

(service darkstat-service-type

(darkstat-configuration

(interface "eno1")))

[Data Type]darkstat-configuration
Data type representing the configuration of darkstat.

package (default: darkstat)
The darkstat package to use.

interface

Capture traffic on the specified network interface.

port (default: "667")
Bind the web interface to the specified port.

bind-address (default: "127.0.0.1")
Bind the web interface to the specified address.

base (default: "/")
Specify the path of the base URL. This can be useful if darkstat is
accessed via a reverse proxy.

Prometheus Node Exporter Service

The Prometheus “node exporter” makes hardware and operating system statistics provided
by the Linux kernel available for the Prometheus monitoring system. This service should
be deployed on all physical nodes and virtual machines, where monitoring these statistics
is desirable.

[Variable]prometheus-node-exporter-service-type
This is the service type for the prometheus-node-exporter (https://github.
com/prometheus/node_exporter/) service, its value must be a prometheus-node-

exporter-configuration.

(service prometheus-node-exporter-service-type)

[Data Type]prometheus-node-exporter-configuration
Data type representing the configuration of node_exporter.

package (default: go-github-com-prometheus-node-exporter)
The prometheus-node-exporter package to use.

web-listen-address (default: ":9100")
Bind the web interface to the specified address.

https://unix4lyfe.org/darkstat/
https://github.com/prometheus/node_exporter/
https://github.com/prometheus/node_exporter/

Chapter 11: System Configuration 429

textfile-directory (default: "/var/lib/prometheus/node-exporter")
This directory can be used to export metrics specific to this machine.
Files containing metrics in the text format, with the filename ending in
.prom should be placed in this directory.

extra-options (default: '())
Extra options to pass to the Prometheus node exporter.

vnStat Network Traffic Monitor

vnStat is a network traffic monitor that uses interface statistics provided by the kernel
rather than traffic sniffing. This makes it a light resource monitor, regardless of network
traffic rate.

[Variable]vnstat-service-type
This is the service type for the vnStat (https://humdi.net/vnstat/) daemon and
accepts a vnstat-configuration value.

The following example will configure the service with default values:

(service vnstat-service-type)

[Data Type]vnstat-configuration
Available vnstat-configuration fields are:

package (default: vnstat) (type: file-like)
The vnstat package.

database-directory (default: "/var/lib/vnstat") (type: string)
Specifies the directory where the database is to be stored. A full path
must be given and a leading ’/’ isn’t required.

5-minute-hours (default: 48) (type: maybe-integer)
Data retention duration for the 5 minute resolution entries. The con-
figuration defines for how many past hours entries will be stored. Set
to -1 for unlimited entries or to 0 to disable the data collection of this
resolution.

64bit-interface-counters (default: -2) (type: maybe-integer)
Select interface counter handling. Set to 1 for defining that all interfaces
use 64-bit counters on the kernel side and 0 for defining 32-bit counter. Set
to -1 for using the old style logic used in earlier versions where counter
values within 32-bits are assumed to be 32-bit and anything larger is
assumed to be a 64-bit counter. This may produce false results if a 64-bit
counter is reset within the 32-bits. Set to -2 for using automatic detection
based on available kernel datastructures.

always-add-new-interfaces? (default: #t) (type: maybe-boolean)
Enable or disable automatic creation of new database entries for interfaces
not currently in the database even if the database file already exists when
the daemon is started. New database entries will also get created for new
interfaces seen while the daemon is running. Pseudo interfaces ‘lo’, ‘lo0’
and ‘sit0’ are always excluded from getting added.

https://humdi.net/vnstat/

Chapter 11: System Configuration 430

bandwidth-detection? (default: #t) (type: maybe-boolean)
Try to automatically detect max-bandwidth value for each monitored
interface. Mostly only ethernet interfaces support this feature. max-
bandwidth will be used as fallback value if detection fails. Any interface
specific max-BW configuration will disable the detection for the specified
interface. In Linux, the detection is disabled for tun interfaces due to
the Linux kernel always reporting 10 Mbit regardless of the used real
interface.

bandwidth-detection-interval (default: 5) (type: maybe-integer)
How often in minutes interface specific detection of max-bandwidth is
done for detecting possible changes when bandwidth-detection is enabled.
Can be disabled by setting to 0. Value range: ‘0’..‘30’

boot-variation (default: 15) (type: maybe-integer)
Time in seconds how much the boot time reported by system kernel can
variate between updates. Value range: ‘0’..‘300’

check-disk-space? (default: #t) (type: maybe-boolean)
Enable or disable the availability check of at least some free disk space
before a database write.

create-directories? (default: #t) (type: maybe-boolean)
Enable or disable the creation of directories when a configured path
doesn’t exist. This includes database-directory.

daemon-group (type: maybe-user-group)
Specify the group to which the daemon process should switch during
startup. Set to %unset-value to disable group switching.

daemon-user (type: maybe-user-account)
Specify the user to which the daemon process should switch during
startup. Set to %unset-value to disable user switching.

daily-days (default: 62) (type: maybe-integer)
Data retention duration for the one day resolution entries. The configu-
ration defines for how many past days entries will be stored. Set to -1 for
unlimited entries or to 0 to disable the data collection of this resolution.

database-synchronous (default: -1) (type: maybe-integer)
Change the setting of the SQLite "synchronous" flag which controls how
much care is taken to ensure disk writes have fully completed when writing
data to the database before continuing other actions. Higher values take
extra steps to ensure data safety at the cost of slower performance. A
value of 0 will result in all handling being left to the filesystem itself. Set
to -1 to select the default value according to database mode controlled
by database-write-ahead-logging setting. See SQLite documentation for
more details regarding values from 1 to 3. Value range: ‘-1’..‘3’

database-write-ahead-logging? (default: #f) (type: maybe-boolean)
Enable or disable SQLite Write-Ahead Logging mode for the database.
See SQLite documentation for more details and note that support for
read-only operations isn’t available in older SQLite versions.

Chapter 11: System Configuration 431

hourly-days (default: 4) (type: maybe-integer)
Data retention duration for the one hour resolution entries. The configu-
ration defines for how many past days entries will be stored. Set to -1 for
unlimited entries or to 0 to disable the data collection of this resolution.

log-file (type: maybe-string)
Specify log file path and name to be used if use-logging is set to 1.

max-bandwidth (type: maybe-integer)
Maximum bandwidth for all interfaces. If the interface specific traffic ex-
ceeds the given value then the data is assumed to be invalid and rejected.
Set to 0 in order to disable the feature. Value range: ‘0’..‘50000’

max-bw (type: maybe-alist)
Same as max-bandwidth but can be used for setting individual limits for
selected interfaces. This is an association list of interfaces as strings to
integer values. For example,

(max-bw `(("eth0" . 15000)

("ppp0" . 10000)))

bandwidth-detection is disabled on an interface specific level for each
max-bw configuration. Value range: ‘0’..‘50000’

monthly-months (default: 25) (type: maybe-integer)
Data retention duration for the one month resolution entries. The con-
figuration defines for how many past months entries will be stored. Set
to -1 for unlimited entries or to 0 to disable the data collection of this
resolution.

month-rotate (default: 1) (type: maybe-integer)
Day of month that months are expected to change. Usually set to 1
but can be set to alternative values for example for tracking monthly
billed traffic where the billing period doesn’t start on the first day. For
example, if set to 7, days of February up to and including the 6th will
count for January. Changing this option will not cause existing data to
be recalculated. Value range: ‘1’..‘28’

month-rotate-affects-years? (default: #f) (type: maybe-boolean)
Enable or disable month-rotate also affecting yearly data. Applicable
only when month-rotate has a value greater than one.

offline-save-interval (default: 30) (type: maybe-integer)
How often in minutes cached interface data is saved to file when all mon-
itored interfaces are offline. Value range: save-interval..‘60’

pid-file (default: "/var/run/vnstatd.pid") (type: maybe-string)
Specify pid file path and name to be used.

poll-interval (default: 5) (type: maybe-integer)
How often in seconds interfaces are checked for status changes. Value
range: ‘2’..‘60’

Chapter 11: System Configuration 432

rescan-database-on-save? (type: maybe-boolean)
Automatically discover added interfaces from the database and start mon-
itoring. The rescan is done every save-interval or offline-save-interval
minutes depending on the current activity state.

save-interval (default: 5) (type: maybe-integer)
How often in minutes cached interface data is saved to file. Value range:
(update-interval / 60)..‘60’

save-on-status-change? (default: #t) (type: maybe-boolean)
Enable or disable the additional saving to file of cached interface data
when the availability of an interface changes, i.e., when an interface goes
offline or comes online.

time-sync-wait (default: 5) (type: maybe-integer)
How many minutes to wait during daemon startup for system clock to
sync if most recent database update appears to be in the future. This
may be needed in systems without a real-time clock (RTC) which require
some time after boot to query and set the correct time. 0 = wait disabled.
Value range: ‘0’..‘60’

top-day-entries (default: 20) (type: maybe-integer)
Data retention duration for the top day entries. The configuration de-
fines how many of the past top day entries will be stored. Set to -1 for
unlimited entries or to 0 to disable the data collection of this resolution.

trafficless-entries? (default: #t) (type: maybe-boolean)
Create database entries even when there is no traffic during the entry’s
time period.

update-file-owner? (default: #t) (type: maybe-boolean)
Enable or disable the update of file ownership during daemon process
startup. During daemon startup, only database, log and pid files will be
modified if the user or group change feature (daemon-user or daemon-
group) is enabled and the files don’t match the requested user or group.
During manual database creation, this option will cause file ownership to
be inherited from the database directory if the directory already exists.
This option only has effect when the process is started as root or via sudo.

update-interval (default: 20) (type: maybe-integer)
How often in seconds the interface data is updated. Value range: poll-
interval..‘300’

use-logging (default: 2) (type: maybe-integer)
Enable or disable logging. Accepted values are: 0 = disabled, 1 = logfile
and 2 = syslog.

use-utc? (type: maybe-boolean)
Enable or disable using UTC as timezone in the database for all entries.
When enabled, all entries added to the database will use UTC regardless
of the configured system timezone. When disabled, the configured system
timezone will be used. Changing this setting will not result in already
existing data to be modified.

Chapter 11: System Configuration 433

yearly-years (default: -1) (type: maybe-integer)
Data retention duration for the one year resolution entries. The configu-
ration defines for how many past years entries will be stored. Set to -1 for
unlimited entries or to 0 to disable the data collection of this resolution.

Zabbix server

Zabbix is a high performance monitoring system that can collect data from a variety of
sources and provide the results in a web-based interface. Alerting and reporting is built-in,
as well as templates for common operating system metrics such as network utilization, CPU
load, and disk space consumption.

This service provides the central Zabbix monitoring service; you also need [zabbix-front-
end], page 435, to configure Zabbix and display results, and optionally [zabbix-agent],
page 434, on machines that should be monitored (other data sources are supported, such
as [prometheus-node-exporter], page 428).

[Variable]zabbix-server-service-type
This is the service type for the Zabbix server service. Its value must be a zabbix-

server-configuration record, shown below.

[Data Type]zabbix-server-configuration
Available zabbix-server-configuration fields are:

zabbix-server (default: zabbix-server) (type: file-like)
The zabbix-server package.

user (default: "zabbix") (type: string)
User who will run the Zabbix server.

group (default: "zabbix") (type: string)
Group who will run the Zabbix server.

db-host (default: "127.0.0.1") (type: string)
Database host name.

db-name (default: "zabbix") (type: string)
Database name.

db-user (default: "zabbix") (type: string)
Database user.

db-password (default: "") (type: string)
Database password. Please, use include-files with
DBPassword=SECRET inside a specified file instead.

db-port (default: 5432) (type: number)
Database port.

log-type (default: "") (type: string)
Specifies where log messages are written to:

• system - syslog.

• file - file specified with log-file parameter.

• console - standard output.

Chapter 11: System Configuration 434

log-file (default: "/var/log/zabbix/server.log") (type: string)
Log file name for log-type file parameter.

pid-file (default: "/var/run/zabbix/zabbix_server.pid") (type: string)
Name of PID file.

ssl-ca-location (default: "/etc/ssl/certs/ca-certificates.crt") (type:
string)

The location of certificate authority (CA) files for SSL server certificate
verification.

ssl-cert-location (default: "/etc/ssl/certs") (type: string)
Location of SSL client certificates.

extra-options (default: "") (type: extra-options)
Extra options will be appended to Zabbix server configuration file.

include-files (default: '()) (type: include-files)
You may include individual files or all files in a directory in the configu-
ration file.

Zabbix agent

The Zabbix agent gathers information about the running system for the Zabbix monitoring
server. It has a variety of built-in checks, and can be extended with custom user param-
eters (https://www.zabbix.com/documentation/current/en/manual/config/items/
userparameters).

[Variable]zabbix-agent-service-type
This is the service type for the Zabbix agent service. Its value must be a zabbix-

agent-configuration record, shown below.

[Data Type]zabbix-agent-configuration
Available zabbix-agent-configuration fields are:

zabbix-agent (default: zabbix-agentd) (type: file-like)
The zabbix-agent package.

user (default: "zabbix") (type: string)
User who will run the Zabbix agent.

group (default: "zabbix") (type: string)
Group who will run the Zabbix agent.

hostname (default: "") (type: string)
Unique, case sensitive hostname which is required for active checks and
must match hostname as configured on the server.

log-type (default: "") (type: string)
Specifies where log messages are written to:

• system - syslog.

• file - file specified with log-file parameter.

• console - standard output.

https://www.zabbix.com/documentation/current/en/manual/config/items/userparameters
https://www.zabbix.com/documentation/current/en/manual/config/items/userparameters
https://www.zabbix.com/documentation/current/en/manual/config/items/userparameters

Chapter 11: System Configuration 435

log-file (default: "/var/log/zabbix/agent.log") (type: string)
Log file name for log-type file parameter.

pid-file (default: "/var/run/zabbix/zabbix_agent.pid") (type: string)
Name of PID file.

server (default: '("127.0.0.1")) (type: list)
List of IP addresses, optionally in CIDR notation, or hostnames of Zabbix
servers and Zabbix proxies. Incoming connections will be accepted only
from the hosts listed here.

server-active (default: '("127.0.0.1")) (type: list)
List of IP:port (or hostname:port) pairs of Zabbix servers and Zabbix
proxies for active checks. If port is not specified, default port is used. If
this parameter is not specified, active checks are disabled.

extra-options (default: "") (type: extra-options)
Extra options will be appended to Zabbix server configuration file.

include-files (default: '()) (type: include-files)
You may include individual files or all files in a directory in the configu-
ration file.

Zabbix front-end

The Zabbix front-end provides a web interface to Zabbix. It does not need to run on the
same machine as the Zabbix server. This service works by extending the [PHP-FPM],
page 460, and [NGINX], page 450, services with the configuration necessary for loading the
Zabbix user interface.

[Variable]zabbix-front-end-service-type
This is the service type for the Zabbix web frontend. Its value must be a zabbix-

front-end-configuration record, shown below.

[Data Type]zabbix-front-end-configuration
Available zabbix-front-end-configuration fields are:

zabbix-server (default: zabbix-server) (type: file-like)
The Zabbix server package to use.

nginx (default: '()) (type: list)
List of [nginx-server-configuration], page 453, blocks for the Zabbix front-
end. When empty, a default that listens on port 80 is used.

db-host (default: "localhost") (type: string)
Database host name.

db-port (default: 5432) (type: number)
Database port.

db-name (default: "zabbix") (type: string)
Database name.

db-user (default: "zabbix") (type: string)
Database user.

Chapter 11: System Configuration 436

db-password (default: "") (type: string)
Database password. Please, use db-secret-file instead.

db-secret-file (default: "") (type: string)
Secret file which will be appended to zabbix.conf.php file. This file
contains credentials for use by Zabbix front-end. You are expected to
create it manually.

zabbix-host (default: "localhost") (type: string)
Zabbix server hostname.

zabbix-port (default: 10051) (type: number)
Zabbix server port.

11.10.18 Kerberos Services

The (gnu services kerberos) module provides services relating to the authentication pro-
tocol Kerberos.

Krb5 Service

Programs using a Kerberos client library normally expect a configuration file in
/etc/krb5.conf. This service generates such a file from a definition provided in the
operating system declaration. It does not cause any daemon to be started.

No “keytab” files are provided by this service—you must explicitly create them. This
service is known to work with the MIT client library, mit-krb5. Other implementations
have not been tested.

[Variable]krb5-service-type
A service type for Kerberos 5 clients.

Here is an example of its use:

(service krb5-service-type

(krb5-configuration

(default-realm "EXAMPLE.COM")

(allow-weak-crypto? #t)

(realms (list

(krb5-realm

(name "EXAMPLE.COM")

(admin-server "groucho.example.com")

(kdc "karl.example.com"))

(krb5-realm

(name "ARGRX.EDU")

(admin-server "kerb-admin.argrx.edu")

(kdc "keys.argrx.edu"))))))

This example provides a Kerberos 5 client configuration which:

• Recognizes two realms, viz: “EXAMPLE.COM” and “ARGRX.EDU”, both of which
have distinct administration servers and key distribution centers;

• Will default to the realm “EXAMPLE.COM” if the realm is not explicitly specified by
clients;

Chapter 11: System Configuration 437

• Accepts services which only support encryption types known to be weak.

The krb5-realm and krb5-configuration types have many fields. Only the most com-
monly used ones are described here. For a full list, and more detailed explanation of each,
see the MIT krb5.conf documentation.

[Data Type]krb5-realm

name This field is a string identifying the name of the realm. A common conven-
tion is to use the fully qualified DNS name of your organization, converted
to upper case.

admin-server

This field is a string identifying the host where the administration server
is running.

kdc This field is a string identifying the key distribution center for the realm.

[Data Type]krb5-configuration

allow-weak-crypto? (default: #f)
If this flag is #t then services which only offer encryption algorithms
known to be weak will be accepted.

default-realm (default: #f)
This field should be a string identifying the default Kerberos realm for
the client. You should set this field to the name of your Kerberos realm.
If this value is #f then a realm must be specified with every Kerberos
principal when invoking programs such as kinit.

realms This should be a non-empty list of krb5-realm objects, which clients
may access. Normally, one of them will have a name field matching the
default-realm field.

PAM krb5 Service

The pam-krb5 service allows for login authentication and password management via Ker-
beros. You will need this service if you want PAM enabled applications to authenticate
users using Kerberos.

[Variable]pam-krb5-service-type
A service type for the Kerberos 5 PAM module.

[Data Type]pam-krb5-configuration
Data type representing the configuration of the Kerberos 5 PAM module. This type
has the following parameters:

pam-krb5 (default: pam-krb5)
The pam-krb5 package to use.

minimum-uid (default: 1000)
The smallest user ID for which Kerberos authentications should be at-
tempted. Local accounts with lower values will silently fail to authenti-
cate.

https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html

Chapter 11: System Configuration 438

11.10.19 LDAP Services

Authentication against LDAP with nslcd

The (gnu services authentication) module provides the nslcd-service-type, which
can be used to authenticate against an LDAP server. In addition to configuring the service
itself, you may want to add ldap as a name service to the Name Service Switch. See
Section 11.13 [Name Service Switch], page 589, for detailed information.

Here is a simple operating system declaration with a default configuration of the nslcd-
service-type and a Name Service Switch configuration that consults the ldap name service
last:

(use-service-modules authentication)

(use-modules (gnu system nss))

...

(operating-system

...

(services

(cons*

(service nslcd-service-type)

(service dhcp-client-service-type)

%base-services))

(name-service-switch

(let ((services (list (name-service (name "db"))

(name-service (name "files"))

(name-service (name "ldap")))))

(name-service-switch

(inherit %mdns-host-lookup-nss)

(password services)

(shadow services)

(group services)

(netgroup services)

(gshadow services)))))

Available nslcd-configuration fields are:

[nslcd-configuration parameter]package nss-pam-ldapd
The nss-pam-ldapd package to use.

[nslcd-configuration parameter]maybe-number threads
The number of threads to start that can handle requests and perform LDAP queries.
Each thread opens a separate connection to the LDAP server. The default is to start
5 threads.

Defaults to ‘disabled’.

[nslcd-configuration parameter]string uid
This specifies the user id with which the daemon should be run.

Defaults to ‘"nslcd"’.

Chapter 11: System Configuration 439

[nslcd-configuration parameter]string gid
This specifies the group id with which the daemon should be run.

Defaults to ‘"nslcd"’.

[nslcd-configuration parameter]log-option log
This option controls the way logging is done via a list containing SCHEME and
LEVEL. The SCHEME argument may either be the symbols ‘none’ or ‘syslog’,
or an absolute file name. The LEVEL argument is optional and specifies the log
level. The log level may be one of the following symbols: ‘crit’, ‘error’, ‘warning’,
‘notice’, ‘info’ or ‘debug’. All messages with the specified log level or higher are
logged.

Defaults to ‘'("/var/log/nslcd" info)’.

[nslcd-configuration parameter]list uri
The list of LDAP server URIs. Normally, only the first server will be used with the
following servers as fall-back.

Defaults to ‘'("ldap://localhost:389/")’.

[nslcd-configuration parameter]maybe-string ldap-version
The version of the LDAP protocol to use. The default is to use the maximum version
supported by the LDAP library.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string binddn
Specifies the distinguished name with which to bind to the directory server for lookups.
The default is to bind anonymously.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string bindpw
Specifies the credentials with which to bind. This option is only applicable when used
with binddn.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string rootpwmoddn
Specifies the distinguished name to use when the root user tries to modify a user’s
password using the PAM module.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string rootpwmodpw
Specifies the credentials with which to bind if the root user tries to change a user’s
password. This option is only applicable when used with rootpwmoddn

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string sasl-mech
Specifies the SASL mechanism to be used when performing SASL authentication.

Defaults to ‘disabled’.

Chapter 11: System Configuration 440

[nslcd-configuration parameter]maybe-string sasl-realm
Specifies the SASL realm to be used when performing SASL authentication.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string sasl-authcid
Specifies the authentication identity to be used when performing SASL authentica-
tion.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string sasl-authzid
Specifies the authorization identity to be used when performing SASL authentication.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-boolean sasl-canonicalize?
Determines whether the LDAP server host name should be canonicalised. If this is
enabled the LDAP library will do a reverse host name lookup. By default, it is left
up to the LDAP library whether this check is performed or not.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string krb5-ccname
Set the name for the GSS-API Kerberos credentials cache.

Defaults to ‘disabled’.

[nslcd-configuration parameter]string base
The directory search base.

Defaults to ‘"dc=example,dc=com"’.

[nslcd-configuration parameter]scope-option scope
Specifies the search scope (subtree, onelevel, base or children). The default scope is
subtree; base scope is almost never useful for name service lookups; children scope is
not supported on all servers.

Defaults to ‘'(subtree)’.

[nslcd-configuration parameter]maybe-deref-option deref
Specifies the policy for dereferencing aliases. The default policy is to never dereference
aliases.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-boolean referrals
Specifies whether automatic referral chasing should be enabled. The default behaviour
is to chase referrals.

Defaults to ‘disabled’.

[nslcd-configuration parameter]list-of-map-entries maps
This option allows for custom attributes to be looked up instead of the default RFC
2307 attributes. It is a list of maps, each consisting of the name of a map, the RFC
2307 attribute to match and the query expression for the attribute as it is available
in the directory.

Defaults to ‘'()’.

Chapter 11: System Configuration 441

[nslcd-configuration parameter]list-of-filter-entries filters
A list of filters consisting of the name of a map to which the filter applies and an
LDAP search filter expression.

Defaults to ‘'()’.

[nslcd-configuration parameter]maybe-number bind-timelimit
Specifies the time limit in seconds to use when connecting to the directory server.
The default value is 10 seconds.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number timelimit
Specifies the time limit (in seconds) to wait for a response from the LDAP server. A
value of zero, which is the default, is to wait indefinitely for searches to be completed.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number idle-timelimit
Specifies the period if inactivity (in seconds) after which the con nection to the LDAP
server will be closed. The default is not to time out connections.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number reconnect-sleeptime
Specifies the number of seconds to sleep when connecting to all LDAP servers fails.
By default one second is waited between the first failure and the first retry.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number reconnect-retrytime
Specifies the time after which the LDAP server is considered to be permanently
unavailable. Once this time is reached retries will be done only once per this time
period. The default value is 10 seconds.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-ssl-option ssl
Specifies whether to use SSL/TLS or not (the default is not to). If ’start-tls is specified
then StartTLS is used rather than raw LDAP over SSL.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-tls-reqcert-option tls-reqcert
Specifies what checks to perform on a server-supplied certificate. The meaning of the
values is described in the ldap.conf(5) manual page.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string tls-cacertdir
Specifies the directory containing X.509 certificates for peer authen tication. This
parameter is ignored when using GnuTLS.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string tls-cacertfile
Specifies the path to the X.509 certificate for peer authentication.

Defaults to ‘disabled’.

Chapter 11: System Configuration 442

[nslcd-configuration parameter]maybe-string tls-randfile
Specifies the path to an entropy source. This parameter is ignored when using
GnuTLS.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string tls-ciphers
Specifies the ciphers to use for TLS as a string.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string tls-cert
Specifies the path to the file containing the local certificate for client TLS authenti-
cation.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string tls-key
Specifies the path to the file containing the private key for client TLS authentication.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number pagesize
Set this to a number greater than 0 to request paged results from the LDAP server
in accordance with RFC2696. The default (0) is to not request paged results.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-ignore-users-option
nss-initgroups-ignoreusers

This option prevents group membership lookups through LDAP for the specified
users. Alternatively, the value ’all-local may be used. With that value nslcd builds a
full list of non-LDAP users on startup.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number nss-min-uid
This option ensures that LDAP users with a numeric user id lower than the specified
value are ignored.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number nss-uid-offset
This option specifies an offset that is added to all LDAP numeric user ids. This can
be used to avoid user id collisions with local users.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-number nss-gid-offset
This option specifies an offset that is added to all LDAP numeric group ids. This can
be used to avoid user id collisions with local groups.

Defaults to ‘disabled’.

Chapter 11: System Configuration 443

[nslcd-configuration parameter]maybe-boolean nss-nested-groups
If this option is set, the member attribute of a group may point to another group.
Members of nested groups are also returned in the higher level group and parent
groups are returned when finding groups for a specific user. The default is not to
perform extra searches for nested groups.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-boolean nss-getgrent-skipmembers
If this option is set, the group member list is not retrieved when looking up groups.
Lookups for finding which groups a user belongs to will remain functional so the user
will likely still get the correct groups assigned on login.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-boolean nss-disable-enumeration
If this option is set, functions which cause all user/group entries to be loaded from
the directory will not succeed in doing so. This can dramatically reduce LDAP server
load in situations where there are a great number of users and/or groups. This option
is not recommended for most configurations.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string validnames
This option can be used to specify how user and group names are verified within the
system. This pattern is used to check all user and group names that are requested
and returned from LDAP.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-boolean ignorecase
This specifies whether or not to perform searches using case-insensitive matching.
Enabling this could open up the system to authorization bypass vulnerabilities and
introduce nscd cache poisoning vulnerabilities which allow denial of service.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-boolean pam-authc-ppolicy
This option specifies whether password policy controls are requested and handled
from the LDAP server when performing user authentication.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string pam-authc-search
By default nslcd performs an LDAP search with the user’s credentials after BIND
(authentication) to ensure that the BIND operation was successful. The default
search is a simple check to see if the user’s DN exists. A search filter can be specified
that will be used instead. It should return at least one entry.

Defaults to ‘disabled’.

[nslcd-configuration parameter]maybe-string pam-authz-search
This option allows flexible fine tuning of the authorisation check that should be per-
formed. The search filter specified is executed and if any entries match, access is
granted, otherwise access is denied.

Defaults to ‘disabled’.

Chapter 11: System Configuration 444

[nslcd-configuration parameter]maybe-string
pam-password-prohibit-message

If this option is set password modification using pam ldap will be denied and the
specified message will be presented to the user instead. The message can be used to
direct the user to an alternative means of changing their password.

Defaults to ‘disabled’.

[nslcd-configuration parameter]list pam-services
List of pam service names for which LDAP authentication should suffice.

Defaults to ‘'()’.

LDAP Directory Server

The (gnu services ldap) module provides the directory-server-service-type, which
can be used to create and launch an LDAP server instance.

Here is an example configuration of the directory-server-service-type:

(use-service-modules ldap)

...

(operating-system

...

(services

(cons

(service directory-server-service-type

(directory-server-instance-configuration

(slapd

(slapd-configuration

(root-password "{PBKDF2_SHA256}AAAgAG...ABSOLUTELYSECRET")))))

%base-services)))

The root password should be generated with the pwdhash utility that is provided by the
389-ds-base package.

Note that changes to the directory server configuration will not be applied to existing
instances. You will need to back up and restore server data manually. Only new directory
server instances will be created upon system reconfiguration.

[Data Type]directory-server-instance-configuration
Available directory-server-instance-configuration fields are:

package (default: 389-ds-base) (type: file-like)
The 389-ds-base package.

config-version (default: 2) (type: number)
Sets the format version of the configuration file. To use the INF file with
dscreate, this parameter must be 2.

full-machine-name (default: "localhost") (type: string)
Sets the fully qualified hostname (FQDN) of this system.

Chapter 11: System Configuration 445

selinux (default: #false) (type: boolean)
Enables SELinux detection and integration during the installation of this
instance. If set to #true, dscreate auto-detects whether SELinux is
enabled.

strict-host-checking (default: #true) (type: boolean)
Sets whether the server verifies the forward and reverse record set in
the full-machine-name parameter. When installing this instance with
GSSAPI authentication behind a load balancer, set this parameter to
#false.

systemd (default: #false) (type: boolean)
Enables systemd platform features. If set to #true, dscreate auto-
detects whether systemd is installed.

slapd (type: slapd-configuration)
Configuration of slapd.

[Data Type]slapd-configuration
Available slapd-configuration fields are:

instance-name (default: "localhost") (type: string)
Sets the name of the instance. You can refer to this
value in other parameters of this INF file using the
{instance_name} variable. Note that this name can-
not be changed after the installation!

user (default: "dirsrv") (type: string)
Sets the user name the ns-slapd process will use after
the service started.

group (default: "dirsrv") (type: string)
Sets the group name the ns-slapd process will use after
the service started.

port (default: 389) (type: number)
Sets the TCP port the instance uses for LDAP connec-
tions.

secure-port (default: 636) (type: number)
Sets the TCP port the instance uses for TLS-secured
LDAP connections (LDAPS).

root-dn (default: "cn=Directory Manager") (type: string)
Sets theDistinquished Name (DN) of the administrator
account for this instance.

root-password (default: "{invalid}YOU-SHOULD-CHANGE-THIS")
(type: string)

Sets the password of the account specified in the root-
dn parameter. You can either set this parameter to
a plain text password dscreate hashes during the in-
stallation or to a "{algorithm}hash" string generated

Chapter 11: System Configuration 446

by the pwdhash utility. Note that setting a plain text
password can be a security risk if unprivileged users
can read this INF file!

self-sign-cert (default: #true) (type: boolean)
Sets whether the setup creates a self-signed certificate
and enables TLS encryption during the installation.
This is not suitable for production, but it enables ad-
ministrators to use TLS right after the installation.
You can replace the self-signed certificate with a cer-
tificate issued by a certificate authority.

self-sign-cert-valid-months (default: 24) (type: number)
Set the number of months the issued self-signed certifi-
cate will be valid.

backup-dir (default:
"/var/lib/dirsrv/slapd-{instance_name}/bak") (type:
string)

Set the backup directory of the instance.

cert-dir (default: "/etc/dirsrv/slapd-{instance_name}")
(type: string)

Sets the directory of the instance’s Network Security
Services (NSS) database.

config-dir (default: "/etc/dirsrv/slapd-{instance_name}")
(type: string)

Sets the configuration directory of the instance.

db-dir (default:
"/var/lib/dirsrv/slapd-{instance_name}/db") (type: string)

Sets the database directory of the instance.

initconfig-dir (default: "/etc/dirsrv/registry") (type:
string)

Sets the directory of the operating system’s rc config-
uration directory.

ldif-dir (default:
"/var/lib/dirsrv/slapd-{instance_name}/ldif") (type:
string)

Sets the LDIF export and import directory of the in-
stance.

lock-dir (default:
"/var/lock/dirsrv/slapd-{instance_name}") (type: string)

Sets the lock directory of the instance.

log-dir (default: "/var/log/dirsrv/slapd-{instance_name}")
(type: string)

Sets the log directory of the instance.

Chapter 11: System Configuration 447

run-dir (default: "/run/dirsrv") (type: string)
Sets PID directory of the instance.

schema-dir (default:
"/etc/dirsrv/slapd-{instance_name}/schema") (type: string)

Sets schema directory of the instance.

tmp-dir (default: "/tmp") (type: string)
Sets the temporary directory of the instance.

backend-userroot (type: backend-userroot-configuration)
Configuration of the userroot backend.

[Data Type]backend-userroot-configuration
Available backend-userroot-configuration fields are:

create-suffix-entry? (default: #false) (type: boolean)
Set this parameter to #true to create a generic root
node entry for the suffix in the database.

require-index? (default: #false) (type: boolean)
Set this parameter to #true to refuse unindexed
searches in this database.

sample-entries (default: "no") (type: string)
Set this parameter to "yes" to add latest version of
sample entries to this database. Or, use "001003006"

to use the 1.3.6 version sample entries. Use this option,
for example, to create a database for testing purposes.

suffix (type: maybe-string)
Sets the root suffix stored in this database. If you do
not set the suffix attribute the install process will not
create the backend/suffix. You can also create multiple
backends/suffixes by duplicating this section.

11.10.20 Web Services

The (gnu services web) module provides the Apache HTTP Server, the nginx web server,
and also a fastcgi wrapper daemon.

Apache HTTP Server

[Variable]httpd-service-type
Service type for the Apache HTTP (https://httpd.apache.org/) server (httpd).
The value for this service type is a httpd-configuration record.

A simple example configuration is given below.

(service httpd-service-type

(httpd-configuration

(config

(httpd-config-file

(server-name "www.example.com")

https://httpd.apache.org/

Chapter 11: System Configuration 448

(document-root "/srv/http/www.example.com")))))

Other services can also extend the httpd-service-type to add to the configuration.

(simple-service 'www.example.com-server httpd-service-type

(list

(httpd-virtualhost

"*:80"

(list (string-join '("ServerName www.example.com"

"DocumentRoot /srv/http/www.example.com")

"\n")))))

The details for the httpd-configuration, httpd-module, httpd-config-file and
httpd-virtualhost record types are given below.

[Data Type]httpd-configuration
This data type represents the configuration for the httpd service.

package (default: httpd)
The httpd package to use.

pid-file (default: "/var/run/httpd")
The pid file used by the shepherd-service.

config (default: (httpd-config-file))
The configuration file to use with the httpd service. The default value is a
httpd-config-file record, but this can also be a different G-expression
that generates a file, for example a plain-file. A file outside of the
store can also be specified through a string.

[Data Type]httpd-module
This data type represents a module for the httpd service.

name The name of the module.

file The file for the module. This can be relative to the httpd package being
used, the absolute location of a file, or a G-expression for a file within the
store, for example (file-append mod-wsgi "/modules/mod_wsgi.so").

[Variable]%default-httpd-modules
A default list of httpd-module objects.

[Data Type]httpd-config-file
This data type represents a configuration file for the httpd service.

modules (default: %default-httpd-modules)
The modules to load. Additional modules can be added here, or loaded
by additional configuration.

For example, in order to handle requests for PHP files, you can use
Apache’s mod_proxy_fcgi module along with php-fpm-service-type:

(service httpd-service-type

(httpd-configuration

(config

Chapter 11: System Configuration 449

(httpd-config-file

(modules (cons*

(httpd-module

(name "proxy_module")

(file "modules/mod_proxy.so"))

(httpd-module

(name "proxy_fcgi_module")

(file "modules/mod_proxy_fcgi.so"))

%default-httpd-modules))

(extra-config (list "\

<FilesMatch \\.php$>

SetHandler \"proxy:unix:/var/run/php-fpm.sock|fcgi://localhost/\"

</FilesMatch>"))))))

(service php-fpm-service-type

(php-fpm-configuration

(socket "/var/run/php-fpm.sock")

(socket-group "httpd")))

server-root (default: httpd)
The ServerRoot in the configuration file, defaults to the httpd package.
Directives including Include and LoadModule are taken as relative to the
server root.

server-name (default: #f)
The ServerName in the configuration file, used to specify the request
scheme, hostname and port that the server uses to identify itself.

This doesn’t need to be set in the server config, and can be specified in
virtual hosts. The default is #f to not specify a ServerName.

document-root (default: "/srv/http")
The DocumentRoot from which files will be served.

listen (default: '("80"))
The list of values for the Listen directives in the config file. The value
should be a list of strings, when each string can specify the port number
to listen on, and optionally the IP address and protocol to use.

pid-file (default: "/var/run/httpd")
The PidFile to use. This should match the pid-file set in the httpd-
configuration so that the Shepherd service is configured correctly.

error-log (default: "/var/log/httpd/error_log")
The ErrorLog to which the server will log errors.

user (default: "httpd")
The User which the server will answer requests as.

group (default: "httpd")
The Group which the server will answer requests as.

extra-config (default: (list "TypesConfig etc/httpd/mime.types"))
A flat list of strings and G-expressions which will be added to the end of
the configuration file.

Chapter 11: System Configuration 450

Any values which the service is extended with will be appended to this
list.

[Data Type]httpd-virtualhost
This data type represents a virtualhost configuration block for the httpd service.

These should be added to the extra-config for the httpd-service.

(simple-service 'www.example.com-server httpd-service-type

(list

(httpd-virtualhost

"*:80"

(list (string-join '("ServerName www.example.com"

"DocumentRoot /srv/http/www.example.com")

"\n")))))

addresses-and-ports

The addresses and ports for the VirtualHost directive.

contents The contents of the VirtualHost directive, this should be a list of strings
and G-expressions.

NGINX

[Variable]nginx-service-type
Service type for the NGinx (https://nginx.org/) web server. The value for this
service type is a <nginx-configuration> record.

A simple example configuration is given below.

(service nginx-service-type

(nginx-configuration

(server-blocks

(list (nginx-server-configuration

(server-name '("www.example.com"))

(root "/srv/http/www.example.com"))))))

In addition to adding server blocks to the service configuration directly, this service
can be extended by other services to add server blocks, as in this example:

(simple-service 'my-extra-server nginx-service-type

(list (nginx-server-configuration

(root "/srv/http/extra-website")

(try-files (list "$uri" "$uri/index.html")))))

At startup, nginx has not yet read its configuration file, so it uses a default file to log error
messages. If it fails to load its configuration file, that is where error messages are logged.
After the configuration file is loaded, the default error log file changes as per configuration.
In our case, startup error messages can be found in /var/run/nginx/logs/error.log, and
after configuration in /var/log/nginx/error.log. The second location can be changed
with the log-directory configuration option.

https://nginx.org/

Chapter 11: System Configuration 451

[Data Type]nginx-configuration
This data type represents the configuration for NGinx. Some configuration can be
done through this and the other provided record types, or alternatively, a config file
can be provided.

nginx (default: nginx)
The nginx package to use.

shepherd-requirement (default: '())
This is a list of symbols naming Shepherd services the nginx service will
depend on.

This is useful if you would like nginx to be started after a back-end web
server or a logging service such as Anonip has been started.

log-directory (default: "/var/log/nginx")
The directory to which NGinx will write log files.

log-level (default: 'error) (type: symbol)
Logging level, which can be any of the following values: 'debug, 'info,
'notice, 'warn, 'error, 'crit, 'alert, or 'emerg.

run-directory (default: "/var/run/nginx")
The directory in which NGinx will create a pid file, and write temporary
files.

server-blocks (default: '())
A list of server blocks to create in the generated configuration file, the
elements should be of type <nginx-server-configuration>.

The following example would setup NGinx to serve www.example.com

from the /srv/http/www.example.com directory, without using HTTPS.

(service nginx-service-type

(nginx-configuration

(server-blocks

(list (nginx-server-configuration

(server-name '("www.example.com"))

(root "/srv/http/www.example.com"))))))

upstream-blocks (default: '())
A list of upstream blocks to create in the generated configuration file, the
elements should be of type <nginx-upstream-configuration>.

Configuring upstreams through the upstream-blocks can be useful
when combined with locations in the <nginx-server-configuration>
records. The following example creates a server configuration with
one location configuration, that will proxy requests to a upstream
configuration, which will handle requests with two servers.

(service

nginx-service-type

(nginx-configuration

(server-blocks

(list (nginx-server-configuration

Chapter 11: System Configuration 452

(server-name '("www.example.com"))

(root "/srv/http/www.example.com")

(locations

(list

(nginx-location-configuration

(uri "/path1")

(body '("proxy_pass http://server-proxy;"))))))))

(upstream-blocks

(list (nginx-upstream-configuration

(name "server-proxy")

(servers (list "server1.example.com"

"server2.example.com")))))))

file (default: #f)
If a configuration file is provided, this will be used, rather than generating
a configuration file from the provided log-directory, run-directory,
server-blocks and upstream-blocks. For proper operation, these ar-
guments should match what is in file to ensure that the directories are
created when the service is activated.

This can be useful if you have an existing configuration file, or it’s not
possible to do what is required through the other parts of the nginx-
configuration record.

server-names-hash-bucket-size (default: #f)
Bucket size for the server names hash tables, defaults to #f to use the
size of the processors cache line.

server-names-hash-bucket-max-size (default: #f)
Maximum bucket size for the server names hash tables.

modules (default: '())
List of nginx dynamic modules to load. This should be a list of file names
of loadable modules, as in this example:

(modules

(list

(file-append nginx-accept-language-module "\

/etc/nginx/modules/ngx_http_accept_language_module.so")

(file-append nginx-lua-module "\

/etc/nginx/modules/ngx_http_lua_module.so")))

lua-package-path (default: '())
List of nginx lua packages to load. This should be a list of package names
of loadable lua modules, as in this example:

(lua-package-path (list lua-resty-core

lua-resty-lrucache

lua-resty-signal

lua-tablepool

lua-resty-shell))

Chapter 11: System Configuration 453

lua-package-cpath (default: '())
List of nginx lua C packages to load. This should be a list of package
names of loadable lua C modules, as in this example:

(lua-package-cpath (list lua-resty-signal))

global-directives (default: '((events . ())))
Association list of global directives for the top level of the nginx config-
uration. Values may themselves be association lists.

(global-directives

`((worker_processes . 16)

(pcre_jit . on)

(events . ((worker_connections . 1024)))))

extra-content (default: "")
Extra content for the http block. Should be string or a string valued
G-expression.

[Data Type]nginx-server-configuration
Data type representing the configuration of an nginx server block. This type has the
following parameters:

listen (default: '("80" "443 ssl"))
Each listen directive sets the address and port for IP, or the path for
a UNIX-domain socket on which the server will accept requests. Both
address and port, or only address or only port can be specified. An
address may also be a hostname, for example:

'("127.0.0.1:8000" "127.0.0.1" "8000" "*:8000" "localhost:8000")

server-name (default: (list 'default))
A list of server names this server represents. 'default represents the
default server for connections matching no other server.

root (default: "/srv/http")
Root of the website nginx will serve.

locations (default: '())
A list of nginx-location-configuration or nginx-named-location-
configuration records to use within this server block.

index (default: (list "index.html"))
Index files to look for when clients ask for a directory. If it cannot be
found, Nginx will send the list of files in the directory.

try-files (default: '())
A list of files whose existence is checked in the specified order. nginx will
use the first file it finds to process the request.

ssl-certificate (default: #f)
Where to find the certificate for secure connections. Set it to #f if you
don’t have a certificate or you don’t want to use HTTPS.

Chapter 11: System Configuration 454

ssl-certificate-key (default: #f)
Where to find the private key for secure connections. Set it to #f if you
don’t have a key or you don’t want to use HTTPS.

server-tokens? (default: #f)
Whether the server should add its configuration to response.

raw-content (default: '())
A list of raw lines added to the server block.

[Data Type]nginx-upstream-configuration
Data type representing the configuration of an nginx upstream block. This type has
the following parameters:

name Name for this group of servers.

servers Specify the addresses of the servers in the group. The address can
be specified as a IP address (e.g. ‘127.0.0.1’), domain name (e.g.
‘backend1.example.com’) or a path to a UNIX socket using the prefix
‘unix:’. For addresses using an IP address or domain name, the default
port is 80, and a different port can be specified explicitly.

extra-content

A string or list of strings to add to the upstream block.

[Data Type]nginx-location-configuration
Data type representing the configuration of an nginx location block. This type has
the following parameters:

uri URI which this location block matches.

body Body of the location block, specified as a list of strings. This can contain
many configuration directives. For example, to pass requests to a up-
stream server group defined using an nginx-upstream-configuration

block, the following directive would be specified in the body ‘(list
"proxy_pass http://upstream-name;")’.

[Data Type]nginx-named-location-configuration
Data type representing the configuration of an nginx named location block. Named
location blocks are used for request redirection, and not used for regular request
processing. This type has the following parameters:

name Name to identify this location block.

body See [nginx-location-configuration body], page 454, as the body for named
location blocks can be used in a similar way to the nginx-location-

configuration body. One restriction is that the body of a named loca-
tion block cannot contain location blocks.

Varnish Cache

Varnish is a fast cache server that sits in between web applications and end users. It proxies
requests from clients and caches the accessed URLs such that multiple requests for the same
resource only creates one request to the back-end.

Chapter 11: System Configuration 455

[Variable]varnish-service-type
Service type for the Varnish daemon.

[Data Type]varnish-configuration
Data type representing the varnish service configuration. This type has the following
parameters:

package (default: varnish)
The Varnish package to use.

name (default: "default")
A name for this Varnish instance. Varnish will create a directory in
/var/varnish/ with this name and keep temporary files there. If the
name starts with a forward slash, it is interpreted as an absolute directory
name.

Pass the -n argument to other Varnish programs to connect to the named
instance, e.g. varnishncsa -n default.

backend (default: "localhost:8080")
The backend to use. This option has no effect if vcl is set.

vcl (default: #f)
The VCL (Varnish Configuration Language) program to run. If this is #f,
Varnish will proxy backend using the default configuration. Otherwise
this must be a file-like object with valid VCL syntax.

For example, to mirror www.gnu.org (https://www.gnu.org) with VCL
you can do something along these lines:

(define %gnu-mirror

(plain-file "gnu.vcl"

"vcl 4.1;

backend gnu { .host = \"www.gnu.org\"; }"))

(operating-system

;; ...

(services (cons (service varnish-service-type

(varnish-configuration

(listen '(":80"))

(vcl %gnu-mirror)))

%base-services)))

The configuration of an already running Varnish instance can be inspected
and changed using the varnishadm program.

Consult the Varnish User Guide (https://varnish-cache.org/docs/
) and Varnish Book (https://book.varnish-software.com/4.0/) for
comprehensive documentation on Varnish and its configuration language.

listen (default: '("localhost:80"))
List of addresses Varnish will listen on.

storage (default: '("malloc,128m"))
List of storage backends that will be available in VCL.

https://www.gnu.org
https://varnish-cache.org/docs/
https://varnish-cache.org/docs/
https://book.varnish-software.com/4.0/

Chapter 11: System Configuration 456

parameters (default: '())
List of run-time parameters in the form '(("parameter" . "value")).

extra-options (default: '())
Additional arguments to pass to the varnishd process.

Whoogle Search

Whoogle Search (https://github.com/benbusby/whoogle-search) is a self-hosted, ad-
free, privacy-respecting meta search engine that collects and displays Google search results.
By default, you can configure it by adding this line to the services field of your operating
system declaration:

(service whoogle-service-type)

As a result, Whoogle Search runs as local Web server, which you can access by opening
‘http://localhost:5000’ in your browser. The configuration reference is given below.

[Variable]whoogle-service-type
Service type for Whoogle Search. Its value must be a whoogle-configuration

record—see below.

[Data Type]whoogle-configuration
Data type representing Whoogle Search service configuration.

package (default: whoogle-search)
The Whoogle Search package to use.

host (default: "127.0.0.1")
The host address to run Whoogle on.

port (default: 5000)
The port where Whoogle will be exposed.

environment-variables (default: '())
A list of strings with the environment variables to configure Whoogle.
You can consult its environment variables template (https://github.
com/benbusby/whoogle-search/blob/main/whoogle.template.env)
for the list of available options.

Patchwork

Patchwork is a patch tracking system. It can collect patches sent to a mailing list, and
display them in a web interface.

[Variable]patchwork-service-type
Service type for Patchwork.

The following example is an example of a minimal service for Patchwork, for the
patchwork.example.com domain.

(service patchwork-service-type

(patchwork-configuration

(domain "patchwork.example.com")

(settings-module

https://github.com/benbusby/whoogle-search
https://github.com/benbusby/whoogle-search/blob/main/whoogle.template.env
https://github.com/benbusby/whoogle-search/blob/main/whoogle.template.env

Chapter 11: System Configuration 457

(patchwork-settings-module

(allowed-hosts (list domain))

(default-from-email "patchwork@patchwork.example.com")))

(getmail-retriever-config

(getmail-retriever-configuration

(type "SimpleIMAPSSLRetriever")

(server "imap.example.com")

(port 993)

(username "patchwork")

(password-command

(list (file-append coreutils "/bin/cat")

"/etc/getmail-patchwork-imap-password"))

(extra-parameters

'((mailboxes . ("Patches"))))))))

There are three records for configuring the Patchwork service. The <patchwork-

configuration> relates to the configuration for Patchwork within the HTTPD
service.

The settings-module field within the <patchwork-configuration> record can be pop-
ulated with the <patchwork-settings-module> record, which describes a settings module
that is generated within the Guix store.

For the database-configuration field within the <patchwork-settings-module>, the
<patchwork-database-configuration> must be used.

[Data Type]patchwork-configuration
Data type representing the Patchwork service configuration. This type has the fol-
lowing parameters:

patchwork (default: patchwork)
The Patchwork package to use.

domain The domain to use for Patchwork, this is used in the HTTPD service
virtual host.

settings-module

The settings module to use for Patchwork. As a Django application,
Patchwork is configured with a Python module containing the settings.
This can either be an instance of the <patchwork-settings-module>

record, any other record that represents the settings in the store, or a
directory outside of the store.

static-path (default: "/static/")
The path under which the HTTPD service should serve the static files.

getmail-retriever-config

The getmail-retriever-configuration record value to use with Patchwork.
Getmail will be configured with this value, the messages will be delivered
to Patchwork.

Chapter 11: System Configuration 458

[Data Type]patchwork-settings-module
Data type representing a settings module for Patchwork. Some of these settings
relate directly to Patchwork, but others relate to Django, the web framework used
by Patchwork, or the Django Rest Framework library. This type has the following
parameters:

database-configuration (default: (patchwork-database-configuration))
The database connection settings used for Patchwork. See the
<patchwork-database-configuration> record type for more
information.

secret-key-file (default: "/etc/patchwork/django-secret-key")
Patchwork, as a Django web application uses a secret key for crypto-
graphically signing values. This file should contain a unique unpredictable
value.

If this file does not exist, it will be created and populated with a random
value by the patchwork-setup shepherd service.

This setting relates to Django.

allowed-hosts

A list of valid hosts for this Patchwork service. This should at least
include the domain specified in the <patchwork-configuration> record.

This is a Django setting.

default-from-email

The email address from which Patchwork should send email by default.

This is a Patchwork setting.

static-url (default: #f)
The URL to use when serving static assets. It can be part of a URL, or
a full URL, but must end in a /.

If the default value is used, the static-path value from the <patchwork-
configuration> record will be used.

This is a Django setting.

admins (default: '())
Email addresses to send the details of errors that occur. Each value
should be a list containing two elements, the name and then the email
address.

This is a Django setting.

debug? (default: #f)
Whether to run Patchwork in debug mode. If set to #t, detailed error
messages will be shown.

This is a Django setting.

enable-rest-api? (default: #t)
Whether to enable the Patchwork REST API.

This is a Patchwork setting.

Chapter 11: System Configuration 459

enable-xmlrpc? (default: #t)
Whether to enable the XML RPC API.

This is a Patchwork setting.

force-https-links? (default: #t)
Whether to use HTTPS links on Patchwork pages.

This is a Patchwork setting.

extra-settings (default: "")
Extra code to place at the end of the Patchwork settings module.

[Data Type]patchwork-database-configuration
Data type representing the database configuration for Patchwork.

engine (default: "django.db.backends.postgresql_psycopg2")
The database engine to use.

name (default: "patchwork")
The name of the database to use.

user (default: "httpd")
The user to connect to the database as.

password (default: "")
The password to use when connecting to the database.

host (default: "")
The host to make the database connection to.

port (default: "")
The port on which to connect to the database.

Mumi

Mumi (https://git.savannah.gnu.org/cgit/guix/mumi.git/) is a Web interface to the
Debbugs bug tracker, by default for the GNU instance (https://bugs.gnu.org). Mumi is
a Web server, but it also fetches and indexes mail retrieved from Debbugs.

[Variable]mumi-service-type
This is the service type for Mumi.

[Data Type]mumi-configuration
Data type representing the Mumi service configuration. This type has the following
fields:

mumi (default: mumi)
The Mumi package to use.

mailer? (default: #true)
Whether to enable or disable the mailer component.

mumi-configuration-sender

The email address used as the sender for comments.

https://git.savannah.gnu.org/cgit/guix/mumi.git/
https://bugs.gnu.org

Chapter 11: System Configuration 460

mumi-configuration-smtp

A URI to configure the SMTP settings for Mailutils. This could be some-
thing like sendmail:///path/to/bin/msmtp or any other URI supported
by Mailutils. See Section “SMTP Mailboxes” in GNU Mailutils.

FastCGI

FastCGI is an interface between the front-end and the back-end of a web service. It is a
somewhat legacy facility; new web services should generally just talk HTTP between the
front-end and the back-end. However there are a number of back-end services such as PHP
or the optimized HTTP Git repository access that use FastCGI, so we have support for it
in Guix.

To use FastCGI, you configure the front-end web server (e.g., nginx) to dispatch some
subset of its requests to the fastcgi backend, which listens on a local TCP or UNIX socket.
There is an intermediary fcgiwrap program that sits between the actual backend process
and the web server. The front-end indicates which backend program to run, passing that
information to the fcgiwrap process.

[Variable]fcgiwrap-service-type
A service type for the fcgiwrap FastCGI proxy.

[Data Type]fcgiwrap-configuration
Data type representing the configuration of the fcgiwrap service. This type has the
following parameters:

package (default: fcgiwrap)
The fcgiwrap package to use.

socket (default: tcp:127.0.0.1:9000)
The socket on which the fcgiwrap process should listen, as a
string. Valid socket values include unix:/path/to/unix/socket,
tcp:dot.ted.qu.ad:port and tcp6:[ipv6_addr]:port.

user (default: fcgiwrap)
group (default: fcgiwrap)

The user and group names, as strings, under which to run the fcgiwrap
process. The fastcgi service will ensure that if the user asks for the
specific user or group names fcgiwrap that the corresponding user and/or
group is present on the system.

It is possible to configure a FastCGI-backed web service to pass HTTP
authentication information from the front-end to the back-end, and to
allow fcgiwrap to run the back-end process as a corresponding local
user. To enable this capability on the back-end, run fcgiwrap as the
root user and group. Note that this capability also has to be configured
on the front-end as well.

PHP-FPM

PHP-FPM (FastCGI Process Manager) is an alternative PHP FastCGI implementation
with some additional features useful for sites of any size.

Chapter 11: System Configuration 461

These features include:

• Adaptive process spawning

• Basic statistics (similar to Apache’s mod status)

• Advanced process management with graceful stop/start

• Ability to start workers with different uid/gid/chroot/environment and different php.ini
(replaces safe mode)

• Stdout & stderr logging

• Emergency restart in case of accidental opcode cache destruction

• Accelerated upload support

• Support for a "slowlog"

• Enhancements to FastCGI, such as fastcgi finish request() - a special function to fin-
ish request & flush all data while continuing to do something time-consuming (video
converting, stats processing, etc.)

... and much more.

[Variable]php-fpm-service-type
A Service type for php-fpm.

[Data Type]php-fpm-configuration
Data Type for php-fpm service configuration.

php (default: php)
The php package to use.

socket (default: (string-append "/var/run/php" (version-major

(package-version php)) "-fpm.sock"))
The address on which to accept FastCGI requests. Valid syntaxes are:

"ip.add.re.ss:port"

Listen on a TCP socket to a specific address on a specific
port.

"port" Listen on a TCP socket to all addresses on a specific port.

"/path/to/unix/socket"

Listen on a unix socket.

user (default: php-fpm)
User who will own the php worker processes.

group (default: php-fpm)
Group of the worker processes.

socket-user (default: php-fpm)
User who can speak to the php-fpm socket.

socket-group (default: nginx)
Group that can speak to the php-fpm socket.

Chapter 11: System Configuration 462

pid-file (default: (string-append "/var/run/php" (version-major

(package-version php)) "-fpm.pid"))
The process id of the php-fpm process is written to this file once the
service has started.

log-file (default: (string-append "/var/log/php" (version-major

(package-version php)) "-fpm.log"))
Log for the php-fpm master process.

process-manager (default:
(php-fpm-dynamic-process-manager-configuration))

Detailed settings for the php-fpm process manager. Must be one of:

<php-fpm-dynamic-process-manager-configuration>

<php-fpm-static-process-manager-configuration>

<php-fpm-on-demand-process-manager-configuration>

display-errors (default #f)
Determines whether php errors and warning should be sent to clients and
displayed in their browsers. This is useful for local php development, but
a security risk for public sites, as error messages can reveal passwords
and personal data.

timezone (default #f)
Specifies php_admin_value[date.timezone] parameter.

workers-logfile (default (string-append "/var/log/php" (version-major

(package-version php)) "-fpm.www.log"))
This file will log the stderr outputs of php worker processes. Can be set
to #f to disable logging.

file (default #f)
An optional override of the whole configuration. You can use the mixed-
text-file function or an absolute filepath for it.

php-ini-file (default #f)
An optional override of the default php settings. It may be any “file-
like” object (see Section 8.12 [G-Expressions], page 159). You can use
the mixed-text-file function or an absolute filepath for it.

For local development it is useful to set a higher timeout and memory
limit for spawned php processes. This be accomplished with the following
operating system configuration snippet:

(define %local-php-ini

(plain-file "php.ini"

"memory_limit = 2G

max_execution_time = 1800"))

(operating-system

;; ...

(services (cons (service php-fpm-service-type

(php-fpm-configuration

Chapter 11: System Configuration 463

(php-ini-file %local-php-ini)))

%base-services)))

Consult the core php.ini directives (https://www.php.net/manual/
en/ini.core.php) for comprehensive documentation on the acceptable
php.ini directives.

[Data type]php-fpm-dynamic-process-manager-configuration
Data Type for the dynamic php-fpm process manager. With the dynamic process
manager, spare worker processes are kept around based on its configured limits.

max-children (default: 5)
Maximum of worker processes.

start-servers (default: 2)
How many worker processes should be started on start-up.

min-spare-servers (default: 1)
How many spare worker processes should be kept around at minimum.

max-spare-servers (default: 3)
How many spare worker processes should be kept around at maximum.

[Data type]php-fpm-static-process-manager-configuration
Data Type for the static php-fpm process manager. With the static process man-
ager, an unchanging number of worker processes are created.

max-children (default: 5)
Maximum of worker processes.

[Data type]php-fpm-on-demand-process-manager-configuration
Data Type for the on-demand php-fpm process manager. With the on-demand process
manager, worker processes are only created as requests arrive.

max-children (default: 5)
Maximum of worker processes.

process-idle-timeout (default: 10)
The time in seconds after which a process with no requests is killed.

[Procedure]nginx-php-location [#:nginx-package nginx] [socket
(string-append "/var/run/php" (version-major (package-version php))
"-fpm.sock")]

A helper function to quickly add php to an nginx-server-configuration.

A simple services setup for nginx with php can look like this:

(services (cons* (service dhcp-client-service-type)

(service php-fpm-service-type)

(service nginx-service-type

(nginx-server-configuration

(server-name '("example.com"))

(root "/srv/http/")

(locations

https://www.php.net/manual/en/ini.core.php
https://www.php.net/manual/en/ini.core.php

Chapter 11: System Configuration 464

(list (nginx-php-location)))

(listen '("80"))

(ssl-certificate #f)

(ssl-certificate-key #f)))

%base-services))

The cat avatar generator is a simple service to demonstrate the use of php-fpm in Nginx.
It is used to generate cat avatar from a seed, for instance the hash of a user’s email address.

[Procedure]cat-avatar-generator-service [#:cache-dir
"/var/cache/cat-avatar-generator"] [#:package cat-avatar-generator]
[#:configuration (nginx-server-configuration)]

Returns an nginx-server-configuration that inherits configuration. It extends the
nginx configuration to add a server block that serves package, a version of cat-avatar-
generator. During execution, cat-avatar-generator will be able to use cache-dir as
its cache directory.

A simple setup for cat-avatar-generator can look like this:

(services (cons* (cat-avatar-generator-service

#:configuration

(nginx-server-configuration

(server-name '("example.com"))))

...

%base-services))

Hpcguix-web

The hpcguix-web (https://github.com/UMCUGenetics/hpcguix-web/) program is a cus-
tomizable web interface to browse Guix packages, initially designed for users of high-
performance computing (HPC) clusters.

[Variable]hpcguix-web-service-type
The service type for hpcguix-web.

[Data Type]hpcguix-web-configuration
Data type for the hpcguix-web service configuration.

specs (default: #f)
Either #f or a gexp (see Section 8.12 [G-Expressions], page 159)
specifying the hpcguix-web service configuration as an hpcguix-

web-configuration record. The main fields of that record type
are:

title-prefix (default: "hpcguix | ")
The page title prefix.

guix-command (default: "guix")
The guix command to use in examples that appear on HTML
pages.

package-filter-proc (default: (const #t))
A procedure specifying how to filter packages that are dis-
played.

https://github.com/UMCUGenetics/hpcguix-web/

Chapter 11: System Configuration 465

package-page-extension-proc (default: (const '()))
Extension package for hpcguix-web.

menu (default: '())
Additional entry in page menu.

channels (default: %default-channels)
List of channels from which the package list is built (see Chap-
ter 6 [Channels], page 66).

package-list-expiration (default: (* 12 3600))
The expiration time, in seconds, after which the package list
is rebuilt from the latest instances of the given channels.

See the hpcguix-web repository for a complete example
(https://github.com/UMCUGenetics/hpcguix-web/blob/
master/hpcweb-configuration.scm).

package (default: hpcguix-web)
The hpcguix-web package to use.

address (default: "127.0.0.1")
The IP address to listen to.

port (default: 5000)
The port number to listen to.

A typical hpcguix-web service declaration looks like this:

(service hpcguix-web-service-type

(hpcguix-web-configuration

(specs

#~(hpcweb-configuration

(title-prefix "Guix-HPC - ")

(menu '(("/about" "ABOUT")))))))

Note: The hpcguix-web service periodically updates the package list it publishes
by pulling channels from Git. To that end, it needs to access X.509 certificates
so that it can authenticate Git servers when communicating over HTTPS, and
it assumes that /etc/ssl/certs contains those certificates.

A certificate package, nss-certs, is provided by default as part of %base-

packages. Section 11.12 [X.509 Certificates], page 589, for more information
on X.509 certificates.

gmnisrv

The gmnisrv (https://git.sr.ht/~sircmpwn/gmnisrv) program is a simple Gemini
(https://gemini.circumlunar.space/) protocol server.

[Variable]gmnisrv-service-type
This is the type of the gmnisrv service, whose value should be a gmnisrv-

configuration object, as in this example:

(service gmnisrv-service-type

(gmnisrv-configuration

(config-file (local-file "./my-gmnisrv.ini"))))

https://github.com/UMCUGenetics/hpcguix-web/blob/master/hpcweb-configuration.scm
https://github.com/UMCUGenetics/hpcguix-web/blob/master/hpcweb-configuration.scm
https://github.com/UMCUGenetics/hpcguix-web/blob/master/hpcweb-configuration.scm
https://git.sr.ht/~sircmpwn/gmnisrv
https://gemini.circumlunar.space/
https://gemini.circumlunar.space/

Chapter 11: System Configuration 466

[Data Type]gmnisrv-configuration
Data type representing the configuration of gmnisrv.

package (default: gmnisrv)
Package object of the gmnisrv server.

config-file (default: %default-gmnisrv-config-file)
File-like object of the gmnisrv configuration file to use. The default con-
figuration listens on port 1965 and serves files from /srv/gemini. Cer-
tificates are stored in /var/lib/gemini/certs. For more information,
run man gmnisrv and man gmnisrv.ini.

Agate

The Agate (gemini://qwertqwefsday.eu/agate.gmi) (GitHub page over HTTPS
(https://github.com/mbrubeck/agate)) program is a simple Gemini (https://gemini.
circumlunar.space/) protocol server written in Rust.

[Variable]agate-service-type
This is the type of the agate service, whose value should be an agate-service-type

object, as in this example:

(service agate-service-type

(agate-configuration

(content "/srv/gemini")

(cert "/srv/cert.pem")

(key "/srv/key.rsa")))

The example above represents the minimal tweaking necessary to get Agate up and
running. Specifying the path to the certificate and key is always necessary, as the
Gemini protocol requires TLS by default.

To obtain a certificate and a key, you could, for example, use OpenSSL, running a
command similar to the following example:

openssl req -x509 -newkey rsa:4096 -keyout key.rsa -out cert.pem \

-days 3650 -nodes -subj "/CN=example.com"

Of course, you’ll have to replace example.com with your own domain name, and then
point the Agate configuration towards the path of the generated key and certificate.

[Data Type]agate-configuration
Data type representing the configuration of Agate.

package (default: agate)
The package object of the Agate server.

content (default: "/srv/gemini")
The directory from which Agate will serve files.

cert (default: #f)
The path to the TLS certificate PEM file to be used for encrypted con-
nections. Must be filled in with a value from the user.

key (default: #f)
The path to the PKCS8 private key file to be used for encrypted connec-
tions. Must be filled in with a value from the user.

gemini://qwertqwefsday.eu/agate.gmi
https://github.com/mbrubeck/agate
https://github.com/mbrubeck/agate
https://gemini.circumlunar.space/
https://gemini.circumlunar.space/

Chapter 11: System Configuration 467

addr (default: '("0.0.0.0:1965" "[::]:1965"))
A list of the addresses to listen on.

hostname (default: #f)
The domain name of this Gemini server. Optional.

lang (default: #f)
RFC 4646 language code(s) for text/gemini documents. Optional.

silent? (default: #f)
Set to #t to disable logging output.

serve-secret? (default: #f)
Set to #t to serve secret files (files/directories starting with a dot).

log-ip? (default: #t)
Whether or not to output IP addresses when logging.

user (default: "agate")
Owner of the agate process.

group (default: "agate")
Owner’s group of the agate process.

log-file (default: "/var/log/agate.log")
The file which should store the logging output of Agate.

11.10.21 Certificate Services

The (gnu services certbot) module provides a service to automatically obtain a valid
TLS certificate from the Let’s Encrypt certificate authority. These certificates can then
be used to serve content securely over HTTPS or other TLS-based protocols, with the
knowledge that the client will be able to verify the server’s authenticity.

Let’s Encrypt (https://letsencrypt.org/) provides the certbot tool to automate the
certification process. This tool first securely generates a key on the server. It then makes
a request to the Let’s Encrypt certificate authority (CA) to sign the key. The CA checks
that the request originates from the host in question by using a challenge-response pro-
tocol, requiring the server to provide its response over HTTP. If that protocol completes
successfully, the CA signs the key, resulting in a certificate. That certificate is valid for a
limited period of time, and therefore to continue to provide TLS services, the server needs
to periodically ask the CA to renew its signature.

The certbot service automates this process: the initial key generation, the initial certifi-
cation request to the Let’s Encrypt service, the web server challenge/response integration,
writing the certificate to disk, the automated periodic renewals, and the deployment tasks
associated with the renewal (e.g. reloading services, copying keys with different permissions).

Certbot is run twice a day, at a random minute within the hour. It won’t do anything
until your certificates are due for renewal or revoked, but running it regularly would give
your service a chance of staying online in case a Let’s Encrypt-initiated revocation happened
for some reason.

By using this service, you agree to the ACME Subscriber Agreement, which can be found
there: https://acme-v01.api.letsencrypt.org/directory.

https://letsencrypt.org/
https://acme-v01.api.letsencrypt.org/directory

Chapter 11: System Configuration 468

[Variable]certbot-service-type
A service type for the certbot Let’s Encrypt client. Its value must be a certbot-

configuration record as in this example:

(service certbot-service-type

(certbot-configuration

(email "foo@example.net")

(certificates

(list

(certificate-configuration

(domains '("example.net" "www.example.net")))

(certificate-configuration

(domains '("bar.example.net")))))))

See below for details about certbot-configuration.

[Data Type]certbot-configuration
Data type representing the configuration of the certbot service. This type has the
following parameters:

package (default: certbot)
The certbot package to use.

webroot (default: /var/www)
The directory from which to serve the Let’s Encrypt challenge/response
files.

certificates (default: '())
A list of certificates-configurations for which to generate certificates
and request signatures. Each certificate has a name and several domains.

email (default: #f)
Optional email address used for registration and recovery contact. Setting
this is encouraged as it allows you to receive important notifications about
the account and issued certificates.

server (default: #f)
Optional URL of ACME server. Setting this overrides certbot’s default,
which is the Let’s Encrypt server.

rsa-key-size (default: 2048)
Size of the RSA key.

default-location (default: see below)
The default nginx-location-configuration. Because certbot needs
to be able to serve challenges and responses, it needs to be able to run a
web server. It does so by extending the nginx web service with an nginx-

server-configuration listening on the domains on port 80, and which
has a nginx-location-configuration for the /.well-known/ URI path
subspace used by Let’s Encrypt. See Section 11.10.20 [Web Services],
page 447, for more on these nginx configuration data types.

Requests to other URL paths will be matched by the default-location,
which if present is added to all nginx-server-configurations.

Chapter 11: System Configuration 469

By default, the default-location will issue a redirect from
http://domain/... to https://domain/..., leaving you to define
what to serve on your site via https.

Pass #f to not issue a default location.

[Data Type]certificate-configuration
Data type representing the configuration of a certificate. This type has the following
parameters:

name (default: see below)
This name is used by Certbot for housekeeping and in file paths; it doesn’t
affect the content of the certificate itself. To see certificate names, run
certbot certificates.

Its default is the first provided domain.

domains (default: '())
The first domain provided will be the subject CN of the certificate, and
all domains will be Subject Alternative Names on the certificate.

challenge (default: #f)
The challenge type that has to be run by certbot. If #f is specified, default
to the HTTP challenge. If a value is specified, defaults to the manual
plugin (see authentication-hook, cleanup-hook and the documenta-
tion at https://certbot.eff.org/docs/using.html#hooks), and gives
Let’s Encrypt permission to log the public IP address of the requesting
machine.

csr (default: #f)
File name of Certificate Signing Request (CSR) in DER or PEM format.
If #f is specified, this argument will not be passed to certbot. If a value
is specified, certbot will use it to obtain a certificate, instead of using a
self-generated CSR. The domain-name(s) mentioned in domains, must be
consistent with the domain-name(s) mentioned in CSR file.

authentication-hook (default: #f)
Command to be run in a shell once for each certificate challenge to be
answered. For this command, the shell variable $CERTBOT_DOMAIN will
contain the domain being authenticated, $CERTBOT_VALIDATION contains
the validation string and $CERTBOT_TOKEN contains the file name of the
resource requested when performing an HTTP-01 challenge.

cleanup-hook (default: #f)
Command to be run in a shell once for each certificate challenge that
have been answered by the auth-hook. For this command, the shell
variables available in the auth-hook script are still available, and addi-
tionally $CERTBOT_AUTH_OUTPUT will contain the standard output of the
auth-hook script.

deploy-hook (default: #f)
Command to be run in a shell once for each successfully issued
certificate. For this command, the shell variable $RENEWED_

LINEAGE will point to the config live subdirectory (for example,

https://certbot.eff.org/docs/using.html#hooks

Chapter 11: System Configuration 470

‘"/etc/letsencrypt/live/example.com"’) containing the new
certificates and keys; the shell variable $RENEWED_DOMAINS will contain
a space-delimited list of renewed certificate domains (for example,
‘"example.com www.example.com"’.

start-self-signed? (default: #t)
Whether to generate an initial self-signed certificate during system acti-
vation. This option is particularly useful to allow nginx to start before
certbot has run, because certbot relies on nginx running to perform
HTTP challenges.

For each certificate-configuration, the certificate is saved to /etc/certs/name/fullchain.pem

and the key is saved to /etc/certs/name/privkey.pem.

11.10.22 DNS Services

The (gnu services dns) module provides services related to the domain name system
(DNS). It provides a server service for hosting an authoritative DNS server for multiple
zones, slave or master. This service uses Knot DNS (https://www.knot-dns.cz/). And
also a caching and forwarding DNS server for the LAN, which uses dnsmasq (http://www.
thekelleys.org.uk/dnsmasq/doc.html).

Knot Service

An example configuration of an authoritative server for two zones, one master and one slave,
is:

(define-zone-entries example.org.zone

;; Name TTL Class Type Data

("@" "" "IN" "A" "127.0.0.1")

("@" "" "IN" "NS" "ns")

("ns" "" "IN" "A" "127.0.0.1"))

(define master-zone

(knot-zone-configuration

(domain "example.org")

(zone (zone-file

(origin "example.org")

(entries example.org.zone)))))

(define slave-zone

(knot-zone-configuration

(domain "plop.org")

(dnssec-policy "default")

(master (list "plop-master"))))

(define plop-master

(knot-remote-configuration

(id "plop-master")

(address (list "208.76.58.171"))))

https://www.knot-dns.cz/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html

Chapter 11: System Configuration 471

(operating-system

;; ...

(services (cons* (service knot-service-type

(knot-configuration

(remotes (list plop-master))

(zones (list master-zone slave-zone))))

;; ...

%base-services)))

[Variable]knot-service-type
This is the type for the Knot DNS server.

Knot DNS is an authoritative DNS server, meaning that it can serve multiple zones,
that is to say domain names you would buy from a registrar. This server is not a
resolver, meaning that it can only resolve names for which it is authoritative. This
server can be configured to serve zones as a master server or a slave server as a
per-zone basis. Slave zones will get their data from masters, and will serve it as
an authoritative server. From the point of view of a resolver, there is no difference
between master and slave.

The following data types are used to configure the Knot DNS server:

[Data Type]knot-key-configuration
Data type representing a key. This type has the following parameters:

id (default: "")
An identifier for other configuration fields to refer to this key. IDs must
be unique and must not be empty.

algorithm (default: #f)
The algorithm to use. Choose between #f, 'hmac-md5, 'hmac-sha1,
'hmac-sha224, 'hmac-sha256, 'hmac-sha384 and 'hmac-sha512.

secret (default: "")
The secret key itself.

[Data Type]knot-acl-configuration
Data type representing an Access Control List (ACL) configuration. This type has
the following parameters:

id (default: "")
An identifier for other configuration fields to refer to this key. IDs must
be unique and must not be empty.

address (default: '())
An ordered list of IP addresses, network subnets, or network ranges rep-
resented with strings. The query must match one of them. Empty value
means that address match is not required.

key (default: '())
An ordered list of references to keys represented with strings. The string
must match a key ID defined in a knot-key-configuration. No key
means that a key is not require to match that ACL.

Chapter 11: System Configuration 472

action (default: '())
An ordered list of actions that are permitted or forbidden by this ACL.
Possible values are lists of zero or more elements from 'transfer,
'notify and 'update.

deny? (default: #f)
When true, the ACL defines restrictions. Listed actions are forbidden.
When false, listed actions are allowed.

[Data Type]zone-entry
Data type representing a record entry in a zone file. This type has the following
parameters:

name (default: "@")
The name of the record. "@" refers to the origin of the zone.
Names are relative to the origin of the zone. For example, in
the example.org zone, "ns.example.org" actually refers to
ns.example.org.example.org. Names ending with a dot are absolute,
which means that "ns.example.org." refers to ns.example.org.

ttl (default: "")
The Time-To-Live (TTL) of this record. If not set, the default TTL is
used.

class (default: "IN")
The class of the record. Knot currently supports only "IN" and partially
"CH".

type (default: "A")
The type of the record. Common types include A (IPv4 address), AAAA
(IPv6 address), NS (Name Server) and MX (Mail eXchange). Many other
types are defined.

data (default: "")
The data contained in the record. For instance an IP address associated
with an A record, or a domain name associated with an NS record. Re-
member that domain names are relative to the origin unless they end
with a dot.

[Data Type]zone-file
Data type representing the content of a zone file. This type has the following param-
eters:

entries (default: '())
The list of entries. The SOA record is taken care of, so you don’t need to
put it in the list of entries. This list should probably contain an entry for
your primary authoritative DNS server. Other than using a list of entries
directly, you can use define-zone-entries to define a object containing
the list of entries more easily, that you can later pass to the entries field
of the zone-file.

origin (default: "")
The name of your zone. This parameter cannot be empty.

Chapter 11: System Configuration 473

ns (default: "ns")
The domain of your primary authoritative DNS server. The name is
relative to the origin, unless it ends with a dot. It is mandatory that this
primary DNS server corresponds to an NS record in the zone and that it
is associated to an IP address in the list of entries.

mail (default: "hostmaster")
An email address people can contact you at, as the owner of the zone.
This is translated as <mail>@<origin>.

serial (default: 1)
The serial number of the zone. As this is used to keep track of changes by
both slaves and resolvers, it is mandatory that it never decreases. Always
increment it when you make a change in your zone.

refresh (default: (* 2 24 3600))
The frequency at which slaves will do a zone transfer. This value is
a number of seconds. It can be computed by multiplications or with
(string->duration).

retry (default: (* 15 60))
The period after which a slave will retry to contact its master when it
fails to do so a first time.

expiry (default: (* 14 24 3600))
Default TTL of records. Existing records are considered correct for at
most this amount of time. After this period, resolvers will invalidate
their cache and check again that it still exists.

nx (default: 3600)
Default TTL of inexistent records. This delay is usually short because
you want your new domains to reach everyone quickly.

[Data Type]knot-remote-configuration
Data type representing a remote configuration. This type has the following parame-
ters:

id (default: "")
An identifier for other configuration fields to refer to this remote. IDs
must be unique and must not be empty.

address (default: '())
An ordered list of destination IP addresses. Addresses are tried in se-
quence. An optional port can be given with the @ separator. For instance:
(list "1.2.3.4" "2.3.4.5@53"). Default port is 53.

via (default: '())
An ordered list of source IP addresses. An empty list will have Knot
choose an appropriate source IP. An optional port can be given with the
@ separator. The default is to choose at random.

key (default: #f)
A reference to a key, that is a string containing the identifier of a key
defined in a knot-key-configuration field.

Chapter 11: System Configuration 474

[Data Type]knot-keystore-configuration
Data type representing a keystore to hold dnssec keys. This type has the following
parameters:

id (default: "")
The id of the keystore. It must not be empty.

backend (default: 'pem)
The backend to store the keys in. Can be 'pem or 'pkcs11.

config (default: "/var/lib/knot/keys/keys")
The configuration string of the backend. An example for
the PKCS#11 is: "pkcs11:token=knot;pin-value=1234

/gnu/store/.../lib/pkcs11/libsofthsm2.so". For the pem backend,
the string represents a path in the file system.

[Data Type]knot-policy-configuration
Data type representing a dnssec policy. Knot DNS is able to automatically sign your
zones. It can either generate and manage your keys automatically or use keys that
you generate.

Dnssec is usually implemented using two keys: a Key Signing Key (KSK) that is
used to sign the second, and a Zone Signing Key (ZSK) that is used to sign the zone.
In order to be trusted, the KSK needs to be present in the parent zone (usually a
top-level domain). If your registrar supports dnssec, you will have to send them your
KSK’s hash so they can add a DS record in their zone. This is not automated and
need to be done each time you change your KSK.

The policy also defines the lifetime of keys. Usually, ZSK can be changed easily
and use weaker cryptographic functions (they use lower parameters) in order to sign
records quickly, so they are changed often. The KSK however requires manual inter-
action with the registrar, so they are changed less often and use stronger parameters
because they sign only one record.

This type has the following parameters:

id (default: "")
The id of the policy. It must not be empty.

keystore (default: "default")
A reference to a keystore, that is a string containing the identifier of a key-
store defined in a knot-keystore-configuration field. The "default"
identifier means the default keystore (a kasp database that was setup by
this service).

manual? (default: #f)
Whether the key management is manual or automatic.

single-type-signing? (default: #f)
When #t, use the Single-Type Signing Scheme.

algorithm (default: "ecdsap256sha256")
An algorithm of signing keys and issued signatures.

Chapter 11: System Configuration 475

ksk-size (default: 256)
The length of the KSK. Note that this value is correct for the default
algorithm, but would be unsecure for other algorithms.

zsk-size (default: 256)
The length of the ZSK. Note that this value is correct for the default
algorithm, but would be unsecure for other algorithms.

dnskey-ttl (default: 'default)
The TTL value for DNSKEY records added into zone apex. The special
'default value means same as the zone SOA TTL.

zsk-lifetime (default: (* 30 24 3600))
The period between ZSK publication and the next rollover initiation.

propagation-delay (default: (* 24 3600))
An extra delay added for each key rollover step. This value should be
high enough to cover propagation of data from the master server to all
slaves.

rrsig-lifetime (default: (* 14 24 3600))
A validity period of newly issued signatures.

rrsig-refresh (default: (* 7 24 3600))
A period how long before a signature expiration the signature will be
refreshed.

nsec3? (default: #f)
When #t, NSEC3 will be used instead of NSEC.

nsec3-iterations (default: 5)
The number of additional times the hashing is performed.

nsec3-salt-length (default: 8)
The length of a salt field in octets, which is appended to the original
owner name before hashing.

nsec3-salt-lifetime (default: (* 30 24 3600))
The validity period of newly issued salt field.

[Data Type]knot-zone-configuration
Data type representing a zone served by Knot. This type has the following parameters:

domain (default: "")
The domain served by this configuration. It must not be empty.

file (default: "")
The file where this zone is saved. This parameter is ignored by master
zones. Empty means default location that depends on the domain name.

zone (default: (zone-file))
The content of the zone file. This parameter is ignored by slave zones. It
must contain a zone-file record.

Chapter 11: System Configuration 476

master (default: '())
A list of master remotes. When empty, this zone is a master. When set,
this zone is a slave. This is a list of remotes identifiers.

ddns-master (default: #f)
The main master. When empty, it defaults to the first master in the list
of masters.

notify (default: '())
A list of slave remote identifiers.

acl (default: '())
A list of acl identifiers.

semantic-checks? (default: #f)
When set, this adds more semantic checks to the zone.

zonefile-sync (default: 0)
The delay between a modification in memory and on disk. 0 means
immediate synchronization.

zonefile-load (default: #f)
The way the zone file contents are applied during zone load. Possible
values are:

• #f for using the default value from Knot,

• 'none for not using the zone file at all,

• 'difference for computing the difference between already available
contents and zone contents and applying it to the current zone con-
tents,

• 'difference-no-serial for the same as 'difference, but ignoring
the SOA serial in the zone file, while the server takes care of it
automatically.

• 'whole for loading zone contents from the zone file.

journal-content (default: #f)
The way the journal is used to store zone and its changes. Possible values
are 'none to not use it at all, 'changes to store changes and 'all to store
contents. #f does not set this option, so the default value from Knot is
used.

max-journal-usage (default: #f)
The maximum size for the journal on disk. #f does not set this option,
so the default value from Knot is used.

max-journal-depth (default: #f)
The maximum size of the history. #f does not set this option, so the
default value from Knot is used.

max-zone-size (default: #f)
The maximum size of the zone file. This limit is enforced for incoming
transfer and updates. #f does not set this option, so the default value
from Knot is used.

Chapter 11: System Configuration 477

dnssec-policy (default: #f)
A reference to a knot-policy-configuration record, or the special
name "default". If the value is #f, there is no dnssec signing on this
zone.

serial-policy (default: 'increment)
A policy between 'increment and 'unixtime.

[Data Type]knot-configuration
Data type representing the Knot configuration. This type has the following parame-
ters:

knot (default: knot)
The Knot package.

run-directory (default: "/var/run/knot")
The run directory. This directory will be used for pid file and sockets.

includes (default: '())
A list of strings or file-like objects denoting other files that must be in-
cluded at the top of the configuration file.

This can be used to manage secrets out-of-band. For example, secret keys
may be stored in an out-of-band file not managed by Guix, and thus not
visible in /gnu/store—e.g., you could store secret key configuration in
/etc/knot/secrets.conf and add this file to the includes list.

One can generate a secret tsig key (for nsupdate and zone transfers with
the keymgr command from the knot package. Note that the package is
not automatically installed by the service. The following example shows
how to generate a new tsig key:

keymgr -t mysecret > /etc/knot/secrets.conf

chmod 600 /etc/knot/secrets.conf

Also note that the generated key will be namedmysecret, so it is the name
that needs to be used in the key field of the knot-acl-configuration

record and in other places that need to refer to that key.

It can also be used to add configuration not supported by this interface.

listen-v4 (default: "0.0.0.0")
An ip address on which to listen.

listen-v6 (default: "::")
An ip address on which to listen.

listen-port (default: 53)
A port on which to listen.

keys (default: '())
The list of knot-key-configuration used by this configuration.

acls (default: '())
The list of knot-acl-configuration used by this configuration.

Chapter 11: System Configuration 478

remotes (default: '())
The list of knot-remote-configuration used by this configuration.

zones (default: '())
The list of knot-zone-configuration used by this configuration.

Knot Resolver Service

[Variable]knot-resolver-service-type
This is the type of the knot resolver service, whose value should be a knot-resolver-
configuration object as in this example:

(service knot-resolver-service-type

(knot-resolver-configuration

(kresd-config-file (plain-file "kresd.conf" "

net.listen('192.168.0.1', 5353)

user('knot-resolver', 'knot-resolver')

modules = { 'hints > iterate', 'stats', 'predict' }

cache.size = 100 * MB

"))))

For more information, refer its manual (https://knot-resolver.readthedocs.io/
en/stable/config-overview.html).

[Data Type]knot-resolver-configuration
Data type representing the configuration of knot-resolver.

package (default: knot-resolver)
Package object of the knot DNS resolver.

kresd-config-file (default: %kresd.conf)
File-like object of the kresd configuration file to use, by default it will
listen on 127.0.0.1 and ::1.

garbage-collection-interval (default: 1000)
Number of milliseconds for kres-cache-gc to periodically trim the cache.

Dnsmasq Service

[Variable]dnsmasq-service-type
This is the type of the dnsmasq service, whose value should be a dnsmasq-

configuration object as in this example:

(service dnsmasq-service-type

(dnsmasq-configuration

(no-resolv? #t)

(servers '("192.168.1.1"))))

[Data Type]dnsmasq-configuration
Data type representing the configuration of dnsmasq.

package (default: dnsmasq)
Package object of the dnsmasq server.

https://knot-resolver.readthedocs.io/en/stable/config-overview.html
https://knot-resolver.readthedocs.io/en/stable/config-overview.html

Chapter 11: System Configuration 479

no-hosts? (default: #f)
When true, don’t read the hostnames in /etc/hosts.

port (default: 53)
The port to listen on. Setting this to zero completely disables DNS re-
sponses, leaving only DHCP and/or TFTP functions.

local-service? (default: #t)
Accept DNS queries only from hosts whose address is on a local subnet,
ie a subnet for which an interface exists on the server.

listen-addresses (default: '())
Listen on the given IP addresses.

resolv-file (default: "/etc/resolv.conf")
The file to read the IP address of the upstream nameservers from.

no-resolv? (default: #f)
When true, don’t read resolv-file.

forward-private-reverse-lookup? (default: #t)
When false, all reverse lookups for private IP ranges are answered with
"no such domain" rather than being forwarded upstream.

query-servers-in-order? (default: #f)
When true, dnsmasq queries the servers in the same order as they appear
in servers.

servers (default: '())
Specify IP address of upstream servers directly.

servers-file (default: #f)
Specify file containing upstream servers. This file is re-read when dnsmasq
receives SIGHUP. Could be either a string or a file-like object.

addresses (default: '())
For each entry, specify an IP address to return for any host in the given
domains. Queries in the domains are never forwarded and always replied
to with the specified IP address.

This is useful for redirecting hosts locally, for example:

(service dnsmasq-service-type

(dnsmasq-configuration

(addresses

'(; Redirect to a local web-server.

"/example.org/127.0.0.1"

; Redirect subdomain to a specific IP.

"/subdomain.example.org/192.168.1.42"))))

Note that rules in /etc/hosts take precedence over this.

cache-size (default: 150)
Set the size of dnsmasq’s cache. Setting the cache size to zero disables
caching.

Chapter 11: System Configuration 480

negative-cache? (default: #t)
When false, disable negative caching.

cpe-id (default: #f)
If set, add a CPE (Customer-Premises Equipment) identifier to DNS
queries which are forwarded upstream.

tftp-enable? (default: #f)
Whether to enable the built-in TFTP server.

tftp-no-fail? (default: #f)
If true, does not fail dnsmasq if the TFTP server could not start up.

tftp-single-port? (default: #f)
Whether to use only one single port for TFTP.

tftp-secure? (default: #f)
If true, only files owned by the user running the dnsmasq process are
accessible.

If dnsmasq is being run as root, different rules apply: tftp-secure?

has no effect, but only files which have the world-readable bit set are
accessible.

tftp-max (default: #f)
If set, sets the maximal number of concurrent connections allowed.

tftp-mtu (default: #f)
If set, sets the MTU for TFTP packets to that value.

tftp-no-blocksize? (default: #f)
If true, stops the TFTP server from negotiating the blocksize with a
client.

tftp-lowercase? (default: #f)
Whether to convert all filenames in TFTP requests to lowercase.

tftp-port-range (default: #f)
If set, fixes the dynamical ports (one per client) to the given range
("<start>,<end>").

tftp-root (default: /var/empty,lo)
Look for files to transfer using TFTP relative to the given directory.
When this is set, TFTP paths which include ‘..’ are rejected, to stop
clients getting outside the specified root. Absolute paths (starting with
‘/’) are allowed, but they must be within the TFTP-root. If the optional
interface argument is given, the directory is only used for TFTP requests
via that interface.

tftp-unique-root (default: #f)
If set, add the IP or hardware address of the TFTP client as a path
component on the end of the TFTP-root. Only valid if a TFTP root is
set and the directory exists. Defaults to adding IP address (in standard
dotted-quad format).

Chapter 11: System Configuration 481

For instance, if --tftp-root is ‘/tftp’ and client ‘1.2.3.4’ requests
file myfile then the effective path will be /tftp/1.2.3.4/myfile if
/tftp/1.2.3.4 exists or /tftp/myfile otherwise. When ‘=mac’ is speci-
fied it will append the MAC address instead, using lowercase zero padded
digits separated by dashes, e.g.: ‘01-02-03-04-aa-bb’. Note that resolv-
ing MAC addresses is only possible if the client is in the local network or
obtained a DHCP lease from dnsmasq.

11.10.23 VNC Services

The (gnu services vnc) module provides services related to Virtual Network Computing
(VNC), which makes it possible to locally use graphical Xorg applications running on a
remote machine. Combined with a graphical manager that supports the X Display Manager
Control Protocol, such as GDM (see [gdm], page 325) or LightDM (see [lightdm], page 330),
it is possible to remote an entire desktop for a multi-user environment.

Xvnc

Xvnc is a VNC server that spawns its own X window server; which means it can run
on headless servers. The Xvnc implementations provided by the tigervnc-server and
turbovnc aim to be fast and efficient.

[Variable]xvnc-service-type
The xvnc-service-type service can be configured via the xvnc-configuration

record, documented below. A second virtual display could be made available on
a remote machine via the following configuration:

(service xvnc-service-type

(xvnc-configuration (display-number 10)))

As a demonstration, the xclock command could then be started on the remote machine
on display number 10, and it could be displayed locally via the vncviewer command:

Start xclock on the remote machine.

ssh -L5910:localhost:5910 your-host -- guix shell xclock \

-- env DISPLAY=:10 xclock

Access it via VNC.

guix shell tigervnc-client -- vncviewer localhost:5910

The following configuration combines XDMCP and Inetd to allow multiple users to
concurrently use the remote system and login graphically via the GDM display manager:

(operating-system

[...]

(services (cons*

[...]

(service xvnc-service-type (xvnc-configuration

(display-number 5)

(localhost? #f)

(xdmcp? #t)

(inetd? #t)))

(modify-services %desktop-services

(gdm-service-type config => (gdm-configuration

Chapter 11: System Configuration 482

(inherit config)

(auto-suspend? #f)

(xdmcp? #t)))))))

A remote user could then connect to it by using the vncviewer command or a compatible
VNC client and start a desktop session of their choosing:

vncviewer remote-host:5905

Warning: Unless your machine is in a controlled environment, for security rea-
sons, the localhost? configuration of the xvnc-configuration record should
be left to its default #t value and exposed via a secure means such as an SSH
port forward. The XDMCP port, UDP 177 should also be blocked from the out-
side by a firewall, as it is not a secure protocol and can expose login credentials
in clear.

[Data Type]xvnc-configuration
Available xvnc-configuration fields are:

xvnc (default: tigervnc-server) (type: file-like)
The package that provides the Xvnc binary.

display-number (default: 0) (type: number)
The display number used by Xvnc. You should set this to a number not
already used a Xorg server.

geometry (default: "1024x768") (type: string)
The size of the desktop to be created.

depth (default: 24) (type: color-depth)
The pixel depth in bits of the desktop to be created. Accepted values are
16, 24 or 32.

port (type: maybe-port)
The port on which to listen for connections from viewers. When left
unspecified, it defaults to 5900 plus the display number.

ipv4? (default: #t) (type: boolean)
Use IPv4 for incoming and outgoing connections.

ipv6? (default: #t) (type: boolean)
Use IPv6 for incoming and outgoing connections.

password-file (type: maybe-string)
The password file to use, if any. Refer to vncpasswd(1) to learn how to
generate such a file.

xdmcp? (default: #f) (type: boolean)
Query the XDMCP server for a session. This enables users to log in
a desktop session from the login manager screen. For a multiple users
scenario, you’ll want to enable the inetd? option as well, so that each
connection to the VNC server is handled separately rather than shared.

inetd? (default: #f) (type: boolean)
Use an Inetd-style service, which runs the Xvnc server on demand.

Chapter 11: System Configuration 483

frame-rate (default: 60) (type: number)
The maximum number of updates per second sent to each client.

security-types (default: '("None")) (type: security-types)
The allowed security schemes to use for incoming connections. The de-
fault is "None", which is safe given that Xvnc is configured to authen-
ticate the user via the display manager, and only for local connections.
Accepted values are any of the following: ("None" "VncAuth" "Plain"
"TLSNone" "TLSVnc" "TLSPlain" "X509None" "X509Vnc")

localhost? (default: #t) (type: boolean)
Only allow connections from the same machine. It is set to #true by
default for security, which means SSH or another secure means should be
used to expose the remote port.

log-level (default: 30) (type: log-level)
The log level, a number between 0 and 100, 100 meaning most verbose
output. The log messages are output to syslog.

extra-options (default: '()) (type: strings)
This can be used to provide extra Xvnc options not exposed via this
<xvnc-configuration> record.

11.10.24 VPN Services

The (gnu services vpn) module provides services related to virtual private networks
(VPNs).

Bitmask

[Variable]bitmask-service-type
A service type for the Bitmask (https://bitmask.net) VPN client. It makes the
client available in the system and loads its polkit policy. Please note that the client
expects an active polkit-agent, which is either run by your desktop-environment or
should be run manually.

OpenVPN

It provides a client service for your machine to connect to a VPN, and a server service for
your machine to host a VPN. Both openvpn-client-service-type and openvpn-server-

service-type can be run simultaneously.

[Variable]openvpn-client-service-type
Type of the service that runs openvpn, a VPN daemon, as a client.

The value for this service is a <openvpn-client-configuration> object.

[Variable]openvpn-server-service-type
Type of the service that runs openvpn, a VPN daemon, as a server.

The value for this service is a <openvpn-server-configuration> object.

https://bitmask.net

Chapter 11: System Configuration 484

[Data Type]openvpn-client-configuration
Available openvpn-client-configuration fields are:

openvpn (default: openvpn) (type: file-like)
The OpenVPN package.

pid-file (default: "/var/run/openvpn/openvpn.pid") (type: string)
The OpenVPN pid file.

proto (default: udp) (type: proto)
The protocol (UDP or TCP) used to open a channel between clients and
servers.

dev (default: tun) (type: dev)
The device type used to represent the VPN connection.

ca (default: "/etc/openvpn/ca.crt") (type: maybe-string)
The certificate authority to check connections against.

cert (default: "/etc/openvpn/client.crt") (type: maybe-string)
The certificate of the machine the daemon is running on. It should be
signed by the authority given in ca.

key (default: "/etc/openvpn/client.key") (type: maybe-string)
The key of the machine the daemon is running on. It must be the key
whose certificate is cert.

comp-lzo? (default: #t) (type: boolean)
Whether to use the lzo compression algorithm.

persist-key? (default: #t) (type: boolean)
Don’t re-read key files across SIGUSR1 or –ping-restart.

persist-tun? (default: #t) (type: boolean)
Don’t close and reopen TUN/TAP device or run up/down scripts across
SIGUSR1 or –ping-restart restarts.

fast-io? (default: #f) (type: boolean)
(Experimental) Optimize TUN/TAP/UDP I/O writes by avoiding a call
to poll/epoll/select prior to the write operation.

verbosity (default: 3) (type: number)
Verbosity level.

tls-auth (default: #f) (type: tls-auth-client)
Add an additional layer of HMAC authentication on top of the TLS
control channel to protect against DoS attacks.

auth-user-pass (type: maybe-string)
Authenticate with server using username/password. The option is a file
containing username/password on 2 lines. Do not use a file-like object as
it would be added to the store and readable by any user.

verify-key-usage? (default: #t) (type: key-usage)
Whether to check the server certificate has server usage extension.

Chapter 11: System Configuration 485

bind? (default: #f) (type: bind)
Bind to a specific local port number.

resolv-retry? (default: #t) (type: resolv-retry)
Retry resolving server address.

remote (default: '()) (type: openvpn-remote-list)
A list of remote servers to connect to.

[Data Type]openvpn-remote-configuration
Available openvpn-remote-configuration fields are:

name (default: "my-server") (type: string)
Server name.

port (default: 1194) (type: number)
Port number the server listens to.

[Data Type]openvpn-server-configuration
Available openvpn-server-configuration fields are:

openvpn (default: openvpn) (type: file-like)
The OpenVPN package.

pid-file (default: "/var/run/openvpn/openvpn.pid") (type: string)
The OpenVPN pid file.

proto (default: udp) (type: proto)
The protocol (UDP or TCP) used to open a channel between clients and
servers.

dev (default: tun) (type: dev)
The device type used to represent the VPN connection.

ca (default: "/etc/openvpn/ca.crt") (type: maybe-string)
The certificate authority to check connections against.

cert (default: "/etc/openvpn/client.crt") (type: maybe-string)
The certificate of the machine the daemon is running on. It should be
signed by the authority given in ca.

key (default: "/etc/openvpn/client.key") (type: maybe-string)
The key of the machine the daemon is running on. It must be the key
whose certificate is cert.

comp-lzo? (default: #t) (type: boolean)
Whether to use the lzo compression algorithm.

persist-key? (default: #t) (type: boolean)
Don’t re-read key files across SIGUSR1 or –ping-restart.

persist-tun? (default: #t) (type: boolean)
Don’t close and reopen TUN/TAP device or run up/down scripts across
SIGUSR1 or –ping-restart restarts.

Chapter 11: System Configuration 486

fast-io? (default: #f) (type: boolean)
(Experimental) Optimize TUN/TAP/UDP I/O writes by avoiding a call
to poll/epoll/select prior to the write operation.

verbosity (default: 3) (type: number)
Verbosity level.

tls-auth (default: #f) (type: tls-auth-server)
Add an additional layer of HMAC authentication on top of the TLS
control channel to protect against DoS attacks.

port (default: 1194) (type: number)
Specifies the port number on which the server listens.

server (default: "10.8.0.0 255.255.255.0") (type: ip-mask)
An ip and mask specifying the subnet inside the virtual network.

server-ipv6 (default: #f) (type: cidr6)
A CIDR notation specifying the IPv6 subnet inside the virtual network.

dh (default: "/etc/openvpn/dh2048.pem") (type: string)
The Diffie-Hellman parameters file.

ifconfig-pool-persist (default: "/etc/openvpn/ipp.txt") (type: string)
The file that records client IPs.

redirect-gateway? (default: #f) (type: gateway)
When true, the server will act as a gateway for its clients.

client-to-client? (default: #f) (type: boolean)
When true, clients are allowed to talk to each other inside the VPN.

keepalive (default: (10 120)) (type: keepalive)
Causes ping-like messages to be sent back and forth over the link so that
each side knows when the other side has gone down. keepalive requires
a pair. The first element is the period of the ping sending, and the second
element is the timeout before considering the other side down.

max-clients (default: 100) (type: number)
The maximum number of clients.

status (default: "/var/run/openvpn/status") (type: string)
The status file. This file shows a small report on current connection. It
is truncated and rewritten every minute.

client-config-dir (default: '()) (type: openvpn-ccd-list)
The list of configuration for some clients.

strongSwan

Currently, the strongSwan service only provides legacy-style configuration with ipsec.conf

and ipsec.secrets files.

[Variable]strongswan-service-type
A service type for configuring strongSwan for IPsec VPN (Virtual Private
Networking). Its value must be a strongswan-configuration record as in this
example:

Chapter 11: System Configuration 487

(service strongswan-service-type

(strongswan-configuration

(ipsec-conf "/etc/ipsec.conf")

(ipsec-secrets "/etc/ipsec.secrets")))

[Data Type]strongswan-configuration
Data type representing the configuration of the StrongSwan service.

strongswan

The strongSwan package to use for this service.

ipsec-conf (default: #f)
The file name of your ipsec.conf. If not #f, then this and ipsec-

secrets must both be strings.

ipsec-secrets (default #f)
The file name of your ipsec.secrets. If not #f, then this and ipsec-

conf must both be strings.

Wireguard

[Variable]wireguard-service-type
A service type for a Wireguard tunnel interface. Its value must be a wireguard-

configuration record as in this example:

(service wireguard-service-type

(wireguard-configuration

(peers

(list

(wireguard-peer

(name "my-peer")

(endpoint "my.wireguard.com:51820")

(public-key "hzpKg9X1yqu1axN6iJp0mWf6BZGo8m1wteKwtTmDGF4=")

(allowed-ips '("10.0.0.2/32")))))))

[Data Type]wireguard-configuration
Data type representing the configuration of the Wireguard service.

wireguard

The wireguard package to use for this service.

interface (default: "wg0")
The interface name for the VPN.

addresses (default: '("10.0.0.1/32"))
The IP addresses to be assigned to the above interface.

port (default: 51820)
The port on which to listen for incoming connections.

dns (default: '()))
The DNS server(s) to announce to VPN clients via DHCP.

Chapter 11: System Configuration 488

monitor-ips? (default: #f)
Whether to monitor the resolved Internet addresses (IPs) of the endpoints
of the configured peers, resetting the peer endpoints using an IP address
that no longer correspond to their freshly resolved host name. Set this to
#t if one or more endpoints use host names provided by a dynamic DNS
service to keep the sessions alive.

monitor-ips-interval (default: '(next-minute (range 0 60 5)))
The time interval at which the IP monitoring job should run, provided
as an mcron time specification (see Section “Guile Syntax” in mcron).

private-key (default: "/etc/wireguard/private.key")
The private key file for the interface. It is automatically generated if the
file does not exist.

peers (default: '())
The authorized peers on this interface. This is a list of wireguard-peer
records.

pre-up (default: '())
The script commands to be run before setting up the interface.

post-up (default: '())
The script commands to be run after setting up the interface.

pre-down (default: '())
The script commands to be run before tearing down the interface.

post-down (default: '())
The script commands to be run after tearing down the interface.

table (default: "auto")
The routing table to which routes are added, as a string. There are two
special values: "off" that disables the creation of routes altogether, and
"auto" (the default) that adds routes to the default table and enables
special handling of default routes.

[Data Type]wireguard-peer
Data type representing a Wireguard peer attached to a given interface.

name The peer name.

endpoint (default: #f)
The optional endpoint for the peer, such as "demo.wireguard.com:51820".

public-key

The peer public-key represented as a base64 string.

preshared-key (default: #f)
An optional pre-shared key file for this peer. The given file will not be
autogenerated.

allowed-ips

A list of IP addresses from which incoming traffic for this peer is allowed
and to which incoming traffic for this peer is directed.

Chapter 11: System Configuration 489

keep-alive (default: #f)
An optional time interval in seconds. A packet will be sent to the server
endpoint once per time interval. This helps receiving incoming connec-
tions from this peer when you are behind a NAT or a firewall.

11.10.25 Network File System

The (gnu services nfs) module provides the following services, which are most commonly
used in relation to mounting or exporting directory trees as network file systems (NFS).

While it is possible to use the individual components that together make up a Network
File System service, we recommended to configure an NFS server with the nfs-service-

type.

NFS Service

The NFS service takes care of setting up all NFS component services, kernel configuration
file systems, and installs configuration files in the locations that NFS expects.

[Variable]nfs-service-type
A service type for a complete NFS server.

[Data Type]nfs-configuration
This data type represents the configuration of the NFS service and all of its subsys-
tems.

It has the following parameters:

nfs-utils (default: nfs-utils)
The nfs-utils package to use.

nfs-versions (default: '("4.2" "4.1" "4.0"))
If a list of string values is provided, the rpc.nfsd daemon will be limited
to supporting the given versions of the NFS protocol.

exports (default: '())
This is a list of directories the NFS server should export. Each entry is a
list consisting of two elements: a directory name and a string containing
all options. This is an example in which the directory /export is served
to all NFS clients as a read-only share:

(nfs-configuration

(exports

'(("/export"

"*(ro,insecure,no_subtree_check,crossmnt,fsid=0)"))))

rpcmountd-port (default: #f)
The network port that the rpc.mountd daemon should use.

rpcstatd-port (default: #f)
The network port that the rpc.statd daemon should use.

rpcbind (default: rpcbind)
The rpcbind package to use.

Chapter 11: System Configuration 490

idmap-domain (default: "localdomain")
The local NFSv4 domain name.

nfsd-port (default: 2049)
The network port that the nfsd daemon should use.

nfsd-threads (default: 8)
The number of threads used by the nfsd daemon.

nfsd-tcp? (default: #t)
Whether the nfsd daemon should listen on a TCP socket.

nfsd-udp? (default: #f)
Whether the nfsd daemon should listen on a UDP socket.

pipefs-directory (default: "/var/lib/nfs/rpc_pipefs")
The directory where the pipefs file system is mounted.

debug (default: '()")
A list of subsystems for which debugging output should be enabled. This
is a list of symbols. Any of these symbols are valid: nfsd, nfs, rpc,
idmap, statd, or mountd.

If you don’t need a complete NFS service or prefer to build it yourself you can use the
individual component services that are documented below.

RPC Bind Service

The RPC Bind service provides a facility to map program numbers into universal addresses.
Many NFS related services use this facility. Hence it is automatically started when a
dependent service starts.

[Variable]rpcbind-service-type
A service type for the RPC portmapper daemon.

[Data Type]rpcbind-configuration
Data type representing the configuration of the RPC Bind Service. This type has the
following parameters:

rpcbind (default: rpcbind)
The rpcbind package to use.

warm-start? (default: #t)
If this parameter is #t, then the daemon will read a state file on startup
thus reloading state information saved by a previous instance.

Pipefs Pseudo File System

The pipefs file system is used to transfer NFS related data between the kernel and user
space programs.

[Variable]pipefs-service-type
A service type for the pipefs pseudo file system.

Chapter 11: System Configuration 491

[Data Type]pipefs-configuration
Data type representing the configuration of the pipefs pseudo file system service. This
type has the following parameters:

mount-point (default: "/var/lib/nfs/rpc_pipefs")
The directory to which the file system is to be attached.

GSS Daemon Service

The global security system (GSS) daemon provides strong security for RPC based protocols.
Before exchanging RPC requests an RPC client must establish a security context. Typically
this is done using the Kerberos command kinit or automatically at login time using PAM
services (see Section 11.10.18 [Kerberos Services], page 436).

[Variable]gss-service-type
A service type for the Global Security System (GSS) daemon.

[Data Type]gss-configuration
Data type representing the configuration of the GSS daemon service. This type has
the following parameters:

nfs-utils (default: nfs-utils)
The package in which the rpc.gssd command is to be found.

pipefs-directory (default: "/var/lib/nfs/rpc_pipefs")
The directory where the pipefs file system is mounted.

IDMAP Daemon Service

The idmap daemon service provides mapping between user IDs and user names. Typically
it is required in order to access file systems mounted via NFSv4.

[Variable]idmap-service-type
A service type for the Identity Mapper (IDMAP) daemon.

[Data Type]idmap-configuration
Data type representing the configuration of the IDMAP daemon service. This type
has the following parameters:

nfs-utils (default: nfs-utils)
The package in which the rpc.idmapd command is to be found.

pipefs-directory (default: "/var/lib/nfs/rpc_pipefs")
The directory where the pipefs file system is mounted.

domain (default: #f)
The local NFSv4 domain name. This must be a string or #f. If it is #f
then the daemon will use the host’s fully qualified domain name.

verbosity (default: 0)
The verbosity level of the daemon.

11.10.26 Samba Services

The (gnu services samba) module provides service definitions for Samba as well as addi-
tional helper services. Currently it provides the following services.

Chapter 11: System Configuration 492

Samba

Samba (https://www.samba.org) provides network shares for folders and printers using the
SMB/CIFS protocol commonly used on Windows. It can also act as an Active Directory
Domain Controller (AD DC) for other hosts in an heterougenious network with different
types of Computer systems.

[Variable]samba-service-type
The service type to enable the samba services samba, nmbd, smbd and winbindd.
By default this service type does not run any of the Samba daemons; they must be
enabled individually.

Below is a basic example that configures a simple, anonymous (unauthenticated)
Samba file share exposing the /public directory.

Tip: The /public directory and its contents must be world
readable/writable, so you’ll want to run ‘chmod -R 777 /public’ on it.

Caution: Such a Samba configuration should only be used in controlled
environments, and you should not share any private files using it, as
anyone connecting to your network would be able to access them.

(service samba-service-type (samba-configuration

(enable-smbd? #t)

(config-file (plain-file "smb.conf" "\

[global]

map to guest = Bad User

logging = syslog@1

[public]

browsable = yes

path = /public

read only = no

guest ok = yes

guest only = yes\n"))))

[Data Type]samba-service-configuration
Configuration record for the Samba suite.

package (default: samba)
The samba package to use.

config-file (default: #f)
The config file to use. To learn about its syntax, run ‘man smb.conf’.

enable-samba? (default: #f)
Enable the samba daemon.

enable-smbd? (default: #f)
Enable the smbd daemon.

enable-nmbd? (default: #f)
Enable the nmbd daemon.

enable-winbindd? (default: #f)
Enable the winbindd daemon.

https://www.samba.org

Chapter 11: System Configuration 493

Web Service Discovery Daemon

The WSDD (Web Service Discovery daemon) implements the Web Services Dynamic Dis-
covery (http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.
1-spec-os.html) protocol that enables host discovery over Multicast DNS, similar to what
Avahi does. It is a drop-in replacement for SMB hosts that have had SMBv1 disabled for
security reasons.

[Variable]wsdd-service-type
Service type for the WSD host daemon. The value for this service type is a wsdd-

configuration record. The details for the wsdd-configuration record type are
given below.

[Data Type]wsdd-configuration
This data type represents the configuration for the wsdd service.

package (default: wsdd)
The wsdd package to use.

ipv4only? (default: #f)
Only listen to IPv4 addresses.

ipv6only (default: #f)
Only listen to IPv6 addresses. Please note: Activating both options is
not possible, since there would be no IP versions to listen to.

chroot (default: #f)
Chroot into a separate directory to prevent access to other directories.
This is to increase security in case there is a vulnerability in wsdd.

hop-limit (default: 1)
Limit to the level of hops for multicast packets. The default is 1 which
should prevent packets from leaving the local network.

interface (default: '())
Limit to the given list of interfaces to listen to. By default wsdd will
listen to all interfaces. Except the loopback interface is never used.

uuid-device (default: #f)
The WSD protocol requires a device to have a UUID. Set this to manually
assign the service a UUID.

domain (default: #f)
Notify this host is a member of an Active Directory.

host-name (default: #f)
Manually set the hostname rather than letting wsdd inherit this host’s
hostname. Only the host name part of a possible FQDN will be used in
the default case.

preserve-case? (default: #f)
By default wsdd will convert the hostname in workgroup to all uppercase.
The opposite is true for hostnames in domains. Setting this parameter
will preserve case.

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html

Chapter 11: System Configuration 494

workgroup (default: "WORKGROUP")
Change the name of the workgroup. By default wsdd reports this host
being member of a workgroup.

11.10.27 Continuous Integration

Cuirass (https://guix.gnu.org/cuirass/) is a continuous integration tool for Guix. It
can be used both for development and for providing substitutes to others (see Section 5.3
[Substitutes], page 44).

The (gnu services cuirass) module provides the following service.

[Procedure]cuirass-service-type
The type of the Cuirass service. Its value must be a cuirass-configuration object,
as described below.

To add build jobs, you have to set the specifications field of the configuration. For
instance, the following example will build all the packages provided by the my-channel

channel.

(define %cuirass-specs

#~(list (specification

(name "my-channel")

(build '(channels my-channel))

(channels

(cons (channel

(name 'my-channel)

(url "https://my-channel.git"))

%default-channels)))))

(service cuirass-service-type

(cuirass-configuration

(specifications %cuirass-specs)))

To build the linux-libre package defined by the default Guix channel, one can use the
following configuration.

(define %cuirass-specs

#~(list (specification

(name "my-linux")

(build '(packages "linux-libre")))))

(service cuirass-service-type

(cuirass-configuration

(specifications %cuirass-specs)))

The other configuration possibilities, as well as the specification record itself are described
in the Cuirass manual (see Section “Specifications” in Cuirass).

While information related to build jobs is located directly in the specifications, global
settings for the cuirass process are accessible in other cuirass-configuration fields.

https://guix.gnu.org/cuirass/

Chapter 11: System Configuration 495

[Data Type]cuirass-configuration
Data type representing the configuration of Cuirass.

cuirass (default: cuirass)
The Cuirass package to use.

log-file (default: "/var/log/cuirass.log")
Location of the log file.

web-log-file (default: "/var/log/cuirass-web.log")
Location of the log file used by the web interface.

cache-directory (default: "/var/cache/cuirass")
Location of the repository cache.

user (default: "cuirass")
Owner of the cuirass process.

group (default: "cuirass")
Owner’s group of the cuirass process.

interval (default: 60)
Number of seconds between the poll of the repositories followed by the
Cuirass jobs.

parameters (default: #f)
Read parameters from the given parameters file. The supported param-
eters are described here (see Section “Parameters” in Cuirass).

remote-server (default: #f)
A cuirass-remote-server-configuration record to use the build re-
mote mechanism or #f to use the default build mechanism.

database (default: "dbname=cuirass host=/var/run/postgresql")
Use database as the database containing the jobs and the past build
results. Since Cuirass uses PostgreSQL as a database engine, database
must be a string such as "dbname=cuirass host=localhost".

port (default: 8081)
Port number used by the HTTP server.

host (default: "localhost")
Listen on the network interface for host. The default is to accept connec-
tions from localhost.

specifications (default: #~'())
A gexp (see Section 8.12 [G-Expressions], page 159) that evaluates to a
list of specifications records. The specification record is described in the
Cuirass manual (see Section “Specifications” in Cuirass).

use-substitutes? (default: #f)
This allows using substitutes to avoid building every dependencies of a
job from source.

one-shot? (default: #f)
Only evaluate specifications and build derivations once.

Chapter 11: System Configuration 496

fallback? (default: #f)
When substituting a pre-built binary fails, fall back to building packages
locally.

extra-options (default: '())
Extra options to pass when running the Cuirass processes.

Cuirass remote building

Cuirass supports two mechanisms to build derivations.

• Using the local Guix daemon. This is the default build mechanism. Once the build
jobs are evaluated, they are sent to the local Guix daemon. Cuirass then listens to the
Guix daemon output to detect the various build events.

• Using the remote build mechanism. The build jobs are not submitted to the local Guix
daemon. Instead, a remote server dispatches build requests to the connect remote
workers, according to the build priorities.

To enable this build mode a cuirass-remote-server-configuration record must be
passed as remote-server argument of the cuirass-configuration record. The cuirass-
remote-server-configuration record is described below.

This build mode scales way better than the default build mode. This is the build mode
that is used on the GNU Guix build farm at https://ci.guix.gnu.org. It should be
preferred when using Cuirass to build large amount of packages.

[Data Type]cuirass-remote-server-configuration
Data type representing the configuration of the Cuirass remote-server.

backend-port (default: 5555)
The TCP port for communicating with remote-worker processes using
ZMQ. It defaults to 5555.

log-port (default: 5556)
The TCP port of the log server. It defaults to 5556.

publish-port (default: 5557)
The TCP port of the publish server. It defaults to 5557.

log-file (default: "/var/log/cuirass-remote-server.log")
Location of the log file.

cache (default: "/var/cache/cuirass/remote")
Use cache directory to cache build log files.

log-expiry (default: 6 months)
The duration in seconds after which build logs collected by cuirass

remote-worker may be deleted.

trigger-url (default: #f)
Once a substitute is successfully fetched, trigger substitute baking at
trigger-url.

publish? (default: #t)
If set to false, do not start a publish server and ignore the publish-port
argument. This can be useful if there is already a standalone publish
server standing next to the remote server.

https://ci.guix.gnu.org

Chapter 11: System Configuration 497

public-key

private-key

Use the specific files as the public/private key pair used to sign the store
items being published.

At least one remote worker must also be started on any machine of the local network to
actually perform the builds and report their status.

[Data Type]cuirass-remote-worker-configuration
Data type representing the configuration of the Cuirass remote-worker.

cuirass (default: cuirass)
The Cuirass package to use.

workers (default: 1)
Start workers parallel workers.

server (default: #f)
Do not use Avahi discovery and connect to the given server IP address
instead.

systems (default: (list (%current-system)))
Only request builds for the given systems.

log-file (default: "/var/log/cuirass-remote-worker.log")
Location of the log file.

publish-port (default: 5558)
The TCP port of the publish server. It defaults to 5558.

substitute-urls (default: %default-substitute-urls)
The list of URLs where to look for substitutes by default.

public-key

private-key

Use the specific files as the public/private key pair used to sign the store
items being published.

Laminar

Laminar (https://laminar.ohwg.net/) is a lightweight and modular Continuous Inte-
gration service. It doesn’t have a configuration web UI instead uses version-controllable
configuration files and scripts.

Laminar encourages the use of existing tools such as bash and cron instead of reinventing
them.

[Variable]laminar-service-type
The type of the Laminar service. Its value must be a laminar-configuration object,
as described below.

All configuration values have defaults, a minimal configuration to get Laminar running
is shown below. By default, the web interface is available on port 8080.

(service laminar-service-type)

https://laminar.ohwg.net/

Chapter 11: System Configuration 498

[Data Type]laminar-configuration
Data type representing the configuration of Laminar.

laminar (default: laminar)
The Laminar package to use.

home-directory (default: "/var/lib/laminar")
The directory for job configurations and run directories.

supplementary-groups (default: ())
Supplementary groups for the Laminar user account.

bind-http (default: "*:8080")
The interface/port or unix socket on which laminard should listen for
incoming connections to the web frontend.

bind-rpc (default: "unix-abstract:laminar")
The interface/port or unix socket on which laminard should listen for
incoming commands such as build triggers.

title (default: "Laminar")
The page title to show in the web frontend.

keep-rundirs (default: 0)
Set to an integer defining how many rundirs to keep per job. The lowest-
numbered ones will be deleted. The default is 0, meaning all run dirs will
be immediately deleted.

archive-url (default: #f)
The web frontend served by laminard will use this URL to form links to
artefacts archived jobs.

base-url (default: #f)
Base URL to use for links to laminar itself.

11.10.28 Power Management Services

TLP daemon

The (gnu services pm) module provides a Guix service definition for the Linux power
management tool TLP.

TLP enables various powersaving modes in userspace and kernel. Contrary to upower-

service, it is not a passive, monitoring tool, as it will apply custom settings each time a
new power source is detected. More information can be found at TLP home page (https://
linrunner.de/en/tlp/tlp.html).

[Variable]tlp-service-type
The service type for the TLP tool. The default settings are optimised for battery life
on most systems, but you can tweak them to your heart’s content by adding a valid
tlp-configuration:

(service tlp-service-type

(tlp-configuration

(cpu-scaling-governor-on-ac (list "performance"))

(sched-powersave-on-bat? #t)))

https://linrunner.de/en/tlp/tlp.html
https://linrunner.de/en/tlp/tlp.html

Chapter 11: System Configuration 499

Each parameter definition is preceded by its type; for example, ‘boolean foo’ indicates
that the foo parameter should be specified as a boolean. Types starting with maybe-

denote parameters that won’t show up in TLP config file when their value is left unset, or
is explicitly set to the %unset-value value.

Available tlp-configuration fields are:

[tlp-configuration parameter]package tlp
The TLP package.

[tlp-configuration parameter]boolean tlp-enable?
Set to true if you wish to enable TLP.

Defaults to ‘#t’.

[tlp-configuration parameter]string tlp-default-mode
Default mode when no power supply can be detected. Alternatives are AC and BAT.

Defaults to ‘"AC"’.

[tlp-configuration parameter]non-negative-integer disk-idle-secs-on-ac
Number of seconds Linux kernel has to wait after the disk goes idle, before syncing
on AC.

Defaults to ‘0’.

[tlp-configuration parameter]non-negative-integer
disk-idle-secs-on-bat

Same as disk-idle-ac but on BAT mode.

Defaults to ‘2’.

[tlp-configuration parameter]non-negative-integer
max-lost-work-secs-on-ac

Dirty pages flushing periodicity, expressed in seconds.

Defaults to ‘15’.

[tlp-configuration parameter]non-negative-integer
max-lost-work-secs-on-bat

Same as max-lost-work-secs-on-ac but on BAT mode.

Defaults to ‘60’.

[tlp-configuration parameter]maybe-space-separated-string-list
cpu-scaling-governor-on-ac

CPU frequency scaling governor on AC mode. With intel pstate driver, alternatives
are powersave and performance. With acpi-cpufreq driver, alternatives are ondemand,
powersave, performance and conservative.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-space-separated-string-list
cpu-scaling-governor-on-bat

Same as cpu-scaling-governor-on-ac but on BAT mode.

Defaults to ‘disabled’.

Chapter 11: System Configuration 500

[tlp-configuration parameter]maybe-non-negative-integer
cpu-scaling-min-freq-on-ac

Set the min available frequency for the scaling governor on AC.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-scaling-max-freq-on-ac

Set the max available frequency for the scaling governor on AC.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-scaling-min-freq-on-bat

Set the min available frequency for the scaling governor on BAT.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-scaling-max-freq-on-bat

Set the max available frequency for the scaling governor on BAT.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-min-perf-on-ac

Limit the min P-state to control the power dissipation of the CPU, in AC mode.
Values are stated as a percentage of the available performance.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-max-perf-on-ac

Limit the max P-state to control the power dissipation of the CPU, in AC mode.
Values are stated as a percentage of the available performance.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-min-perf-on-bat

Same as cpu-min-perf-on-ac on BAT mode.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
cpu-max-perf-on-bat

Same as cpu-max-perf-on-ac on BAT mode.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-boolean cpu-boost-on-ac?
Enable CPU turbo boost feature on AC mode.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-boolean cpu-boost-on-bat?
Same as cpu-boost-on-ac? on BAT mode.

Defaults to ‘disabled’.

Chapter 11: System Configuration 501

[tlp-configuration parameter]boolean sched-powersave-on-ac?
Allow Linux kernel to minimize the number of CPU cores/hyper-threads used under
light load conditions.

Defaults to ‘#f’.

[tlp-configuration parameter]boolean sched-powersave-on-bat?
Same as sched-powersave-on-ac? but on BAT mode.

Defaults to ‘#t’.

[tlp-configuration parameter]boolean nmi-watchdog?
Enable Linux kernel NMI watchdog.

Defaults to ‘#f’.

[tlp-configuration parameter]maybe-string phc-controls
For Linux kernels with PHC patch applied, change CPU voltages. An example value
would be ‘"F:V F:V F:V F:V"’.

Defaults to ‘disabled’.

[tlp-configuration parameter]string energy-perf-policy-on-ac
Set CPU performance versus energy saving policy on AC. Alternatives are perfor-
mance, normal, powersave.

Defaults to ‘"performance"’.

[tlp-configuration parameter]string energy-perf-policy-on-bat
Same as energy-perf-policy-ac but on BAT mode.

Defaults to ‘"powersave"’.

[tlp-configuration parameter]space-separated-string-list disks-devices
Hard disk devices.

[tlp-configuration parameter]space-separated-string-list
disk-apm-level-on-ac

Hard disk advanced power management level.

[tlp-configuration parameter]space-separated-string-list
disk-apm-level-on-bat

Same as disk-apm-bat but on BAT mode.

[tlp-configuration parameter]maybe-space-separated-string-list
disk-spindown-timeout-on-ac

Hard disk spin down timeout. One value has to be specified for each declared hard
disk.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-space-separated-string-list
disk-spindown-timeout-on-bat

Same as disk-spindown-timeout-on-ac but on BAT mode.

Defaults to ‘disabled’.

Chapter 11: System Configuration 502

[tlp-configuration parameter]maybe-space-separated-string-list
disk-iosched

Select IO scheduler for disk devices. One value has to be specified for each declared
hard disk. Example alternatives are cfq, deadline and noop.

Defaults to ‘disabled’.

[tlp-configuration parameter]string sata-linkpwr-on-ac
SATA aggressive link power management (ALPM) level. Alternatives are min power,
medium power, max performance.

Defaults to ‘"max_performance"’.

[tlp-configuration parameter]string sata-linkpwr-on-bat
Same as sata-linkpwr-ac but on BAT mode.

Defaults to ‘"min_power"’.

[tlp-configuration parameter]maybe-string sata-linkpwr-blacklist
Exclude specified SATA host devices for link power management.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-on-off-boolean
ahci-runtime-pm-on-ac?

Enable Runtime Power Management for AHCI controller and disks on AC mode.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-on-off-boolean
ahci-runtime-pm-on-bat?

Same as ahci-runtime-pm-on-ac on BAT mode.

Defaults to ‘disabled’.

[tlp-configuration parameter]non-negative-integer
ahci-runtime-pm-timeout

Seconds of inactivity before disk is suspended.

Defaults to ‘15’.

[tlp-configuration parameter]string pcie-aspm-on-ac
PCI Express Active State Power Management level. Alternatives are default, perfor-
mance, powersave.

Defaults to ‘"performance"’.

[tlp-configuration parameter]string pcie-aspm-on-bat
Same as pcie-aspm-ac but on BAT mode.

Defaults to ‘"powersave"’.

[tlp-configuration parameter]maybe-non-negative-integer
start-charge-thresh-bat0

Percentage when battery 0 should begin charging. Only supported on some laptops.

Defaults to ‘disabled’.

Chapter 11: System Configuration 503

[tlp-configuration parameter]maybe-non-negative-integer
stop-charge-thresh-bat0

Percentage when battery 0 should stop charging. Only supported on some laptops.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
start-charge-thresh-bat1

Percentage when battery 1 should begin charging. Only supported on some laptops.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-non-negative-integer
stop-charge-thresh-bat1

Percentage when battery 1 should stop charging. Only supported on some laptops.

Defaults to ‘disabled’.

[tlp-configuration parameter]string radeon-power-profile-on-ac
Radeon graphics clock speed level. Alternatives are low, mid, high, auto, default.

Defaults to ‘"high"’.

[tlp-configuration parameter]string radeon-power-profile-on-bat
Same as radeon-power-ac but on BAT mode.

Defaults to ‘"low"’.

[tlp-configuration parameter]string radeon-dpm-state-on-ac
Radeon dynamic power management method (DPM). Alternatives are battery, per-
formance.

Defaults to ‘"performance"’.

[tlp-configuration parameter]string radeon-dpm-state-on-bat
Same as radeon-dpm-state-ac but on BAT mode.

Defaults to ‘"battery"’.

[tlp-configuration parameter]string radeon-dpm-perf-level-on-ac
Radeon DPM performance level. Alternatives are auto, low, high.

Defaults to ‘"auto"’.

[tlp-configuration parameter]string radeon-dpm-perf-level-on-bat
Same as radeon-dpm-perf-ac but on BAT mode.

Defaults to ‘"auto"’.

[tlp-configuration parameter]on-off-boolean wifi-pwr-on-ac?
Wifi power saving mode.

Defaults to ‘#f’.

[tlp-configuration parameter]on-off-boolean wifi-pwr-on-bat?
Same as wifi-power-ac? but on BAT mode.

Defaults to ‘#t’.

Chapter 11: System Configuration 504

[tlp-configuration parameter]y-n-boolean wol-disable?
Disable wake on LAN.

Defaults to ‘#t’.

[tlp-configuration parameter]non-negative-integer
sound-power-save-on-ac

Timeout duration in seconds before activating audio power saving on Intel HDA and
AC97 devices. A value of 0 disables power saving.

Defaults to ‘0’.

[tlp-configuration parameter]non-negative-integer
sound-power-save-on-bat

Same as sound-powersave-ac but on BAT mode.

Defaults to ‘1’.

[tlp-configuration parameter]y-n-boolean sound-power-save-controller?
Disable controller in powersaving mode on Intel HDA devices.

Defaults to ‘#t’.

[tlp-configuration parameter]boolean bay-poweroff-on-bat?
Enable optical drive in UltraBay/MediaBay on BAT mode. Drive can be powered
on again by releasing (and reinserting) the eject lever or by pressing the disc eject
button on newer models.

Defaults to ‘#f’.

[tlp-configuration parameter]string bay-device
Name of the optical drive device to power off.

Defaults to ‘"sr0"’.

[tlp-configuration parameter]string runtime-pm-on-ac
Runtime Power Management for PCI(e) bus devices. Alternatives are on and auto.

Defaults to ‘"on"’.

[tlp-configuration parameter]string runtime-pm-on-bat
Same as runtime-pm-ac but on BAT mode.

Defaults to ‘"auto"’.

[tlp-configuration parameter]boolean runtime-pm-all?
Runtime Power Management for all PCI(e) bus devices, except blacklisted ones.

Defaults to ‘#t’.

[tlp-configuration parameter]maybe-space-separated-string-list
runtime-pm-blacklist

Exclude specified PCI(e) device addresses from Runtime Power Management.

Defaults to ‘disabled’.

Chapter 11: System Configuration 505

[tlp-configuration parameter]space-separated-string-list
runtime-pm-driver-blacklist

Exclude PCI(e) devices assigned to the specified drivers from Runtime Power Man-
agement.

[tlp-configuration parameter]boolean usb-autosuspend?
Enable USB autosuspend feature.

Defaults to ‘#t’.

[tlp-configuration parameter]maybe-string usb-blacklist
Exclude specified devices from USB autosuspend.

Defaults to ‘disabled’.

[tlp-configuration parameter]boolean usb-blacklist-wwan?
Exclude WWAN devices from USB autosuspend.

Defaults to ‘#t’.

[tlp-configuration parameter]maybe-string usb-whitelist
Include specified devices into USB autosuspend, even if they are already excluded by
the driver or via usb-blacklist-wwan?.

Defaults to ‘disabled’.

[tlp-configuration parameter]maybe-boolean
usb-autosuspend-disable-on-shutdown?

Enable USB autosuspend before shutdown.

Defaults to ‘disabled’.

[tlp-configuration parameter]boolean restore-device-state-on-startup?
Restore radio device state (bluetooth, wifi, wwan) from previous shutdown on system
startup.

Defaults to ‘#f’.

Thermald daemon

The (gnu services pm) module provides an interface to thermald, a CPU frequency scaling
service which helps prevent overheating.

[Variable]thermald-service-type
This is the service type for thermald (https://01.org/linux-thermal-daemon/),
the Linux Thermal Daemon, which is responsible for controlling the thermal state of
processors and preventing overheating.

[Data Type]thermald-configuration
Data type representing the configuration of thermald-service-type.

adaptive? (default: #f)
Use DPTF (Dynamic Power and Thermal Framework) adaptive tables
when present.

ignore-cpuid-check? (default: #f)
Ignore cpuid check for supported CPU models.

https://01.org/linux-thermal-daemon/

Chapter 11: System Configuration 506

thermald (default: thermald)
Package object of thermald.

11.10.29 Audio Services

The (gnu services audio) module provides a service to start MPD (the Music Player
Daemon).

Music Player Daemon

The Music Player Daemon (MPD) is a service that can play music while being controlled
from the local machine or over the network by a variety of clients.

The following example shows the simplest configuration to locally expose, via PulseAu-
dio, a music collection kept at /srv/music, with mpd running as the default ‘mpd’ user. This
user will spawn its own PulseAudio daemon, which may compete for the sound card access
with that of your own user. In this configuration, you may have to stop the playback of
your user audio applications to hear MPD’s output and vice-versa.

(service mpd-service-type

(mpd-configuration

(music-directory "/srv/music")))

Important: The music directory must be readable to the MPD user, by default,
‘mpd’. Permission problems will be reported via ‘Permission denied’ errors in
the MPD logs, which appear in /var/log/messages by default.

Most MPD clients will trigger a database update upon connecting, but you can also use
the update action do to so:

herd update mpd

All the MPD configuration fields are documented below, and a more complex example
follows.

[Variable]mpd-service-type
The service type for mpd

[Data Type]mpd-configuration
Available mpd-configuration fields are:

package (default: mpd) (type: file-like)
The MPD package.

user (type: user-account)
The user to run mpd as.

group (type: user-group)
The group to run mpd as.

The default %mpd-group is a system group with name “mpd”.

shepherd-requirement (default: '()) (type: list-of-symbols)
A list of symbols naming Shepherd services that this service will depend
on.

Chapter 11: System Configuration 507

environment-variables (default:
'("PULSE_CLIENTCONFIG=/etc/pulse/client.conf"

"PULSE_CONFIG=/etc/pulse/daemon.conf")) (type: list-of-strings)
A list of strings specifying environment variables.

log-file (type: maybe-string)
The location of the log file. Unless specified, logs are sent to the local
syslog daemon. Alternatively, a log file name can be specified, for example
/var/log/mpd.log.

log-level (type: maybe-string)
Supress any messages below this threshold. The available values, in de-
creasing order of verbosity, are: verbose, info, notice, warning and
error.

music-directory (type: maybe-string)
The directory to scan for music files.

music-dir (type: maybe-string)
The directory to scan for music files.

playlist-directory (type: maybe-string)
The directory to store playlists.

playlist-dir (type: maybe-string)
The directory to store playlists.

db-file (type: maybe-string)
The location of the music database. When left unspecified, ~/.cache/db
is used.

state-file (type: maybe-string)
The location of the file that stores current MPD’s state.

sticker-file (type: maybe-string)
The location of the sticker database.

default-port (default: 6600) (type: maybe-port)
The default port to run mpd on.

endpoints (type: maybe-list-of-strings)
The addresses that mpd will bind to. A port different from default-
port may be specified, e.g. localhost:6602 and IPv6 addresses must
be enclosed in square brackets when a different port is used. To use a
Unix domain socket, an absolute path or a path starting with ~ can be
specified here.

address (type: maybe-string)
The address that mpd will bind to. To use a Unix domain socket, an
absolute path can be specified here.

database (type: maybe-mpd-plugin)
MPD database plugin configuration.

Chapter 11: System Configuration 508

partitions (default: '()) (type: list-of-mpd-partition)
List of MPD "partitions".

neighbors (default: '()) (type: list-of-mpd-plugin)
List of MPD neighbor plugin configurations.

inputs (default: '()) (type: list-of-mpd-plugin)
List of MPD input plugin configurations.

archive-plugins (default: '()) (type: list-of-mpd-plugin)
List of MPD archive plugin configurations.

auto-update? (type: maybe-boolean)
Whether to automatically update the music database when files are
changed in the music-directory.

input-cache-size (type: maybe-string)
MPD input cache size.

decoders (default: '()) (type: list-of-mpd-plugin)
List of MPD decoder plugin configurations.

resampler (type: maybe-mpd-plugin)
MPD resampler plugin configuration.

filters (default: '()) (type: list-of-mpd-plugin)
List of MPD filter plugin configurations.

outputs (type: list-of-mpd-plugin-or-output)
The audio outputs that MPD can use. By default this is a single output
using pulseaudio.

playlist-plugins (default: '()) (type: list-of-mpd-plugin)
List of MPD playlist plugin configurations.

extra-options (default: '()) (type: alist)
An association list of option symbols/strings to string values to be ap-
pended to the configuration.

[Data Type]mpd-plugin
Data type representing a mpd plugin.

plugin (type: maybe-string)
Plugin name.

name (type: maybe-string)
Name.

enabled? (type: maybe-boolean)
Whether the plugin is enabled/disabled.

extra-options (default: '()) (type: alist)
An association list of option symbols/strings to string values to be ap-
pended to the plugin configuration. See MPD plugin reference (https://
mpd.readthedocs.io/en/latest/plugins.html) for available options.

https://mpd.readthedocs.io/en/latest/plugins.html
https://mpd.readthedocs.io/en/latest/plugins.html

Chapter 11: System Configuration 509

[Data Type]mpd-partition
Data type representing a mpd partition.

name (type: string)
Partition name.

extra-options (default: '()) (type: alist)
An association list of option symbols/strings to string values
to be appended to the partition configuration. See Configuring
Partitions (https://mpd.readthedocs.io/en/latest/user.html#
configuring-partitions) for available options.

[Data Type]mpd-output
Available mpd-output fields are:

name (default: "MPD") (type: string)
The name of the audio output.

type (default: "pulse") (type: string)
The type of audio output.

enabled? (default: #t) (type: boolean)
Specifies whether this audio output is enabled when MPD is started. By
default, all audio outputs are enabled. This is just the default setting
when there is no state file; with a state file, the previous state is restored.

format (type: maybe-string)
Force a specific audio format on output. See Global Audio
Format (https://mpd.readthedocs.io/en/latest/user.html#
audio-output-format) for a more detailed description.

tags? (default: #t) (type: boolean)
If set to #f, then MPD will not send tags to this output. This is only
useful for output plugins that can receive tags, for example the httpd

output plugin.

always-on? (default: #f) (type: boolean)
If set to #t, then MPD attempts to keep this audio output always open.
This may be useful for streaming servers, when you don’t want to discon-
nect all listeners even when playback is accidentally stopped.

mixer-type (type: maybe-string)
This field accepts a string that specifies which mixer should be used for
this audio output: the hardware mixer, the software mixer, the null

mixer (allows setting the volume, but with no effect; this can be used
as a trick to implement an external mixer External Mixer) or no mixer
(none). When left unspecified, a hardware mixer is used for devices that
support it.

replay-gain-handler (type: maybe-string)
This field accepts a string that specifies how Replay Gain (https://mpd.
readthedocs.io/en/latest/user.html#replay-gain) is to be applied.

https://mpd.readthedocs.io/en/latest/user.html#configuring-partitions
https://mpd.readthedocs.io/en/latest/user.html#configuring-partitions
https://mpd.readthedocs.io/en/latest/user.html#configuring-partitions
https://mpd.readthedocs.io/en/latest/user.html#audio-output-format
https://mpd.readthedocs.io/en/latest/user.html#audio-output-format
https://mpd.readthedocs.io/en/latest/user.html#audio-output-format
https://mpd.readthedocs.io/en/latest/user.html#replay-gain
https://mpd.readthedocs.io/en/latest/user.html#replay-gain

Chapter 11: System Configuration 510

software uses an internal software volume control, mixer uses the con-
figured (hardware) mixer control and none disables replay gain on this
audio output.

extra-options (default: '()) (type: alist)
An association list of option symbols/strings to string values to be ap-
pended to the audio output configuration.

The following example shows a configuration of mpd that configures some of its plugins
and provides a HTTP audio streaming output.

(service mpd-service-type

(mpd-configuration

(outputs

(list (mpd-output

(name "streaming")

(type "httpd")

(mixer-type 'null)

(extra-options

`((encoder . "vorbis")

(port . "8080"))))))

(decoders

(list (mpd-plugin

(plugin "mikmod")

(enabled? #f))

(mpd-plugin

(plugin "openmpt")

(enabled? #t)

(extra-options `((repeat-count . -1)

(interpolation-filter . 1))))))

(resampler (mpd-plugin

(plugin "libsamplerate")

(extra-options `((type . 0)))))))

myMPD

myMPD (https://jcorporation.github.io/myMPD/) is a web server frontend for MPD
that provides a mobile friendly web client for MPD.

The following example shows a myMPD instance listening on port 80, with album cover
caching disabled.

(service mympd-service-type

(mympd-configuration

(port 80)

(covercache-ttl 0)))

[Variable]mympd-service-type
The service type for mympd.

[Data Type]mympd-configuration
Available mympd-configuration fields are:

https://jcorporation.github.io/myMPD/

Chapter 11: System Configuration 511

package (default: mympd) (type: file-like)
The package object of the myMPD server.

shepherd-requirement (default: '()) (type: list-of-symbols)
This is a list of symbols naming Shepherd services that this service will
depend on.

user (default: %mympd-user) (type: user-account)
Owner of the mympd process.

The default %mympd-user is a system user with the name “mympd”, who
is a part of the group group (see below).

group (default: %mympd-group) (type: user-group)
Owner group of the mympd process.

The default %mympd-group is a system group with name “mympd”.

work-directory (default: "/var/lib/mympd") (type: string)
Where myMPD will store its data.

cache-directory (default: "/var/cache/mympd") (type: string)
Where myMPD will store its cache.

acl (type: maybe-mympd-ip-acl)
ACL to access the myMPD webserver.

covercache-ttl (default: 31) (type: maybe-integer)
How long to keep cached covers, 0 disables cover caching.

http? (default: #t) (type: boolean)
HTTP support.

host (default: "[::]") (type: string)
Host name to listen on.

port (default: 80) (type: maybe-port)
HTTP port to listen on.

log-level (default: 5) (type: integer)
How much detail to include in logs, possible values: 0 to 7.

log-to (type: maybe-string)
Where to send logs. Unless specified, the service logs to the local syslog
service under the ‘daemon’ facility. Alternatively, a log file name can be
specified, for example /var/log/mympd.log.

lualibs (default: "all") (type: maybe-string)
See https://jcorporation.github.io/myMPD/scripting/#

lua-standard-libraries.

uri (type: maybe-string)
Override URI to myMPD. See https://github.com/jcorporation/

myMPD/issues/950.

script-acl (default: (mympd-ip-acl (allow '("127.0.0.1")))) (type:
maybe-mympd-ip-acl)

ACL to access the myMPD script backend.

https://jcorporation.github.io/myMPD/scripting/#lua-standard-libraries
https://jcorporation.github.io/myMPD/scripting/#lua-standard-libraries
https://github.com/jcorporation/myMPD/issues/950
https://github.com/jcorporation/myMPD/issues/950

Chapter 11: System Configuration 512

ssl? (default: #f) (type: boolean)
SSL/TLS support.

ssl-port (default: 443) (type: maybe-port)
Port to listen for HTTPS.

ssl-cert (type: maybe-string)
Path to PEM encoded X.509 SSL/TLS certificate (public key).

ssl-key (type: maybe-string)
Path to PEM encoded SSL/TLS private key.

pin-hash (type: maybe-string)
SHA-256 hashed pin used by myMPD to control settings access by
prompting a pin from the user.

save-caches? (type: maybe-boolean)
Whether to preserve caches between service restarts.

[Data Type]mympd-ip-acl
Available mympd-ip-acl fields are:

allow (default: '()) (type: list-of-strings)
Allowed IP addresses.

deny (default: '()) (type: list-of-strings)
Disallowed IP addresses.

11.10.30 Virtualization Services

The (gnu services virtualization) module provides services for the libvirt and virtlog
daemons, as well as other virtualization-related services.

Libvirt daemon

libvirtd is the server side daemon component of the libvirt virtualization management
system. This daemon runs on host servers and performs required management tasks for
virtualized guests. To connect to the libvirt daemon as an unprivileged user, it must be
added to the ‘libvirt’ group, as shown in the example below.

[Variable]libvirt-service-type
This is the type of the libvirt daemon (https://libvirt.org). Its value must be a
libvirt-configuration.

(users (cons (user-account

(name "user")

(group "users")

(supplementary-groups '("libvirt"

"audio" "video" "wheel")))

%base-user-accounts))

(service libvirt-service-type

(libvirt-configuration

(tls-port "16555")))

Available libvirt-configuration fields are:

https://libvirt.org

Chapter 11: System Configuration 513

[libvirt-configuration parameter]package libvirt
Libvirt package.

[libvirt-configuration parameter]boolean listen-tls?
Flag listening for secure TLS connections on the public TCP/IP port. You must set
listen for this to have any effect.

It is necessary to setup a CA and issue server certificates before using this capability.

Defaults to ‘#t’.

[libvirt-configuration parameter]boolean listen-tcp?
Listen for unencrypted TCP connections on the public TCP/IP port. You must set
listen for this to have any effect.

Using the TCP socket requires SASL authentication by default. Only SASL mecha-
nisms which support data encryption are allowed. This is DIGEST MD5 and GSSAPI
(Kerberos5).

Defaults to ‘#f’.

[libvirt-configuration parameter]string tls-port
Port for accepting secure TLS connections. This can be a port number, or service
name.

Defaults to ‘"16514"’.

[libvirt-configuration parameter]string tcp-port
Port for accepting insecure TCP connections. This can be a port number, or service
name.

Defaults to ‘"16509"’.

[libvirt-configuration parameter]string listen-addr
IP address or hostname used for client connections.

Defaults to ‘"0.0.0.0"’.

[libvirt-configuration parameter]boolean mdns-adv?
Flag toggling mDNS advertisement of the libvirt service.

Alternatively can disable for all services on a host by stopping the Avahi daemon.

Defaults to ‘#f’.

[libvirt-configuration parameter]string mdns-name
Default mDNS advertisement name. This must be unique on the immediate broadcast
network.

Defaults to ‘"Virtualization Host <hostname>"’.

[libvirt-configuration parameter]string unix-sock-group
UNIX domain socket group ownership. This can be used to allow a ’trusted’ set of
users access to management capabilities without becoming root.

Defaults to ‘"libvirt"’.

Chapter 11: System Configuration 514

[libvirt-configuration parameter]string unix-sock-ro-perms
UNIX socket permissions for the R/O socket. This is used for monitoring VM status
only.

Defaults to ‘"0777"’.

[libvirt-configuration parameter]string unix-sock-rw-perms
UNIX socket permissions for the R/W socket. Default allows only root. If PolicyKit
is enabled on the socket, the default will change to allow everyone (eg, 0777)

Defaults to ‘"0770"’.

[libvirt-configuration parameter]string unix-sock-admin-perms
UNIX socket permissions for the admin socket. Default allows only owner (root), do
not change it unless you are sure to whom you are exposing the access to.

Defaults to ‘"0777"’.

[libvirt-configuration parameter]string unix-sock-dir
The directory in which sockets will be found/created.

Defaults to ‘"/var/run/libvirt"’.

[libvirt-configuration parameter]string auth-unix-ro
Authentication scheme for UNIX read-only sockets. By default socket permissions
allow anyone to connect

Defaults to ‘"polkit"’.

[libvirt-configuration parameter]string auth-unix-rw
Authentication scheme for UNIX read-write sockets. By default socket permissions
only allow root. If PolicyKit support was compiled into libvirt, the default will be to
use ’polkit’ auth.

Defaults to ‘"polkit"’.

[libvirt-configuration parameter]string auth-tcp
Authentication scheme for TCP sockets. If you don’t enable SASL, then all TCP
traffic is cleartext. Don’t do this outside of a dev/test scenario.

Defaults to ‘"sasl"’.

[libvirt-configuration parameter]string auth-tls
Authentication scheme for TLS sockets. TLS sockets already have encryption pro-
vided by the TLS layer, and limited authentication is done by certificates.

It is possible to make use of any SASL authentication mechanism as well, by using
’sasl’ for this option

Defaults to ‘"none"’.

[libvirt-configuration parameter]optional-list access-drivers
API access control scheme.

By default an authenticated user is allowed access to all APIs. Access drivers can
place restrictions on this.

Defaults to ‘'()’.

Chapter 11: System Configuration 515

[libvirt-configuration parameter]string key-file
Server key file path. If set to an empty string, then no private key is loaded.

Defaults to ‘""’.

[libvirt-configuration parameter]string cert-file
Server key file path. If set to an empty string, then no certificate is loaded.

Defaults to ‘""’.

[libvirt-configuration parameter]string ca-file
Server key file path. If set to an empty string, then no CA certificate is loaded.

Defaults to ‘""’.

[libvirt-configuration parameter]string crl-file
Certificate revocation list path. If set to an empty string, then no CRL is loaded.

Defaults to ‘""’.

[libvirt-configuration parameter]boolean tls-no-sanity-cert
Disable verification of our own server certificates.

When libvirtd starts it performs some sanity checks against its own certificates.

Defaults to ‘#f’.

[libvirt-configuration parameter]boolean tls-no-verify-cert
Disable verification of client certificates.

Client certificate verification is the primary authentication mechanism. Any client
which does not present a certificate signed by the CA will be rejected.

Defaults to ‘#f’.

[libvirt-configuration parameter]optional-list tls-allowed-dn-list
Whitelist of allowed x509 Distinguished Name.

Defaults to ‘'()’.

[libvirt-configuration parameter]optional-list sasl-allowed-usernames
Whitelist of allowed SASL usernames. The format for username depends on the SASL
authentication mechanism.

Defaults to ‘'()’.

[libvirt-configuration parameter]string tls-priority
Override the compile time default TLS priority string. The default is usually
‘"NORMAL"’ unless overridden at build time. Only set this is it is desired for libvirt to
deviate from the global default settings.

Defaults to ‘"NORMAL"’.

[libvirt-configuration parameter]integer max-clients
Maximum number of concurrent client connections to allow over all sockets combined.

Defaults to ‘5000’.

Chapter 11: System Configuration 516

[libvirt-configuration parameter]integer max-queued-clients
Maximum length of queue of connections waiting to be accepted by the daemon.
Note, that some protocols supporting retransmission may obey this so that a later
reattempt at connection succeeds.

Defaults to ‘1000’.

[libvirt-configuration parameter]integer max-anonymous-clients
Maximum length of queue of accepted but not yet authenticated clients. Set this to
zero to turn this feature off

Defaults to ‘20’.

[libvirt-configuration parameter]integer min-workers
Number of workers to start up initially.

Defaults to ‘5’.

[libvirt-configuration parameter]integer max-workers
Maximum number of worker threads.

If the number of active clients exceeds min-workers, then more threads are spawned,
up to max workers limit. Typically you’d want max workers to equal maximum
number of clients allowed.

Defaults to ‘20’.

[libvirt-configuration parameter]integer prio-workers
Number of priority workers. If all workers from above pool are stuck, some calls
marked as high priority (notably domainDestroy) can be executed in this pool.

Defaults to ‘5’.

[libvirt-configuration parameter]integer max-requests
Total global limit on concurrent RPC calls.

Defaults to ‘20’.

[libvirt-configuration parameter]integer max-client-requests
Limit on concurrent requests from a single client connection. To avoid one client
monopolizing the server this should be a small fraction of the global max requests
and max workers parameter.

Defaults to ‘5’.

[libvirt-configuration parameter]integer admin-min-workers
Same as min-workers but for the admin interface.

Defaults to ‘1’.

[libvirt-configuration parameter]integer admin-max-workers
Same as max-workers but for the admin interface.

Defaults to ‘5’.

[libvirt-configuration parameter]integer admin-max-clients
Same as max-clients but for the admin interface.

Defaults to ‘5’.

Chapter 11: System Configuration 517

[libvirt-configuration parameter]integer admin-max-queued-clients
Same as max-queued-clients but for the admin interface.

Defaults to ‘5’.

[libvirt-configuration parameter]integer admin-max-client-requests
Same as max-client-requests but for the admin interface.

Defaults to ‘5’.

[libvirt-configuration parameter]integer log-level
Logging level. 4 errors, 3 warnings, 2 information, 1 debug.

Defaults to ‘3’.

[libvirt-configuration parameter]string log-filters
Logging filters.

A filter allows to select a different logging level for a given category of logs. The
format for a filter is one of:

• x:name

• x:+name

where name is a string which is matched against the category given in the VIR_

LOG_INIT() at the top of each libvirt source file, e.g., ‘"remote"’, ‘"qemu"’, or
‘"util.json"’ (the name in the filter can be a substring of the full category name,
in order to match multiple similar categories), the optional ‘"+"’ prefix tells libvirt
to log stack trace for each message matching name, and x is the minimal level where
matching messages should be logged:

• 1: DEBUG

• 2: INFO

• 3: WARNING

• 4: ERROR

Multiple filters can be defined in a single filters statement, they just need to be
separated by spaces.

Defaults to ‘"3:remote 4:event"’.

[libvirt-configuration parameter]string log-outputs
Logging outputs.

An output is one of the places to save logging information. The format for an output
can be:

x:stderr output goes to stderr

x:syslog:name

use syslog for the output and use the given name as the ident

x:file:file_path

output to a file, with the given filepath

x:journald

output to journald logging system

Chapter 11: System Configuration 518

In all case the x prefix is the minimal level, acting as a filter

• 1: DEBUG

• 2: INFO

• 3: WARNING

• 4: ERROR

Multiple outputs can be defined, they just need to be separated by spaces.

Defaults to ‘"3:stderr"’.

[libvirt-configuration parameter]integer audit-level
Allows usage of the auditing subsystem to be altered

• 0: disable all auditing

• 1: enable auditing, only if enabled on host

• 2: enable auditing, and exit if disabled on host.

Defaults to ‘1’.

[libvirt-configuration parameter]boolean audit-logging
Send audit messages via libvirt logging infrastructure.

Defaults to ‘#f’.

[libvirt-configuration parameter]optional-string host-uuid
Host UUID. UUID must not have all digits be the same.

Defaults to ‘""’.

[libvirt-configuration parameter]string host-uuid-source
Source to read host UUID.

• smbios: fetch the UUID from dmidecode -s system-uuid

• machine-id: fetch the UUID from /etc/machine-id

If dmidecode does not provide a valid UUID a temporary UUID will be generated.

Defaults to ‘"smbios"’.

[libvirt-configuration parameter]integer keepalive-interval
A keepalive message is sent to a client after keepalive_interval seconds of inactivity
to check if the client is still responding. If set to -1, libvirtd will never send keepalive
requests; however clients can still send them and the daemon will send responses.

Defaults to ‘5’.

[libvirt-configuration parameter]integer keepalive-count
Maximum number of keepalive messages that are allowed to be sent to the client
without getting any response before the connection is considered broken.

In other words, the connection is automatically closed approximately after
keepalive_interval * (keepalive_count + 1) seconds since the last message
received from the client. When keepalive-count is set to 0, connections will
be automatically closed after keepalive-interval seconds of inactivity without
sending any keepalive messages.

Defaults to ‘5’.

Chapter 11: System Configuration 519

[libvirt-configuration parameter]integer admin-keepalive-interval
Same as above but for admin interface.

Defaults to ‘5’.

[libvirt-configuration parameter]integer admin-keepalive-count
Same as above but for admin interface.

Defaults to ‘5’.

[libvirt-configuration parameter]integer ovs-timeout
Timeout for Open vSwitch calls.

The ovs-vsctl utility is used for the configuration and its timeout option is set by
default to 5 seconds to avoid potential infinite waits blocking libvirt.

Defaults to ‘5’.

Virtlog daemon

The virtlogd service is a server side daemon component of libvirt that is used to manage
logs from virtual machine consoles.

This daemon is not used directly by libvirt client applications, rather it is called on their
behalf by libvirtd. By maintaining the logs in a standalone daemon, the main libvirtd

daemon can be restarted without risk of losing logs. The virtlogd daemon has the ability
to re-exec() itself upon receiving SIGUSR1, to allow live upgrades without downtime.

[Variable]virtlog-service-type
This is the type of the virtlog daemon. Its value must be a virtlog-configuration.

(service virtlog-service-type

(virtlog-configuration

(max-clients 1000)))

[libvirt parameter]package libvirt
Libvirt package.

[virtlog-configuration parameter]integer log-level
Logging level. 4 errors, 3 warnings, 2 information, 1 debug.

Defaults to ‘3’.

[virtlog-configuration parameter]string log-filters
Logging filters.

A filter allows to select a different logging level for a given category of logs The format
for a filter is one of:

• x:name

• x:+name

where name is a string which is matched against the category given in the VIR_LOG_

INIT() at the top of each libvirt source file, e.g., "remote", "qemu", or "util.json"
(the name in the filter can be a substring of the full category name, in order to match
multiple similar categories), the optional "+" prefix tells libvirt to log stack trace for

Chapter 11: System Configuration 520

each message matching name, and x is the minimal level where matching messages
should be logged:

• 1: DEBUG

• 2: INFO

• 3: WARNING

• 4: ERROR

Multiple filters can be defined in a single filters statement, they just need to be
separated by spaces.

Defaults to ‘"3:remote 4:event"’.

[virtlog-configuration parameter]string log-outputs
Logging outputs.

An output is one of the places to save logging information The format for an output
can be:

x:stderr output goes to stderr

x:syslog:name

use syslog for the output and use the given name as the ident

x:file:file_path

output to a file, with the given filepath

x:journald

output to journald logging system

In all case the x prefix is the minimal level, acting as a filter

• 1: DEBUG

• 2: INFO

• 3: WARNING

• 4: ERROR

Multiple outputs can be defined, they just need to be separated by spaces.

Defaults to ‘"3:stderr"’.

[virtlog-configuration parameter]integer max-clients
Maximum number of concurrent client connections to allow over all sockets combined.

Defaults to ‘1024’.

[virtlog-configuration parameter]integer max-size
Maximum file size before rolling over.

Defaults to ‘2MB’

[virtlog-configuration parameter]integer max-backups
Maximum number of backup files to keep.

Defaults to ‘3’

Chapter 11: System Configuration 521

Transparent Emulation with QEMU

qemu-binfmt-service-type provides support for transparent emulation of program bina-
ries built for different architectures—e.g., it allows you to transparently execute an ARMv7
program on an x86 64 machine. It achieves this by combining the QEMU (https://www.
qemu.org) emulator and the binfmt_misc feature of the kernel Linux. This feature only
allows you to emulate GNU/Linux on a different architecture, but see below for GNU/Hurd
support.

[Variable]qemu-binfmt-service-type
This is the type of the QEMU/binfmt service for transparent emulation. Its value
must be a qemu-binfmt-configuration object, which specifies the QEMU package
to use as well as the architecture we want to emulated:

(service qemu-binfmt-service-type

(qemu-binfmt-configuration

(platforms (lookup-qemu-platforms "arm" "aarch64"))))

In this example, we enable transparent emulation for the ARM and aarch64 platforms.
Running herd stop qemu-binfmt turns it off, and running herd start qemu-binfmt

turns it back on (see Section “Invoking herd” in The GNU Shepherd Manual).

[Data Type]qemu-binfmt-configuration
This is the configuration for the qemu-binfmt service.

platforms (default: '())
The list of emulated QEMU platforms. Each item must be a platform
object as returned by lookup-qemu-platforms (see below).

For example, let’s suppose you’re on an x86 64 machine and you have
this service:

(service qemu-binfmt-service-type

(qemu-binfmt-configuration

(platforms (lookup-qemu-platforms "arm"))))

You can run:

guix build -s armhf-linux inkscape

and it will build Inkscape for ARMv7 as if it were a native build, transpar-
ently using QEMU to emulate the ARMv7 CPU. Pretty handy if you’d
like to test a package build for an architecture you don’t have access to!

qemu (default: qemu)
The QEMU package to use.

[Procedure]lookup-qemu-platforms platforms. . .
Return the list of QEMU platform objects corresponding to platforms platforms
must be a list of strings corresponding to platform names, such as "arm", "sparc",
"mips64el", and so on.

[Procedure]qemu-platform? obj
Return true if obj is a platform object.

[Procedure]qemu-platform-name platform
Return the name of platform—a string such as "arm".

https://www.qemu.org
https://www.qemu.org

Chapter 11: System Configuration 522

QEMU Guest Agent

The QEMU guest agent provides control over the emulated system to the host. The qemu-
guest-agent service runs the agent on Guix guests. To control the agent from the host,
open a socket by invoking QEMU with the following arguments:

qemu-system-x86_64 \

-chardev socket,path=/tmp/qga.sock,server=on,wait=off,id=qga0 \

-device virtio-serial \

-device virtserialport,chardev=qga0,name=org.qemu.guest_agent.0 \

...

This creates a socket at /tmp/qga.sock on the host. Once the guest agent is running,
you can issue commands with socat:

$ guix shell socat -- socat unix-connect:/tmp/qga.sock stdio

{"execute": "guest-get-host-name"}

{"return": {"host-name": "guix"}}

See QEMU guest agent documentation (https://wiki.qemu.org/Features/
GuestAgent) for more options and commands.

[Variable]qemu-guest-agent-service-type
Service type for the QEMU guest agent service.

[Data Type]qemu-guest-agent-configuration
Configuration for the qemu-guest-agent service.

qemu (default: qemu-minimal)
The QEMU package to use.

device (default: "")
File name of the device or socket the agent uses to communicate with the
host. If empty, QEMU uses a default file name.

Virtual Build Machines

Virtual build machines or “build VMs” let you offload builds to a fully controlled environ-
ment. “How can it be more controlled than regular builds? And why would it be useful?”,
you ask. Good questions.

Builds spawned by guix-daemon indeed run in a controlled environment; specifically the
daemon spawns build processes in separate namespaces and in a chroot, such as that build
processes only see their declared dependencies and a well-defined subset of the file system
tree (see Section 2.2.1 [Build Environment Setup], page 5, for details). A few aspects of the
environments are not controlled though: the operating system kernel, the CPU model, and
the date. Most of the time, these aspects have no impact on the build process: the level of
isolation guix-daemon provides is “good enough”.

However, there are occasionally cases where those aspects do influence the build process.
A typical example is time traps: build processes that stop working after a certain date8.

8 The most widespread example of time traps is test suites that involve checking the expiration date of
a certificate. Such tests exists in TLS implementations such as OpenSSL and GnuTLS, but also in
high-level software such as Python.

https://wiki.qemu.org/Features/GuestAgent
https://wiki.qemu.org/Features/GuestAgent

Chapter 11: System Configuration 523

Another one is software that optimizes for the CPU microarchitecture it is built on or,
worse, bugs that manifest only on specific CPUs.

To address that, virtual-build-machine-service-type lets you add a virtual build
machine on your system, as in this example:

(use-modules (gnu services virtualization))

(operating-system

;; ...

(services (append (list (service virtual-build-machine-service-type))

%base-services)))

By default, you have to explicitly start the build machine when you need it, at which
point builds may be offloaded to it (see Section 2.2.2 [Daemon Offload Setup], page 7):

herd start build-vm

With the default setting shown above, the build VM runs with its clock set to a date
several years in the past, and on a CPU model that corresponds to that date—a model
possibly older than that of your machine. This lets you rebuild today software from the
past that would otherwise fail to build due to a time trap or other issues in its build process.
You can view the VM’s config like this:

herd configuration build-vm

You can configure the build VM, as in this example:

(service virtual-build-machine-service-type

(virtual-build-machine

(cpu "Westmere")

(cpu-count 8)

(memory-size (* 1 1024))

(auto-start? #t)))

The available options are shown below.

[Variable]virtual-build-machine-service-type
This is the service type to run virtual build machines. Virtual build machines are
configured so that builds are offloaded to them when they are running.

[Data Type]virtual-build-machine
This is the data type specifying the configuration of a build machine. It contains the
fields below:

name (default: 'build-vm)
The name of this build VM. It is used to construct the name of its Shep-
herd service.

image The image of the virtual machine (see Chapter 16 [System Images],
page 675). This notably specifies the virtual disk size and the operating
system running into it (see Section 11.3 [operating-system Reference],
page 242). The default value is a minimal operating system image.

qemu (default: qemu-minimal)
The QEMU package to run the image.

Chapter 11: System Configuration 524

cpu The CPU model being emulated as a string denoting a model known to
QEMU.

The default value is a model that matches date (see below). To see what
CPU models are available, run, for example:

qemu-system-x86_64 -cpu help

cpu-count (default: 4)
The number of CPUs emulated by the virtual machine.

memory-size (default: 2048)
Size in mebibytes (MiB) of the virtual machine’s main memory (RAM).

date (default: a few years ago)
Date inside the virtual machine when it starts; this must be a SRFI-
19 date object (see Section “SRFI-19 Date” in GNU Guile Reference
Manual).

port-forwardings (default: 11022 and 11004)
TCP ports of the virtual machine forwarded to the host. By default, the
SSH and secrets ports are forwarded into the host.

systems (default: (list (%current-system)))
List of system types supported by the build VM—e.g., "x86_64-linux".

auto-start? (default: #f)
Whether to start the virtual machine when the system boots.

In the next section, you’ll find a variant on this theme: GNU/Hurd virtual machines!

The Hurd in a Virtual Machine

Service hurd-vm provides support for running GNU/Hurd in a virtual machine (VM), a so-
called childhurd. This service is meant to be used on GNU/Linux and the given GNU/Hurd
operating system configuration is cross-compiled. The virtual machine is a Shepherd service
that can be referred to by the names hurd-vm and childhurd and be controlled with
commands such as:

herd start hurd-vm

herd stop childhurd

When the service is running, you can view its console by connecting to it with a VNC
client, for example with:

guix shell tigervnc-client -- vncviewer localhost:5900

The default configuration (see hurd-vm-configuration below) spawns a secure shell
(SSH) server in your GNU/Hurd system, which QEMU (the virtual machine emulator)
redirects to port 10022 on the host. By default, the service enables offloading such that
the host guix-daemon automatically offloads GNU/Hurd builds to the childhurd (see Sec-
tion 2.2.2 [Daemon Offload Setup], page 7). This is what happens when running a command
like the following one, where i586-gnu is the system type of 32-bit GNU/Hurd:

guix build emacs-minimal -s i586-gnu

The childhurd is volatile and stateless: it starts with a fresh root file system every time
you restart it. By default though, all the files under /etc/childhurd on the host are copied

Chapter 11: System Configuration 525

as is to the root file system of the childhurd when it boots. This allows you to initialize
“secrets” inside the VM: SSH host keys, authorized substitute keys, and so on—see the
explanation of secret-root below.

You will probably find it useful to create an account for you in the GNU/Hurd vir-
tual machine and to authorize logins with your SSH key. To do that, you can define the
GNU/Hurd system in the usual way (see Section 11.2 [Using the Configuration System],
page 233), and then pass that operating system as the os field of hurd-vm-configuration,
as in this example:

(define childhurd-os

;; Definition of my GNU/Hurd system, derived from the default one.

(operating-system

(inherit %hurd-vm-operating-system)

;; Add a user account.

(users (cons (user-account

(name "charlie")

(comment "This is me!")

(group "users")

(supplementary-groups '("wheel"))) ;for 'sudo'

%base-user-accounts))

(services

;; Modify the SSH configuration to allow login as "root"

;; and as "charlie" using public key authentication.

(modify-services (operating-system-user-services

%hurd-vm-operating-system)

(openssh-service-type

config => (openssh-configuration

(inherit config)

(authorized-keys

`(("root"

,(local-file

"/home/charlie/.ssh/id_rsa.pub"))

("charlie"

,(local-file

"/home/charlie/.ssh/id_rsa.pub"))))))))))

(operating-system

;; ...

(services

;; Add the 'hurd-vm' service, configured to use the

;; operating system configuration above.

(append (list (service hurd-vm-service-type

(hurd-vm-configuration

(os %childhurd-os))))

%base-services)))

Chapter 11: System Configuration 526

That’s it! The remainder of this section provides the reference of the service configura-
tion.

[Variable]hurd-vm-service-type
This is the type of the Hurd in a Virtual Machine service. Its value must be a hurd-

vm-configuration object, which specifies the operating system (see Section 11.3
[operating-system Reference], page 242) and the disk size for the Hurd Virtual Ma-
chine, the QEMU package to use as well as the options for running it.

For example:

(service hurd-vm-service-type

(hurd-vm-configuration

(disk-size (* 5000 (expt 2 20))) ;5G

(memory-size 1024))) ;1024MiB

would create a disk image big enough to build GNU Hello, with some extra memory.

[Data Type]hurd-vm-configuration
The data type representing the configuration for hurd-vm-service-type.

os (default: %hurd-vm-operating-system)
The operating system to instantiate. This default is bare-bones with
a permissive OpenSSH secure shell daemon listening on port 2222 (see
Section 11.10.5 [Networking Services], page 301).

qemu (default: qemu-minimal)
The QEMU package to use.

image (default: hurd-vm-disk-image)
The image object representing the disk image of this virtual machine (see
Chapter 16 [System Images], page 675).

disk-size (default: 'guess)
The size of the disk image.

memory-size (default: 512)
The memory size of the Virtual Machine in mebibytes.

options (default: '("--snapshot"))
The extra options for running QEMU.

id (default: #f)
If set, a non-zero positive integer used to parameterize Childhurd in-
stances. It is appended to the service’s name, e.g. childhurd1.

net-options (default: hurd-vm-net-options)
The procedure used to produce the list of QEMU networking options.

By default, it produces

'("--device" "rtl8139,netdev=net0"

"--netdev" (string-append

"user,id=net0,"

"hostfwd=tcp:127.0.0.1:secrets-port-:1004,"

"hostfwd=tcp:127.0.0.1:ssh-port-:2222,"

Chapter 11: System Configuration 527

"hostfwd=tcp:127.0.0.1:vnc-port-:5900"))

with forwarded ports:

secrets-port: (+ 11004 (* 1000 ID))

ssh-port: (+ 10022 (* 1000 ID))

vnc-port: (+ 15900 (* 1000 ID))

offloading? (default: #t)
Whether to automatically set up offloading of builds to the childhurd.

When enabled, this lets you run GNU/Hurd builds on the host and have
them transparently offloaded to the VM, for instance when running a
command like this:

guix build coreutils -s i586-gnu

This option automatically sets up offloading like so:

1. Authorizing the childhurd’s key on the host so that the host accepts
build results coming from the childhurd, which can be done like so
(see Section 5.11 [Invoking guix archive], page 63, for more on that).

2. Creating a user account called offloading dedicated to offloading
in the childhurd.

3. Creating an SSH key pair on the host and making it an authorized
key of the offloading account in the childhurd.

4. Adding the childhurd to /etc/guix/machines.scm (see Section 2.2.2
[Daemon Offload Setup], page 7).

secret-root (default: /etc/childhurd)
The root directory with out-of-band secrets to be installed into the child-
hurd once it runs. Childhurds are volatile which means that on every
startup, secrets such as the SSH host keys and Guix signing key are
recreated.

If the /etc/childhurd directory does not exist, the secret-service

running in the Childhurd will be sent an empty list of secrets.

By default, the service automatically populates /etc/childhurd with the
following non-volatile secrets, unless they already exist:

/etc/childhurd/etc/guix/acl

/etc/childhurd/etc/guix/signing-key.pub

/etc/childhurd/etc/guix/signing-key.sec

/etc/childhurd/etc/ssh/authorized_keys.d/offloading

/etc/childhurd/etc/ssh/ssh_host_ed25519_key

/etc/childhurd/etc/ssh/ssh_host_ecdsa_key

/etc/childhurd/etc/ssh/ssh_host_ed25519_key.pub

/etc/childhurd/etc/ssh/ssh_host_ecdsa_key.pub

Note that by default the VM image is volatile, i.e., once stopped the contents are lost. If
you want a stateful image instead, override the configuration’s image and options without
the --snapshot flag using something along these lines:

(service hurd-vm-service-type

Chapter 11: System Configuration 528

(hurd-vm-configuration

(image (const "/out/of/store/writable/hurd.img"))

(options '())))

Ganeti

Note: This service is considered experimental. Configuration options may be
changed in a backwards-incompatible manner, and not all features have been
thorougly tested. Users of this service are encouraged to share their experience
at guix-devel@gnu.org.

Ganeti is a virtual machine management system. It is designed to keep virtual ma-
chines running on a cluster of servers even in the event of hardware failures, and to make
maintenance and recovery tasks easy. It consists of multiple services which are described
later in this section. In addition to the Ganeti service, you will need the OpenSSH service
(see Section 11.10.5 [Networking Services], page 301), and update the /etc/hosts file (see
Section 11.19.3 [Service Reference], page 618) with the cluster name and address (or use a
DNS server).

All nodes participating in a Ganeti cluster should have the same Ganeti and /etc/hosts

configuration. Here is an example configuration for a Ganeti cluster node that supports
multiple storage backends, and installs the debootstrap and guix OS providers:

(use-package-modules virtualization)

(use-service-modules base ganeti networking ssh)

(operating-system

;; ...

(host-name "node1")

;; Install QEMU so we can use KVM-based instances, and LVM, DRBD and Ceph

;; in order to use the "plain", "drbd" and "rbd" storage backends.

(packages (append (map specification->package

'("qemu" "lvm2" "drbd-utils" "ceph"

;; Add the debootstrap and guix OS providers.

"ganeti-instance-guix" "ganeti-instance-debootstrap"))

%base-packages))

(services

(append (list (service static-networking-service-type

(list (static-networking

(addresses

(list (network-address

(device "eth0")

(value "192.168.1.201/24"))))

(routes

(list (network-route

(destination "default")

(gateway "192.168.1.254"))))

(name-servers '("192.168.1.252"

"192.168.1.253")))))

mailto:guix-devel@gnu.org

Chapter 11: System Configuration 529

;; Ganeti uses SSH to communicate between nodes.

(service openssh-service-type

(openssh-configuration

(permit-root-login 'prohibit-password)))

(simple-service 'ganeti-hosts-entries hosts-service-type

(list

(host "192.168.1.200" "ganeti.example.com")

(host "192.168.1.201" "node1.example.com"

'("node1"))

(host "192.168.1.202" "node2.example.com"

'("node2"))))

(service ganeti-service-type

(ganeti-configuration

;; This list specifies allowed file system paths

;; for storing virtual machine images.

(file-storage-paths '("/srv/ganeti/file-storage"))

;; This variable configures a single "variant" for

;; both Debootstrap and Guix that works with KVM.

(os %default-ganeti-os))))

%base-services)))

Users are advised to read the Ganeti administrators guide (https://docs.ganeti.
org/docs/ganeti/3.0/html/admin.html) to learn about the various cluster options and
day-to-day operations. There is also a blog post (https://guix.gnu.org/blog/2020/
running-a-ganeti-cluster-on-guix/) describing how to configure and initialize a small
cluster.

[Variable]ganeti-service-type
This is a service type that includes all the various services that Ganeti nodes should
run.

Its value is a ganeti-configuration object that defines the package to use for CLI
operations, as well as configuration for the various daemons. Allowed file storage
paths and available guest operating systems are also configured through this data
type.

[Data Type]ganeti-configuration
The ganeti service takes the following configuration options:

ganeti (default: ganeti)
The ganeti package to use. It will be installed to the system profile and
make gnt-cluster, gnt-instance, etc available. Note that the value
specified here does not affect the other services as each refer to a specific
ganeti package (see below).

https://docs.ganeti.org/docs/ganeti/3.0/html/admin.html
https://docs.ganeti.org/docs/ganeti/3.0/html/admin.html
https://guix.gnu.org/blog/2020/running-a-ganeti-cluster-on-guix/
https://guix.gnu.org/blog/2020/running-a-ganeti-cluster-on-guix/

Chapter 11: System Configuration 530

noded-configuration (default: (ganeti-noded-configuration))
confd-configuration (default: (ganeti-confd-configuration))
wconfd-configuration (default: (ganeti-wconfd-configuration))
luxid-configuration (default: (ganeti-luxid-configuration))
rapi-configuration (default: (ganeti-rapi-configuration))
kvmd-configuration (default: (ganeti-kvmd-configuration))
mond-configuration (default: (ganeti-mond-configuration))
metad-configuration (default: (ganeti-metad-configuration))
watcher-configuration (default: (ganeti-watcher-configuration))
cleaner-configuration (default: (ganeti-cleaner-configuration))

These options control the various daemons and cron jobs that are dis-
tributed with Ganeti. The possible values for these are described in detail
below. To override a setting, you must use the configuration type for that
service:

(service ganeti-service-type

(ganeti-configuration

(rapi-configuration

(ganeti-rapi-configuration

(interface "eth1"))))

(watcher-configuration

(ganeti-watcher-configuration

(rapi-ip "10.0.0.1"))))

file-storage-paths (default: '())
List of allowed directories for file storage backend.

hooks (default: #f)
When set, this should be a file-like object containing a directory with
cluster execution hooks (https://docs.ganeti.org/docs/ganeti/3.0/
html/hooks.html).

os (default: %default-ganeti-os)
List of <ganeti-os> records.

In essence ganeti-service-type is shorthand for declaring each service individually:

(service ganeti-noded-service-type)

(service ganeti-confd-service-type)

(service ganeti-wconfd-service-type)

(service ganeti-luxid-service-type)

(service ganeti-kvmd-service-type)

(service ganeti-mond-service-type)

(service ganeti-metad-service-type)

(service ganeti-watcher-service-type)

(service ganeti-cleaner-service-type)

Plus a service extension for etc-service-type that configures the file storage backend
and OS variants.

https://docs.ganeti.org/docs/ganeti/3.0/html/hooks.html
https://docs.ganeti.org/docs/ganeti/3.0/html/hooks.html

Chapter 11: System Configuration 531

[Data Type]ganeti-os
This data type is suitable for passing to the os parameter of ganeti-configuration.
It takes the following parameters:

name The name for this OS provider. It is only used to specify where
the configuration ends up. Setting it to “debootstrap” will create
/etc/ganeti/instance-debootstrap.

extension (default: #f)
The file extension for variants of this OS type. For example .conf or
.scm. It will be appended to the variant file name if set.

variants (default: '())
This must be either a list of ganeti-os-variant objects for this OS, or a
“file-like” object (see Section 8.12 [G-Expressions], page 159) representing
the variants directory.

To use the Guix OS provider with variant definitions residing in a lo-
cal directory instead of declaring individual variants (see guix-variants
below), you can do:

(ganeti-os

(name "guix")

(variants (local-file "ganeti-guix-variants"

#:recursive? #true)))

Note that you will need to maintain the variants.list file (see ganeti-
os-interface(7) (https://docs.ganeti.org/docs/ganeti/3.0/man/ganeti-

os-interface.html)) manually in this case.

[Data Type]ganeti-os-variant
This is the data type for a Ganeti OS variant. It takes the following parameters:

name The name of this variant.

configuration

A configuration file for this variant.

[Variable]%default-debootstrap-hooks
This variable contains hooks to configure networking and the GRUB bootloader.

[Variable]%default-debootstrap-extra-pkgs
This variable contains a list of packages suitable for a fully-virtualized guest.

[Data Type]debootstrap-configuration
This data type creates configuration files suitable for the debootstrap OS provider.

hooks (default: %default-debootstrap-hooks)
When not #f, this must be a G-expression that specifies a directory with
scripts that will run when the OS is installed. It can also be a list of
(name . file-like) pairs. For example:

`((99-hello-world . ,(plain-file "#!/bin/sh\necho Hello, World")))

That will create a directory with one executable named 99-hello-world

and run it every time this variant is installed. If set to #f, hooks in
/etc/ganeti/instance-debootstrap/hooks will be used, if any.

https://docs.ganeti.org/docs/ganeti/3.0/man/ganeti-os-interface.html
https://docs.ganeti.org/docs/ganeti/3.0/man/ganeti-os-interface.html
https://docs.ganeti.org/docs/ganeti/3.0/man/ganeti-os-interface.html

Chapter 11: System Configuration 532

proxy (default: #f)
Optional HTTP proxy to use.

mirror (default: #f)
The Debian mirror. Typically something like http://ftp.no.debian.org/debian.
The default varies depending on the distribution.

arch (default: #f)
The dpkg architecture. Set to armhf to debootstrap an ARMv7 instance
on an AArch64 host. Default is to use the current system architecture.

suite (default: "stable")
When set, this must be a Debian distribution “suite” such as buster or
focal. If set to #f, the default for the OS provider is used.

extra-pkgs (default: %default-debootstrap-extra-pkgs)
List of extra packages that will get installed by dpkg in addition to the
minimal system.

components (default: #f)
When set, must be a list of Debian repository “components”. For example
'("main" "contrib").

generate-cache? (default: #t)
Whether to automatically cache the generated debootstrap archive.

clean-cache (default: 14)
Discard the cache after this amount of days. Use #f to never clear the
cache.

partition-style (default: 'msdos)
The type of partition to create. When set, it must be one of 'msdos,
'none or a string.

partition-alignment (default: 2048)
Alignment of the partition in sectors.

[Procedure]debootstrap-variant name configuration
This is a helper procedure that creates a ganeti-os-variant record. It takes two
parameters: a name and a debootstrap-configuration object.

[Procedure]debootstrap-os variants. . .
This is a helper procedure that creates a ganeti-os record. It takes a list of variants
created with debootstrap-variant.

[Procedure]guix-variant name configuration
This is a helper procedure that creates a ganeti-os-variant record for use with
the Guix OS provider. It takes a name and a G-expression that returns a “file-
like” (see Section 8.12 [G-Expressions], page 159) object containing a Guix System
configuration.

[Procedure]guix-os variants. . .
This is a helper procedure that creates a ganeti-os record. It takes a list of variants
produced by guix-variant.

Chapter 11: System Configuration 533

[Variable]%default-debootstrap-variants
This is a convenience variable to make the debootstrap provider work “out of the box”
without users having to declare variants manually. It contains a single debootstrap
variant with the default configuration:

(list (debootstrap-variant

"default"

(debootstrap-configuration)))

[Variable]%default-guix-variants
This is a convenience variable to make the Guix OS provider work without additional
configuration. It creates a virtual machine that has an SSH server, a serial console,
and authorizes the Ganeti hosts SSH keys.

(list (guix-variant

"default"

(file-append ganeti-instance-guix

"/share/doc/ganeti-instance-guix/examples/dynamic.scm")))

Users can implement support for OS providers unbeknownst to Guix by extending the
ganeti-os and ganeti-os-variant records appropriately. For example:

(ganeti-os

(name "custom")

(extension ".conf")

(variants

(list (ganeti-os-variant

(name "foo")

(configuration (plain-file "bar" "this is fine"))))))

That creates /etc/ganeti/instance-custom/variants/foo.conf which points to a
file in the store with contents this is fine. It also creates /etc/ganeti/instance-

custom/variants/variants.list with contents foo.

Obviously this may not work for all OS providers out there. If you find the interface
limiting, please reach out to guix-devel@gnu.org.

The rest of this section documents the various services that are included by ganeti-

service-type.

[Variable]ganeti-noded-service-type
ganeti-noded is the daemon responsible for node-specific functions within the Ganeti
system. The value of this service must be a ganeti-noded-configuration object.

[Data Type]ganeti-noded-configuration
This is the configuration for the ganeti-noded service.

ganeti (default: ganeti)
The ganeti package to use for this service.

port (default: 1811)
The TCP port on which the node daemon listens for network requests.

address (default: "0.0.0.0")
The network address that the daemon will bind to. The default address
means bind to all available addresses.

mailto:guix-devel@gnu.org

Chapter 11: System Configuration 534

interface (default: #f)
When this is set, it must be a specific network interface (e.g. eth0) that
the daemon will bind to.

max-clients (default: 20)
This sets a limit on the maximum number of simultaneous client con-
nections that the daemon will handle. Connections above this count are
accepted, but no responses will be sent until enough connections have
closed.

ssl? (default: #t)
Whether to use SSL/TLS to encrypt network communications. The cer-
tificate is automatically provisioned by the cluster and can be rotated
with gnt-cluster renew-crypto.

ssl-key (default: "/var/lib/ganeti/server.pem")
This can be used to provide a specific encryption key for TLS communi-
cations.

ssl-cert (default: "/var/lib/ganeti/server.pem")
This can be used to provide a specific certificate for TLS communications.

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses. Note that this will leak encryption details to the log files, use with
caution.

[Variable]ganeti-confd-service-type
ganeti-confd answers queries related to the configuration of a Ganeti cluster. The
purpose of this daemon is to have a highly available and fast way to query cluster
configuration values. It is automatically active on all master candidates. The value
of this service must be a ganeti-confd-configuration object.

[Data Type]ganeti-confd-configuration
This is the configuration for the ganeti-confd service.

ganeti (default: ganeti)
The ganeti package to use for this service.

port (default: 1814)
The UDP port on which to listen for network requests.

address (default: "0.0.0.0")
Network address that the daemon will bind to.

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses.

[Variable]ganeti-wconfd-service-type
ganeti-wconfd is the daemon that has authoritative knowledge about the cluster
configuration and is the only entity that can accept changes to it. All jobs that need

Chapter 11: System Configuration 535

to modify the configuration will do so by sending appropriate requests to this daemon.
It only runs on the master node and will automatically disable itself on other nodes.

The value of this service must be a ganeti-wconfd-configuration object.

[Data Type]ganeti-wconfd-configuration
This is the configuration for the ganeti-wconfd service.

ganeti (default: ganeti)
The ganeti package to use for this service.

no-voting? (default: #f)
The daemon will refuse to start if the majority of cluster nodes does not
agree that it is running on the master node. Set to #t to start even if a
quorum can not be reached (dangerous, use with caution).

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses.

[Variable]ganeti-luxid-service-type
ganeti-luxid is a daemon used to answer queries related to the configuration and
the current live state of a Ganeti cluster. Additionally, it is the authoritative daemon
for the Ganeti job queue. Jobs can be submitted via this daemon and it schedules
and starts them.

It takes a ganeti-luxid-configuration object.

[Data Type]ganeti-luxid-configuration
This is the configuration for the ganeti-luxid service.

ganeti (default: ganeti)
The ganeti package to use for this service.

no-voting? (default: #f)
The daemon will refuse to start if it cannot verify that the majority of
cluster nodes believes that it is running on the master node. Set to #t to
ignore such checks and start anyway (this can be dangerous).

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses.

[Variable]ganeti-rapi-service-type
ganeti-rapi provides a remote API for Ganeti clusters. It runs on the master node
and can be used to perform cluster actions programmatically via a JSON-based RPC
protocol.

Most query operations are allowed without authentication (unless require-
authentication? is set), whereas write operations require explicit authorization via
the /var/lib/ganeti/rapi/users file. See the Ganeti Remote API documentation
(https://docs.ganeti.org/docs/ganeti/3.0/html/rapi.html) for more
information.

The value of this service must be a ganeti-rapi-configuration object.

https://docs.ganeti.org/docs/ganeti/3.0/html/rapi.html
https://docs.ganeti.org/docs/ganeti/3.0/html/rapi.html

Chapter 11: System Configuration 536

[Data Type]ganeti-rapi-configuration
This is the configuration for the ganeti-rapi service.

ganeti (default: ganeti)
The ganeti package to use for this service.

require-authentication? (default: #f)
Whether to require authentication even for read-only operations.

port (default: 5080)
The TCP port on which to listen to API requests.

address (default: "0.0.0.0")
The network address that the service will bind to. By default it listens
on all configured addresses.

interface (default: #f)
When set, it must specify a specific network interface such as eth0 that
the daemon will bind to.

max-clients (default: 20)
The maximum number of simultaneous client requests to handle. Further
connections are allowed, but no responses are sent until enough connec-
tions have closed.

ssl? (default: #t)
Whether to use SSL/TLS encryption on the RAPI port.

ssl-key (default: "/var/lib/ganeti/server.pem")
This can be used to provide a specific encryption key for TLS communi-
cations.

ssl-cert (default: "/var/lib/ganeti/server.pem")
This can be used to provide a specific certificate for TLS communications.

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses. Note that this will leak encryption details to the log files, use with
caution.

[Variable]ganeti-kvmd-service-type
ganeti-kvmd is responsible for determining whether a given KVM instance was shut
down by an administrator or a user. Normally Ganeti will restart an instance that was
not stopped through Ganeti itself. If the cluster option user_shutdown is true, this
daemon monitors the QMP socket provided by QEMU and listens for shutdown events,
and marks the instance as USER down instead of ERROR down when it shuts down
gracefully by itself.

It takes a ganeti-kvmd-configuration object.

[Data Type]ganeti-kvmd-configuration

ganeti (default: ganeti)
The ganeti package to use for this service.

Chapter 11: System Configuration 537

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses.

[Variable]ganeti-mond-service-type
ganeti-mond is an optional daemon that provides Ganeti monitoring functionality.
It is responsible for running data collectors and publish the collected information
through a HTTP interface.

It takes a ganeti-mond-configuration object.

[Data Type]ganeti-mond-configuration

ganeti (default: ganeti)
The ganeti package to use for this service.

port (default: 1815)
The port on which the daemon will listen.

address (default: "0.0.0.0")
The network address that the daemon will bind to. By default it binds
to all available interfaces.

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses.

[Variable]ganeti-metad-service-type
ganeti-metad is an optional daemon that can be used to provide information about
the cluster to instances or OS install scripts.

It takes a ganeti-metad-configuration object.

[Data Type]ganeti-metad-configuration

ganeti (default: ganeti)
The ganeti package to use for this service.

port (default: 80)
The port on which the daemon will listen.

address (default: #f)
If set, the daemon will bind to this address only. If left unset, the behavior
depends on the cluster configuration.

debug? (default: #f)
When true, the daemon performs additional logging for debugging pur-
poses.

[Variable]ganeti-watcher-service-type
ganeti-watcher is a script designed to run periodically and ensure the health of a
cluster. It will automatically restart instances that have stopped without Ganeti’s
consent, and repairs DRBD links in case a node has rebooted. It also archives old
cluster jobs and restarts Ganeti daemons that are not running. If the cluster parame-
ter ensure_node_health is set, the watcher will also shutdown instances and DRBD
devices if the node it is running on is declared offline by known master candidates.

Chapter 11: System Configuration 538

It can be paused on all nodes with gnt-cluster watcher pause.

The service takes a ganeti-watcher-configuration object.

[Data Type]ganeti-watcher-configuration

ganeti (default: ganeti)
The ganeti package to use for this service.

schedule (default: '(next-second-from (next-minute (range 0 60 5))))
How often to run the script. The default is every five minutes.

rapi-ip (default: #f)
This option needs to be specified only if the RAPI daemon is configured
to use a particular interface or address. By default the cluster address is
used.

job-age (default: (* 6 3600))
Archive cluster jobs older than this age, specified in seconds. The default
is 6 hours. This keeps gnt-job list manageable.

verify-disks? (default: #t)
If this is #f, the watcher will not try to repair broken DRBD links auto-
matically. Administrators will need to use gnt-cluster verify-disks

manually instead.

debug? (default: #f)
When #t, the script performs additional logging for debugging purposes.

[Variable]ganeti-cleaner-service-type
ganeti-cleaner is a script designed to run periodically and remove old files from
the cluster. This service type controls two cron jobs: one intended for the master
node that permanently purges old cluster jobs, and one intended for every node that
removes expired X509 certificates, keys, and outdated ganeti-watcher information.
Like all Ganeti services, it is safe to include even on non-master nodes as it will disable
itself as necessary.

It takes a ganeti-cleaner-configuration object.

[Data Type]ganeti-cleaner-configuration

ganeti (default: ganeti)
The ganeti package to use for the gnt-cleaner command.

master-schedule (default: "45 1 * * *")
How often to run the master cleaning job. The default is once per day,
at 01:45:00.

node-schedule (default: "45 2 * * *")
How often to run the node cleaning job. The default is once per day, at
02:45:00.

Chapter 11: System Configuration 539

11.10.31 Version Control Services

The (gnu services version-control) module provides a service to allow remote access
to local Git repositories. There are three options: the git-daemon-service-type, which
provides access to repositories via the git:// unsecured TCP-based protocol, extending
the nginx web server to proxy some requests to git-http-backend, or providing a web
interface with cgit-service-type.

[Variable]git-daemon-service-type
Type for a service that runs git daemon, a simple TCP server to expose repositories
over the Git protocol for anonymous access.

The value for this service type is a <git-daemon-configuration> record, by default
it allows read-only access to exported9 repositories under /srv/git.

[Data Type]git-daemon-configuration
Data type representing the configuration for git-daemon-service-type.

package (default: git)
Package object of the Git distributed version control system.

export-all? (default: #f)
Whether to allow access for all Git repositories, even if they do not have
the git-daemon-export-ok file.

base-path (default: /srv/git)
Whether to remap all the path requests as relative to the given path. If
you run git daemon with (base-path "/srv/git") on ‘example.com’,
then if you later try to pull ‘git://example.com/hello.git’, git daemon
will interpret the path as /srv/git/hello.git.

user-path (default: #f)
Whether to allow ~user notation to be used in requests. When specified
with empty string, requests to ‘git://host/~alice/foo’ is taken as a
request to access foo repository in the home directory of user alice. If
(user-path "path") is specified, the same request is taken as a request
to access path/foo repository in the home directory of user alice.

listen (default: '())
Whether to listen on specific IP addresses or hostnames, defaults to all.

port (default: #f)
Whether to listen on an alternative port, which defaults to 9418.

whitelist (default: '())
If not empty, only allow access to this list of directories.

extra-options (default: '())
Extra options that will be passed to git daemon.10

9 By creating the magic file git-daemon-export-ok in the repository directory.
10 Run man git-daemon for more information.

Chapter 11: System Configuration 540

The git:// protocol lacks authentication. When you pull from a repository fetched
via git://, you don’t know whether the data you receive was modified or is even coming
from the specified host, and your connection is subject to eavesdropping. It’s better to
use an authenticated and encrypted transport, such as https. Although Git allows you
to serve repositories using unsophisticated file-based web servers, there is a faster protocol
implemented by the git-http-backend program. This program is the back-end of a proper
Git web service. It is designed to sit behind a FastCGI proxy. See Section 11.10.20 [Web
Services], page 447, for more on running the necessary fcgiwrap daemon.

Guix has a separate configuration data type for serving Git repositories over HTTP.

[Data Type]git-http-configuration
Data type representing the configuration for a future git-http-service-type;
can currently be used to configure Nginx through git-http-nginx-location-

configuration.

package (default: git)
Package object of the Git distributed version control system.

git-root (default: /srv/git)
Directory containing the Git repositories to expose to the world.

export-all? (default: #f)
Whether to expose access for all Git repositories in git-root, even if they
do not have the git-daemon-export-ok file.

uri-path (default: ‘/git/’)
Path prefix for Git access. With the default ‘/git/’ prefix, this will
map ‘http://server/git/repo.git’ to /srv/git/repo.git. Requests
whose URI paths do not begin with this prefix are not passed on to this
Git instance.

fcgiwrap-socket (default: 127.0.0.1:9000)
The socket on which the fcgiwrap daemon is listening. See
Section 11.10.20 [Web Services], page 447.

There is no git-http-service-type, currently; instead you can create an nginx-

location-configuration from a git-http-configuration and then add that location
to a web server.

[Procedure]git-http-nginx-location-configuration
[config=(git-http-configuration)]

Compute an nginx-location-configuration that corresponds to the given Git http
configuration. An example nginx service definition to serve the default /srv/git over
HTTPS might be:

(service nginx-service-type

(nginx-configuration

(server-blocks

(list

(nginx-server-configuration

(listen '("443 ssl"))

Chapter 11: System Configuration 541

(server-name "git.my-host.org")

(ssl-certificate

"/etc/certs/git.my-host.org/fullchain.pem")

(ssl-certificate-key

"/etc/certs/git.my-host.org/privkey.pem")

(locations

(list

(git-http-nginx-location-configuration

(git-http-configuration (uri-path "/"))))))))))

This example assumes that you are using Let’s Encrypt to get your TLS certificate.
See Section 11.10.21 [Certificate Services], page 467. The default certbot service
will redirect all HTTP traffic on git.my-host.org to HTTPS. You will also need to
add an fcgiwrap proxy to your system services. See Section 11.10.20 [Web Services],
page 447.

Cgit Service

Cgit (https://git.zx2c4.com/cgit/) is a web frontend for Git repositories written in C.

The following example will configure the service with default values. By default, Cgit
can be accessed on port 80 (http://localhost:80).

(service cgit-service-type)

The file-object type designates either a file-like object (see Section 8.12
[G-Expressions], page 159) or a string.

Available cgit-configuration fields are:

[cgit-configuration parameter]package package
The CGIT package.

[cgit-configuration parameter]nginx-server-configuration-list nginx
NGINX configuration.

[cgit-configuration parameter]file-object about-filter
Specifies a command which will be invoked to format the content of about pages (both
top-level and for each repository).

Defaults to ‘""’.

[cgit-configuration parameter]string agefile
Specifies a path, relative to each repository path, which can be used to specify the
date and time of the youngest commit in the repository.

Defaults to ‘""’.

[cgit-configuration parameter]file-object auth-filter
Specifies a command that will be invoked for authenticating repository access.

Defaults to ‘""’.

[cgit-configuration parameter]string branch-sort
Flag which, when set to ‘age’, enables date ordering in the branch ref list, and when
set ‘name’ enables ordering by branch name.

Defaults to ‘"name"’.

https://git.zx2c4.com/cgit/

Chapter 11: System Configuration 542

[cgit-configuration parameter]string cache-root
Path used to store the cgit cache entries.

Defaults to ‘"/var/cache/cgit"’.

[cgit-configuration parameter]integer cache-static-ttl
Number which specifies the time-to-live, in minutes, for the cached version of reposi-
tory pages accessed with a fixed SHA1.

Defaults to ‘-1’.

[cgit-configuration parameter]integer cache-dynamic-ttl
Number which specifies the time-to-live, in minutes, for the cached version of reposi-
tory pages accessed without a fixed SHA1.

Defaults to ‘5’.

[cgit-configuration parameter]integer cache-repo-ttl
Number which specifies the time-to-live, in minutes, for the cached version of the
repository summary page.

Defaults to ‘5’.

[cgit-configuration parameter]integer cache-root-ttl
Number which specifies the time-to-live, in minutes, for the cached version of the
repository index page.

Defaults to ‘5’.

[cgit-configuration parameter]integer cache-scanrc-ttl
Number which specifies the time-to-live, in minutes, for the result of scanning a path
for Git repositories.

Defaults to ‘15’.

[cgit-configuration parameter]integer cache-about-ttl
Number which specifies the time-to-live, in minutes, for the cached version of the
repository about page.

Defaults to ‘15’.

[cgit-configuration parameter]integer cache-snapshot-ttl
Number which specifies the time-to-live, in minutes, for the cached version of snap-
shots.

Defaults to ‘5’.

[cgit-configuration parameter]integer cache-size
The maximum number of entries in the cgit cache. When set to ‘0’, caching is disabled.

Defaults to ‘0’.

[cgit-configuration parameter]boolean case-sensitive-sort?
Sort items in the repo list case sensitively.

Defaults to ‘#t’.

Chapter 11: System Configuration 543

[cgit-configuration parameter]list clone-prefix
List of common prefixes which, when combined with a repository URL, generates
valid clone URLs for the repository.

Defaults to ‘'()’.

[cgit-configuration parameter]list clone-url
List of clone-url templates.

Defaults to ‘'()’.

[cgit-configuration parameter]file-object commit-filter
Command which will be invoked to format commit messages.

Defaults to ‘""’.

[cgit-configuration parameter]string commit-sort
Flag which, when set to ‘date’, enables strict date ordering in the commit log, and
when set to ‘topo’ enables strict topological ordering.

Defaults to ‘"git log"’.

[cgit-configuration parameter]file-object css
URL which specifies the css document to include in all cgit pages.

Defaults to ‘"/share/cgit/cgit.css"’.

[cgit-configuration parameter]file-object email-filter
Specifies a command which will be invoked to format names and email address of
committers, authors, and taggers, as represented in various places throughout the
cgit interface.

Defaults to ‘""’.

[cgit-configuration parameter]boolean embedded?
Flag which, when set to ‘#t’, will make cgit generate a HTML fragment suitable for
embedding in other HTML pages.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-commit-graph?
Flag which, when set to ‘#t’, will make cgit print an ASCII-art commit history graph
to the left of the commit messages in the repository log page.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-filter-overrides?
Flag which, when set to ‘#t’, allows all filter settings to be overridden in repository-
specific cgitrc files.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-follow-links?
Flag which, when set to ‘#t’, allows users to follow a file in the log view.

Defaults to ‘#f’.

Chapter 11: System Configuration 544

[cgit-configuration parameter]boolean enable-http-clone?
If set to ‘#t’, cgit will act as an dumb HTTP endpoint for Git clones.

Defaults to ‘#t’.

[cgit-configuration parameter]boolean enable-index-links?
Flag which, when set to ‘#t’, will make cgit generate extra links "summary", "com-
mit", "tree" for each repo in the repository index.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-index-owner?
Flag which, when set to ‘#t’, will make cgit display the owner of each repo in the
repository index.

Defaults to ‘#t’.

[cgit-configuration parameter]boolean enable-log-filecount?
Flag which, when set to ‘#t’, will make cgit print the number of modified files for
each commit on the repository log page.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-log-linecount?
Flag which, when set to ‘#t’, will make cgit print the number of added and removed
lines for each commit on the repository log page.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-remote-branches?
Flag which, when set to #t, will make cgit display remote branches in the summary
and refs views.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-subject-links?
Flag which, when set to 1, will make cgit use the subject of the parent commit as
link text when generating links to parent commits in commit view.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-html-serving?
Flag which, when set to ‘#t’, will make cgit use the subject of the parent commit as
link text when generating links to parent commits in commit view.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean enable-tree-linenumbers?
Flag which, when set to ‘#t’, will make cgit generate linenumber links for plaintext
blobs printed in the tree view.

Defaults to ‘#t’.

[cgit-configuration parameter]boolean enable-git-config?
Flag which, when set to ‘#f’, will allow cgit to use Git config to set any repo specific
settings.

Defaults to ‘#f’.

Chapter 11: System Configuration 545

[cgit-configuration parameter]file-object favicon
URL used as link to a shortcut icon for cgit.

Defaults to ‘"/favicon.ico"’.

[cgit-configuration parameter]string footer
The content of the file specified with this option will be included verbatim at the
bottom of all pages (i.e. it replaces the standard "generated by..." message).

Defaults to ‘""’.

[cgit-configuration parameter]string head-include
The content of the file specified with this option will be included verbatim in the
HTML HEAD section on all pages.

Defaults to ‘""’.

[cgit-configuration parameter]string header
The content of the file specified with this option will be included verbatim at the top
of all pages.

Defaults to ‘""’.

[cgit-configuration parameter]file-object include
Name of a configfile to include before the rest of the current config- file is parsed.

Defaults to ‘""’.

[cgit-configuration parameter]string index-header
The content of the file specified with this option will be included verbatim above the
repository index.

Defaults to ‘""’.

[cgit-configuration parameter]string index-info
The content of the file specified with this option will be included verbatim below the
heading on the repository index page.

Defaults to ‘""’.

[cgit-configuration parameter]boolean local-time?
Flag which, if set to ‘#t’, makes cgit print commit and tag times in the servers
timezone.

Defaults to ‘#f’.

[cgit-configuration parameter]file-object logo
URL which specifies the source of an image which will be used as a logo on all cgit
pages.

Defaults to ‘"/share/cgit/cgit.png"’.

[cgit-configuration parameter]string logo-link
URL loaded when clicking on the cgit logo image.

Defaults to ‘""’.

Chapter 11: System Configuration 546

[cgit-configuration parameter]file-object owner-filter
Command which will be invoked to format the Owner column of the main page.

Defaults to ‘""’.

[cgit-configuration parameter]integer max-atom-items
Number of items to display in atom feeds view.

Defaults to ‘10’.

[cgit-configuration parameter]integer max-commit-count
Number of entries to list per page in "log" view.

Defaults to ‘50’.

[cgit-configuration parameter]integer max-message-length
Number of commit message characters to display in "log" view.

Defaults to ‘80’.

[cgit-configuration parameter]integer max-repo-count
Specifies the number of entries to list per page on the repository index page.

Defaults to ‘50’.

[cgit-configuration parameter]integer max-repodesc-length
Specifies the maximum number of repo description characters to display on the repos-
itory index page.

Defaults to ‘80’.

[cgit-configuration parameter]integer max-blob-size
Specifies the maximum size of a blob to display HTML for in KBytes.

Defaults to ‘0’.

[cgit-configuration parameter]string max-stats
Maximum statistics period. Valid values are ‘week’,‘month’, ‘quarter’ and ‘year’.

Defaults to ‘""’.

[cgit-configuration parameter]mimetype-alist mimetype
Mimetype for the specified filename extension.

Defaults to ‘'((gif "image/gif") (html "text/html") (jpg "image/jpeg")

(jpeg "image/jpeg") (pdf "application/pdf") (png "image/png") (svg

"image/svg+xml"))’.

[cgit-configuration parameter]file-object mimetype-file
Specifies the file to use for automatic mimetype lookup.

Defaults to ‘""’.

[cgit-configuration parameter]string module-link
Text which will be used as the formatstring for a hyperlink when a submodule is
printed in a directory listing.

Defaults to ‘""’.

Chapter 11: System Configuration 547

[cgit-configuration parameter]boolean nocache?
If set to the value ‘#t’ caching will be disabled.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean noplainemail?
If set to ‘#t’ showing full author email addresses will be disabled.

Defaults to ‘#f’.

[cgit-configuration parameter]boolean noheader?
Flag which, when set to ‘#t’, will make cgit omit the standard header on all pages.

Defaults to ‘#f’.

[cgit-configuration parameter]project-list project-list
A list of subdirectories inside of repository-directory, relative to it, that should
loaded as Git repositories. An empty list means that all subdirectories will be loaded.

Defaults to ‘'()’.

[cgit-configuration parameter]file-object readme
Text which will be used as default repository-cgit-configuration readme.

Defaults to ‘""’.

[cgit-configuration parameter]boolean remove-suffix?
If set to #t and repository-directory is enabled, if any repositories are found with
a suffix of .git, this suffix will be removed for the URL and name.

Defaults to ‘#f’.

[cgit-configuration parameter]integer renamelimit
Maximum number of files to consider when detecting renames.

Defaults to ‘-1’.

[cgit-configuration parameter]string repository-sort
The way in which repositories in each section are sorted.

Defaults to ‘""’.

[cgit-configuration parameter]robots-list robots
Text used as content for the robots meta-tag.

Defaults to ‘'("noindex" "nofollow")’.

[cgit-configuration parameter]string root-desc
Text printed below the heading on the repository index page.

Defaults to ‘"a fast webinterface for the git dscm"’.

[cgit-configuration parameter]string root-readme
The content of the file specified with this option will be included verbatim below the
“about” link on the repository index page.

Defaults to ‘""’.

Chapter 11: System Configuration 548

[cgit-configuration parameter]string root-title
Text printed as heading on the repository index page.

Defaults to ‘""’.

[cgit-configuration parameter]boolean scan-hidden-path
If set to ‘#t’ and repository-directory is enabled, repository-directory will recurse into
directories whose name starts with a period. Otherwise, repository-directory will stay
away from such directories, considered as “hidden”. Note that this does not apply to
the .git directory in non-bare repos.

Defaults to ‘#f’.

[cgit-configuration parameter]list snapshots
Text which specifies the default set of snapshot formats that cgit generates links for.

Defaults to ‘'()’.

[cgit-configuration parameter]repository-directory
repository-directory

Name of the directory to scan for repositories (represents scan-path).

Defaults to ‘"/srv/git"’.

[cgit-configuration parameter]string section
The name of the current repository section - all repositories defined after this option
will inherit the current section name.

Defaults to ‘""’.

[cgit-configuration parameter]string section-sort
Flag which, when set to ‘1’, will sort the sections on the repository listing by name.

Defaults to ‘""’.

[cgit-configuration parameter]integer section-from-path
A number which, if defined prior to repository-directory, specifies how many path
elements from each repo path to use as a default section name.

Defaults to ‘0’.

[cgit-configuration parameter]boolean side-by-side-diffs?
If set to ‘#t’ shows side-by-side diffs instead of unidiffs per default.

Defaults to ‘#f’.

[cgit-configuration parameter]file-object source-filter
Specifies a command which will be invoked to format plaintext blobs in the tree view.

Defaults to ‘""’.

[cgit-configuration parameter]integer summary-branches
Specifies the number of branches to display in the repository “summary” view.

Defaults to ‘10’.

[cgit-configuration parameter]integer summary-log
Specifies the number of log entries to display in the repository “summary” view.

Defaults to ‘10’.

Chapter 11: System Configuration 549

[cgit-configuration parameter]integer summary-tags
Specifies the number of tags to display in the repository “summary” view.

Defaults to ‘10’.

[cgit-configuration parameter]string strict-export
Filename which, if specified, needs to be present within the repository for cgit to allow
access to that repository.

Defaults to ‘""’.

[cgit-configuration parameter]string virtual-root
URL which, if specified, will be used as root for all cgit links.

Defaults to ‘"/"’.

[cgit-configuration parameter]repository-cgit-configuration-list
repositories

A list of repository-cgit-configuration records.

Defaults to ‘'()’.

Available repository-cgit-configuration fields are:

[repository-cgit-configuration parameter]repo-list snapshots
A mask of snapshot formats for this repo that cgit generates links for, restricted
by the global snapshots setting.

Defaults to ‘'()’.

[repository-cgit-configuration parameter]repo-file-object
source-filter

Override the default source-filter.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string url
The relative URL used to access the repository.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-file-object
about-filter

Override the default about-filter.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string branch-sort
Flag which, when set to ‘age’, enables date ordering in the branch ref list, and
when set to ‘name’ enables ordering by branch name.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-list clone-url
A list of URLs which can be used to clone repo.

Defaults to ‘'()’.

Chapter 11: System Configuration 550

[repository-cgit-configuration parameter]repo-file-object
commit-filter

Override the default commit-filter.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string commit-sort
Flag which, when set to ‘date’, enables strict date ordering in the commit log,
and when set to ‘topo’ enables strict topological ordering.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string defbranch
The name of the default branch for this repository. If no such branch exists in
the repository, the first branch name (when sorted) is used as default instead.
By default branch pointed to by HEAD, or “master” if there is no suitable
HEAD.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string desc
The value to show as repository description.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string homepage
The value to show as repository homepage.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-file-object
email-filter

Override the default email-filter.

Defaults to ‘""’.

[repository-cgit-configuration parameter]maybe-repo-boolean
enable-commit-graph?

A flag which can be used to disable the global setting enable-commit-graph?.

Defaults to ‘disabled’.

[repository-cgit-configuration parameter]maybe-repo-boolean
enable-log-filecount?

A flag which can be used to disable the global setting enable-log-filecount?.

Defaults to ‘disabled’.

[repository-cgit-configuration parameter]maybe-repo-boolean
enable-log-linecount?

A flag which can be used to disable the global setting enable-log-linecount?.

Defaults to ‘disabled’.

[repository-cgit-configuration parameter]maybe-repo-boolean
enable-remote-branches?

Flag which, when set to #t, will make cgit display remote branches in the
summary and refs views.

Defaults to ‘disabled’.

Chapter 11: System Configuration 551

[repository-cgit-configuration parameter]maybe-repo-boolean
enable-subject-links?

A flag which can be used to override the global setting enable-subject-

links?.

Defaults to ‘disabled’.

[repository-cgit-configuration parameter]maybe-repo-boolean
enable-html-serving?

A flag which can be used to override the global setting enable-html-serving?.

Defaults to ‘disabled’.

[repository-cgit-configuration parameter]repo-boolean hide?
Flag which, when set to #t, hides the repository from the repository index.

Defaults to ‘#f’.

[repository-cgit-configuration parameter]repo-boolean ignore?
Flag which, when set to ‘#t’, ignores the repository.

Defaults to ‘#f’.

[repository-cgit-configuration parameter]repo-file-object logo
URL which specifies the source of an image which will be used as a logo on this
repo’s pages.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string logo-link
URL loaded when clicking on the cgit logo image.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-file-object
owner-filter

Override the default owner-filter.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string module-link
Text which will be used as the formatstring for a hyperlink when a submodule
is printed in a directory listing. The arguments for the formatstring are the
path and SHA1 of the submodule commit.

Defaults to ‘""’.

[repository-cgit-configuration parameter]module-link-path
module-link-path

Text which will be used as the formatstring for a hyperlink when a submodule
with the specified subdirectory path is printed in a directory listing.

Defaults to ‘'()’.

[repository-cgit-configuration parameter]repo-string max-stats
Override the default maximum statistics period.

Defaults to ‘""’.

Chapter 11: System Configuration 552

[repository-cgit-configuration parameter]repo-string name
The value to show as repository name.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string owner
A value used to identify the owner of the repository.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string path
An absolute path to the repository directory.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string readme
A path (relative to repo) which specifies a file to include verbatim as the
“About” page for this repo.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-string section
The name of the current repository section - all repositories defined after this
option will inherit the current section name.

Defaults to ‘""’.

[repository-cgit-configuration parameter]repo-list extra-options
Extra options will be appended to cgitrc file.

Defaults to ‘'()’.

[cgit-configuration parameter]list extra-options
Extra options will be appended to cgitrc file.

Defaults to ‘'()’.

However, it could be that you just want to get a cgitrc up and running. In that case,
you can pass an opaque-cgit-configuration as a record to cgit-service-type. As its
name indicates, an opaque configuration does not have easy reflective capabilities.

Available opaque-cgit-configuration fields are:

[opaque-cgit-configuration parameter]package cgit
The cgit package.

[opaque-cgit-configuration parameter]string string
The contents of the cgitrc, as a string.

For example, if your cgitrc is just the empty string, you could instantiate a cgit service
like this:

(service cgit-service-type

(opaque-cgit-configuration

(cgitrc "")))

Chapter 11: System Configuration 553

Gitolite Service

Gitolite (https://gitolite.com/gitolite/) is a tool for hosting Git repositories on a
central server.

Gitolite can handle multiple repositories and users, and supports flexible configuration
of the permissions for the users on the repositories.

The following example will configure Gitolite using the default git user, and the provided
SSH public key.

(service gitolite-service-type

(gitolite-configuration

(admin-pubkey (plain-file

"yourname.pub"

"ssh-rsa AAAA... guix@example.com"))))

Gitolite is configured through a special admin repository which you can clone, for exam-
ple, if you setup Gitolite on example.com, you would run the following command to clone
the admin repository.

git clone git@example.com:gitolite-admin

When the Gitolite service is activated, the provided admin-pubkey will be inserted in
to the keydir directory in the gitolite-admin repository. If this results in a change in the
repository, it will be committed using the message “gitolite setup by GNU Guix”.

[Data Type]gitolite-configuration
Data type representing the configuration for gitolite-service-type.

package (default: gitolite)
Gitolite package to use. There are optional Gitolite dependencies that are
not included in the default package, such as Redis and git-annex. These
features can be made available by using the make-gitolite procedure
in the (gnu packages version-control) module to produce a variant of
Gitolite with the desired additional dependencies.

The following code returns a package in which the Redis and git-annex
programs can be invoked by Gitolite’s scripts:

(use-modules (gnu packages databases)

(gnu packages haskell-apps)

(gnu packages version-control))

(make-gitolite (list redis git-annex))

user (default: git)
User to use for Gitolite. This will be user that you use when accessing
Gitolite over SSH.

group (default: git)
Group to use for Gitolite.

home-directory (default: "/var/lib/gitolite")
Directory in which to store the Gitolite configuration and repositories.

rc-file (default: (gitolite-rc-file))
A “file-like” object (see Section 8.12 [G-Expressions], page 159), repre-
senting the configuration for Gitolite.

https://gitolite.com/gitolite/

Chapter 11: System Configuration 554

admin-pubkey (default: #f)
A “file-like” object (see Section 8.12 [G-Expressions], page 159) used to
setup Gitolite. This will be inserted in to the keydir directory within
the gitolite-admin repository.

To specify the SSH key as a string, use the plain-file function.

(plain-file "yourname.pub" "ssh-rsa AAAA... guix@example.com")

[Data Type]gitolite-rc-file
Data type representing the Gitolite RC file.

umask (default: #o0077)
This controls the permissions Gitolite sets on the repositories and their
contents.

A value like #o0027 will give read access to the group used by Gitolite
(by default: git). This is necessary when using Gitolite with software
like cgit or gitweb.

local-code (default: "$rc{GL_ADMIN_BASE}/local")
Allows you to add your own non-core programs, or even override the
shipped ones with your own.

Please supply the FULL path to this variable. By default, directory called
"local" in your gitolite clone is used, providing the benefits of versioning
them as well as making changes to them without having to log on to the
server.

unsafe-pattern (default: #f)
An optional Perl regular expression for catching unsafe configurations in
the configuration file. See Gitolite’s documentation (https://gitolite.
com/gitolite/git-config.html#compensating-for-unsafe_patt)
for more information.

When the value is not #f, it should be a string containing a Perl regular
expression, such as ‘"[`~#\$\&()|;<>]"’, which is the default value used
by gitolite. It rejects any special character in configuration that might be
interpreted by a shell, which is useful when sharing the administration
burden with other people that do not otherwise have shell access on the
server.

git-config-keys (default: "")
Gitolite allows you to set git config values using the ‘config’ keyword.
This setting allows control over the config keys to accept.

roles (default: '(("READERS" . 1) ("WRITERS" .)))
Set the role names allowed to be used by users running the perms com-
mand.

enable (default: '("help" "desc" "info" "perms" "writable" "ssh-authkeys"

"git-config" "daemon" "gitweb"))
This setting controls the commands and features to enable within Gitolite.

https://gitolite.com/gitolite/git-config.html#compensating-for-unsafe_patt
https://gitolite.com/gitolite/git-config.html#compensating-for-unsafe_patt

Chapter 11: System Configuration 555

Gitile Service

Gitile (https://git.lepiller.eu/gitile) is a Git forge for viewing public git repository
contents from a web browser.

Gitile works best in collaboration with Gitolite, and will serve the public repositories
from Gitolite by default. The service should listen only on a local port, and a webserver
should be configured to serve static resources. The gitile service provides an easy way to
extend the Nginx service for that purpose (see [NGINX], page 450).

The following example will configure Gitile to serve repositories from a custom location,
with some default messages for the home page and the footers.

(service gitile-service-type

(gitile-configuration

(repositories "/srv/git")

(base-git-url "https://myweb.site/git")

(index-title "My git repositories")

(intro '((p "This is all my public work!")))

(footer '((p "This is the end")))

(nginx-server-block

(nginx-server-configuration

(ssl-certificate

"/etc/certs/myweb.site/fullchain.pem")

(ssl-certificate-key

"/etc/certs/myweb.site/privkey.pem")

(listen '("443 ssl http2" "[::]:443 ssl http2"))

(locations

(list

;; Allow for https anonymous fetch on /git/ urls.

(git-http-nginx-location-configuration

(git-http-configuration

(uri-path "/git/")

(git-root "/var/lib/gitolite/repositories")))))))))

In addition to the configuration record, you should configure your git repositories to
contain some optional information. First, your public repositories need to contain the git-
daemon-export-ok magic file that allows Git to export the repository. Gitile uses the
presence of this file to detect public repositories it should make accessible. To do so with
Gitolite for instance, modify your conf/gitolite.conf to include this in the repositories
you want to make public:

repo foo

R = daemon

In addition, Gitile can read the repository configuration to display more information on
the repository. Gitile uses the gitweb namespace for its configuration. As an example, you
can use the following in your conf/gitolite.conf:

repo foo

R = daemon

desc = A long description, optionally with <i>HTML</i>, shown on the index page

config gitweb.name = The Foo Project

https://git.lepiller.eu/gitile

Chapter 11: System Configuration 556

config gitweb.synopsis = A short description, shown on the main page of the project

Do not forget to commit and push these changes once you are satisfied. You may need
to change your gitolite configuration to allow the previous configuration options to be set.
One way to do that is to add the following service definition:

(service gitolite-service-type

(gitolite-configuration

(admin-pubkey (local-file "key.pub"))

(rc-file

(gitolite-rc-file

(umask #o0027)

;; Allow to set any configuration key

(git-config-keys ".*")

;; Allow any text as a valid configuration value

(unsafe-patt "^$")))))

[Data Type]gitile-configuration
Data type representing the configuration for gitile-service-type.

package (default: gitile)
Gitile package to use.

host (default: "localhost")
The host on which gitile is listening.

port (default: 8080)
The port on which gitile is listening.

database (default: "/var/lib/gitile/gitile-db.sql")
The location of the database.

repositories (default: "/var/lib/gitolite/repositories")
The location of the repositories. Note that only public repositories will
be shown by Gitile. To make a repository public, add an empty git-

daemon-export-ok file at the root of that repository.

base-git-url

The base git url that will be used to show clone commands.

index-title (default: "Index")
The page title for the index page that lists all the available repositories.

intro (default: '())
The intro content, as a list of sxml expressions. This is shown above the
list of repositories, on the index page.

footer (default: '())
The footer content, as a list of sxml expressions. This is shown on every
page served by Gitile.

nginx-server-block

An nginx server block that will be extended and used as a reverse proxy
by Gitile to serve its pages, and as a normal web server to serve its assets.

Chapter 11: System Configuration 557

You can use this block to add more custom URLs to your domain, such as
a /git/ URL for anonymous clones, or serving any other files you would
like to serve.

11.10.32 Game Services

Joycond service

The joycond service allows the pairing of Nintendo joycon game controllers over Bluetooth.
(see Section 11.10.9 [Desktop Services], page 347, for setting up Bluetooth.)

[Data Type]joycond-configuration
Data type representing the configuration of joycond.

package (default: joycond)
The joycond package to use.

[Variable]joycond-service-type
Service type for the joycond service.

The Battle for Wesnoth Service

The Battle for Wesnoth (https://wesnoth.org) is a fantasy, turn based tactical strategy
game, with several single player campaigns, and multiplayer games (both networked and
local).

[Variable]wesnothd-service-type
Service type for the wesnothd service. Its value must be a wesnothd-configuration

object. To run wesnothd in the default configuration, instantiate it as:

(service wesnothd-service-type)

[Data Type]wesnothd-configuration
Data type representing the configuration of wesnothd.

package (default: wesnoth-server)
The wesnoth server package to use.

port (default: 15000)
The port to bind the server to.

11.10.33 PAM Mount Service

The (gnu services pam-mount)module provides a service allowing users to mount volumes
when they log in. It should be able to mount any volume format supported by the system.

[Variable]pam-mount-service-type
Service type for PAM Mount support.

[Data Type]pam-mount-configuration
Data type representing the configuration of PAM Mount.

It takes the following parameters:

rules The configuration rules that will be used to generate
/etc/security/pam_mount.conf.xml.

https://wesnoth.org

Chapter 11: System Configuration 558

The configuration rules are SXML elements (see Section “SXML” in GNU
Guile Reference Manual), and the default ones don’t mount anything for
anyone at login:

`((debug (@ (enable "0")))

(mntoptions (@ (allow ,(string-join

'("nosuid" "nodev" "loop"

"encryption" "fsck" "nonempty"

"allow_root" "allow_other")

","))))

(mntoptions (@ (require "nosuid,nodev")))

(logout (@ (wait "0")

(hup "0")

(term "no")

(kill "no")))

(mkmountpoint (@ (enable "1")

(remove "true"))))

Some volume elements must be added to automatically mount volumes at
login. Here’s an example allowing the user alice to mount her encrypted
HOME directory and allowing the user bob to mount the partition where
he stores his data:

(define pam-mount-rules

`((debug (@ (enable "0")))

(volume (@ (user "alice")

(fstype "crypt")

(path "/dev/sda2")

(mountpoint "/home/alice")))

(volume (@ (user "bob")

(fstype "auto")

(path "/dev/sdb3")

(mountpoint "/home/bob/data")

(options "defaults,autodefrag,compress")))

(mntoptions (@ (allow ,(string-join

'("nosuid" "nodev" "loop"

"encryption" "fsck" "nonempty"

"allow_root" "allow_other")

","))))

(mntoptions (@ (require "nosuid,nodev")))

(logout (@ (wait "0")

(hup "0")

(term "no")

(kill "no")))

(mkmountpoint (@ (enable "1")

(remove "true")))))

(service pam-mount-service-type

(pam-mount-configuration

Chapter 11: System Configuration 559

(rules pam-mount-rules)))

The complete list of possible options can be found in the man page for
pam mount.conf (http://pam-mount.sourceforge.net/pam_mount.
conf.5.html).

PAM Mount Volume Service

PAMmount volumes are automatically mounted at login by the PAM login service according
to a set of per-volume rules. Because they are mounted by PAM the password entered during
login may be used directly to mount authenticated volumes, such as cifs, using the same
credentials.

These volumes will be added in addition to any volumes directly specified in pam-mount-

rules.

Here is an example of a rule which will mount a remote CIFS share from //remote-

server/share into a sub-directory of /shares named after the user logging in:

(simple-service 'pam-mount-remote-share pam-mount-volume-service-type

(list (pam-mount-volume

(secondary-group "users")

(file-system-type "cifs")

(server "remote-server")

(file-name "share")

(mount-point "/shares/%(USER)")

(options "nosuid,nodev,seal,cifsacl"))))

[Data Type]pam-mount-volume-service-type
Configuration for a single volume to be mounted. Any fields not specified will be omit-
ted from the run-time PAM configuration. See the man page (http://pam-mount.
sourceforge.net/pam_mount.conf.5.html) for the default values when unspecified.

user-name (type: maybe-string)
Mount the volume for the given user.

user-id (type: maybe-integer-or-range)
Mount the volume for the user with this ID. This field may also be spec-
ified as a pair of (start . end) indicating a range of user IDs for whom
to mount the volume.

primary-group (type: maybe-string)
Mount the volume for users with this primary group name.

group-id (type: maybe-integer-or-range)
Mount the volume for the users with this primary group ID. This field
may also be specified as a cons cell of (start . end) indicating a range
of group ids for whom to mount the volume.

secondary-group (type: maybe-string)
Mount the volume for users who are members of this group as either a
primary or secondary group.

file-system-type (type: maybe-string)
The file system type for the volume being mounted (e.g., cifs)

http://pam-mount.sourceforge.net/pam_mount.conf.5.html
http://pam-mount.sourceforge.net/pam_mount.conf.5.html
http://pam-mount.sourceforge.net/pam_mount.conf.5.html
http://pam-mount.sourceforge.net/pam_mount.conf.5.html

Chapter 11: System Configuration 560

no-mount-as-root? (type: maybe-boolean)
Whether or not to mount the volume with root privileges. This is nor-
mally disabled, but may be enabled for mounts of type fuse, or other
user-level mounts.

server (type: maybe-string)
The name of the remote server to mount the volume from, when necessary.

file-name (type: maybe-string)
The location of the volume, either local or remote, depending on the
file-system-type.

mount-point (type: maybe-string)
Where to mount the volume in the local file-system. This may be set to
~ to indicate the home directory of the user logging in. If this field is
omitted then /etc/fstab is consulted for the mount destination.

options (type: maybe-string)
The options to be passed as-is to the underlying mount program.

ssh? (type: maybe-boolean)
Enable this option to pass the login password to SSH for use with mounts
involving SSH (e.g., sshfs).

cipher (type: maybe-string)
Cryptsetup cipher name for the volume. To be used with the crypt

file-system-type.

file-system-key-cipher (type: maybe-string)
Cipher name used by the target volume.

file-system-key-hash (type: maybe-string)
SSL hash name used by the target volume.

file-system-key-file-name (type: maybe-string)
File name of the file system key for the target volume.

11.10.34 Guix Services

Build Farm Front-End (BFFE)

The Build Farm Front-End (https://git.cbaines.net/guix/bffe/) assists with building
Guix packages in bulk. It’s responsible for submitting builds and displaying the status of
the build farm.

[Variable]bffe-service-type
Service type for the Build Farm Front-End. Its value must be a bffe-configuration
object.

[Data Type]bffe-configuration
Data type representing the configuration of the Build Farm Front-End.

package (default: bffe)
The Build Farm Front-End package to use.

https://git.cbaines.net/guix/bffe/

Chapter 11: System Configuration 561

user (default: "bffe")
The system user to run the service as.

group (default: "bffe")
The system group to run the service as.

arguments

A list of arguments to the Build Farm Front-End. These are passed to
the run-bffe-service procedure when starting the service.

For example, the following value directs the Build Farm Front-End to
submit builds for derivations available from data.guix.gnu.org to the
Build Coordinator instance assumed to be running on the same machine.

(list

#:build

(list

(build-from-guix-data-service

(data-service-url "https://data.guix.gnu.org")

(build-coordinator-url "http://127.0.0.1:8746")

(branches '("master"))

(systems '("x86_64-linux" "i686-linux"))

(systems-and-targets

(map (lambda (target)

(cons "x86_64-linux" target))

'("aarch64-linux-gnu"

"i586-pc-gnu")))

(build-priority (const 0))))

#:web-server-args

'(#:event-source "https://example.com"

#:controller-args

(#:title "example.com build farm")))

extra-environment-variables (default: ’())
Extra environment variables to set via the shepherd service.

Guix Build Coordinator

The Guix Build Coordinator (https://git.cbaines.net/guix/build-coordinator/
) aids in distributing derivation builds among machines running an agent. The build dae-
mon is still used to build the derivations, but the Guix Build Coordinator manages allocating
builds and working with the results.

The Guix Build Coordinator consists of one coordinator, and one or more connected
agent processes. The coordinator process handles clients submitting builds, and allocating
builds to agents. The agent processes talk to a build daemon to actually perform the builds,
then send the results back to the coordinator.

There is a script to run the coordinator component of the Guix Build Coordinator, but
the Guix service uses a custom Guile script instead, to provide better integration with
G-expressions used in the configuration.

https://git.cbaines.net/guix/build-coordinator/
https://git.cbaines.net/guix/build-coordinator/

Chapter 11: System Configuration 562

[Variable]guix-build-coordinator-service-type
Service type for the Guix Build Coordinator. Its value must be a guix-build-

coordinator-configuration object.

[Data Type]guix-build-coordinator-configuration
Data type representing the configuration of the Guix Build Coordinator.

package (default: guix-build-coordinator)
The Guix Build Coordinator package to use.

user (default: "guix-build-coordinator")
The system user to run the service as.

group (default: "guix-build-coordinator")
The system group to run the service as.

database-uri-string (default:
"sqlite:///var/lib/guix-build-coordinator/guix_build_coordinator.db")

The URI to use for the database.

agent-communication-uri (default: "http://0.0.0.0:8745")
The URI describing how to listen to requests from agent processes.

client-communication-uri (default: "http://127.0.0.1:8746")
The URI describing how to listen to requests from clients. The client API
allows submitting builds and currently isn’t authenticated, so take care
when configuring this value.

allocation-strategy (default: #~basic-build-allocation-strategy)
A G-expression for the allocation strategy to be used. This is a procedure
that takes the datastore as an argument and populates the allocation plan
in the database.

hooks (default: ’())
An association list of hooks. These provide a way to execute arbitrary
code upon certain events, like a build result being processed.

parallel-hooks (default: ’())
Hooks can be configured to run in parallel. This parameter is an associ-
ation list of hooks to do in parallel, where the key is the symbol for the
hook and the value is the number of threads to run.

guile (default: guile-3.0-latest)
The Guile package with which to run the Guix Build Coordinator.

extra-environment-variables (default: ’())
Extra environment variables to set via the shepherd service.

[Variable]guix-build-coordinator-agent-service-type
Service type for a Guix Build Coordinator agent. Its value must be a guix-build-

coordinator-agent-configuration object.

Chapter 11: System Configuration 563

[Data Type]guix-build-coordinator-agent-configuration
Data type representing the configuration a Guix Build Coordinator agent.

package (default: guix-build-coordinator/agent-only)
The Guix Build Coordinator package to use.

user (default: "guix-build-coordinator-agent")
The system user to run the service as.

coordinator (default: "http://localhost:8745")
The URI to use when connecting to the coordinator.

authentication

Record describing how this agent should authenticate with the coordina-
tor. Possible record types are described below.

systems (default: #f)
The systems for which this agent should fetch builds. The agent process
will use the current system it’s running on as the default.

max-parallel-builds (default: 1)
The number of builds to perform in parallel.

max-parallel-uploads (default: 1)
The number of uploads to perform in parallel.

max-allocated-builds (default: #f)
The maximum number of builds this agent can be allocated.

max-1min-load-average (default: #f)
Load average value to look at when considering starting new builds, if
the 1 minute load average exceeds this value, the agent will wait before
starting new builds.

This will be unspecified if the value is #f, and the agent will use the
number of cores reported by the system as the max 1 minute load average.

derivation-substitute-urls (default: #f)
URLs from which to attempt to fetch substitutes for derivations, if the
derivations aren’t already available.

non-derivation-substitute-urls (default: #f)
URLs from which to attempt to fetch substitutes for build inputs, if the
input store items aren’t already available.

[Data Type]guix-build-coordinator-agent-password-auth
Data type representing an agent authenticating with a coordinator via a UUID and
password.

uuid The UUID of the agent. This should be generated by the coordinator
process, stored in the coordinator database, and used by the intended
agent.

password The password to use when connecting to the coordinator.

Chapter 11: System Configuration 564

[Data Type]guix-build-coordinator-agent-password-file-auth
Data type representing an agent authenticating with a coordinator via a UUID and
password read from a file.

uuid The UUID of the agent. This should be generated by the coordinator
process, stored in the coordinator database, and used by the intended
agent.

password-file

A file containing the password to use when connecting to the coordinator.

[Data Type]guix-build-coordinator-agent-dynamic-auth
Data type representing an agent authenticating with a coordinator via a dynamic
auth token and agent name.

agent-name

Name of an agent, this is used to match up to an existing entry in the
database if there is one. When no existing entry is found, a new entry is
automatically added.

token Dynamic auth token, this is created and stored in the coordinator data-
base, and is used by the agent to authenticate.

[Data Type]guix-build-coordinator-agent-dynamic-auth-with-file
Data type representing an agent authenticating with a coordinator via a dynamic
auth token read from a file and agent name.

agent-name

Name of an agent, this is used to match up to an existing entry in the
database if there is one. When no existing entry is found, a new entry is
automatically added.

token-file

File containing the dynamic auth token, this is created and stored in the
coordinator database, and is used by the agent to authenticate.

Guix Data Service

The Guix Data Service (http://data.guix.gnu.org) processes, stores and provides data
about GNU Guix. This includes information about packages, derivations and lint warnings.

The data is stored in a PostgreSQL database, and available through a web interface.

[Variable]guix-data-service-type
Service type for the Guix Data Service. Its value must be a guix-data-service-

configuration object. The service optionally extends the getmail service, as the
guix-commits mailing list is used to find out about changes in the Guix git repository.

[Data Type]guix-data-service-configuration
Data type representing the configuration of the Guix Data Service.

package (default: guix-data-service)
The Guix Data Service package to use.

http://data.guix.gnu.org

Chapter 11: System Configuration 565

user (default: "guix-data-service")
The system user to run the service as.

group (default: "guix-data-service")
The system group to run the service as.

port (default: 8765)
The port to bind the web service to.

host (default: "127.0.0.1")
The host to bind the web service to.

getmail-idle-mailboxes (default: #f)
If set, this is the list of mailboxes that the getmail service will be config-
ured to listen to.

commits-getmail-retriever-configuration (default: #f)
If set, this is the getmail-retriever-configuration object with which
to configure getmail to fetch mail from the guix-commits mailing list.

extra-options (default: ’())
Extra command line options for guix-data-service.

extra-process-jobs-options (default: ’())
Extra command line options for guix-data-service-process-jobs.

Guix Home Service

The Guix Home service is a way to let Guix System deploy the home environment of one
or more users (see Chapter 13 [Home Configuration], page 636, for more on Guix Home).
That way, the system configuration embeds declarations of the home environment of those
users and can be used to deploy everything consistently at once, saving users the need to
run guix home reconfigure independently.

[Variable]guix-home-service-type
Service type for the Guix Home service. Its value must be a list of lists containing user
and home environment pairs. The key of each pair is a string representing the user to
deploy the configuration under and the value is a home-environment configuration.

(use-modules (gnu home))

(define my-home

(home-environment

...))

(operating-system

(services (append (list (service guix-home-service-type

`(("alice" ,my-home))))

%base-services)))

This service can be extended by other services to add additional home environments,
as in this example:

(simple-service 'my-extra-home home-service-type

`(("bob" ,my-extra-home))))

Chapter 11: System Configuration 566

Nar Herder

The Nar Herder (https://git.cbaines.net/guix/nar-herder/about/) is a utility for
managing a collection of nars.

[Variable]nar-herder-type
Service type for the Guix Data Service. Its value must be a nar-herder-

configuration object. The service optionally extends the getmail service, as
the guix-commits mailing list is used to find out about changes in the Guix git
repository.

[Data Type]nar-herder-configuration
Data type representing the configuration of the Guix Data Service.

package (default: nar-herder)
The Nar Herder package to use.

user (default: "nar-herder")
The system user to run the service as.

group (default: "nar-herder")
The system group to run the service as.

port (default: 8734)
The port to bind the server to.

host (default: "127.0.0.1")
The host to bind the server to.

mirror (default: #f)
Optional URL of the other Nar Herder instance which should be mirrored.
This means that this Nar Herder instance will download it’s database, and
keep it up to date.

database (default: "/var/lib/nar-herder/nar_herder.db")
Location for the database. If this Nar Herder instance is mirroring an-
other, the database will be downloaded if it doesn’t exist. If this Nar
Herder instance isn’t mirroring another, an empty database will be cre-
ated.

database-dump (default: "/var/lib/nar-herder/nar_herder_dump.db")
Location of the database dump. This is created and regularly updated
by taking a copy of the database. This is the version of the database that
is available to download.

storage (default: #f)
Optional location in which to store nars.

storage-limit (default: "none")
Limit in bytes for the nars stored in the storage location. This can also
be set to “none” so that there is no limit.

When the storage location exceeds this size, nars are removed according
to the nar removal criteria.

https://git.cbaines.net/guix/nar-herder/about/

Chapter 11: System Configuration 567

storage-nar-removal-criteria (default: '())
Criteria used to remove nars from the storage location. These are used
in conjunction with the storage limit.

When the storage location exceeds the storage limit size, nars will be
checked against the nar removal criteria and if any of the criteria match,
they will be removed. This will continue until the storage location is
below the storage limit size.

Each criteria is specified by a string, then an equals sign, then another
string. Currently, only one criteria is supported, checking if a nar is stored
on another Nar Herder instance.

ttl (default: #f)
Produce Cache-Control HTTP headers that advertise a time-to-live
(TTL) of ttl. ttl must denote a duration: 5d means 5 days, 1m means 1
month, and so on.

This allows the user’s Guix to keep substitute information in cache for
ttl.

new-ttl (default: #f)
If specified, this will override the ttl setting when used for the Cache-

Control headers, but this value will be used when scheduling the removal
of nars.

Use this setting when the TTL is being reduced to avoid removing nars
while clients still have cached narinfos.

negative-ttl (default: #f)
Similarly produce Cache-Control HTTP headers to advertise the time-
to-live (TTL) of negative lookups—missing store items, for which the
HTTP 404 code is returned. By default, no negative TTL is advertised.

log-level (default: 'DEBUG)
Log level to use, specify a log level like 'INFO to stop logging individual
requests.

cached-compressions (default: '())
Activate generating cached nars with different compression details
from the stored nars. This is a list of nar-herder-cached-compression-
configuration records.

min-uses (default: 3)
When cached-compressions are enabled, generate cached nars when at
least this number of requests are made for a nar.

workers (default: 2)
Number of cached nars to generate at a time.

nar-source (default: #f)
Location to fetch nars from when computing cached compressions. By
default, the storage location will be used.

extra-environment-variables (default: '())
Extra environment variables to set via the shepherd service.

Chapter 11: System Configuration 568

[Data Type]nar-herder-cached-compression-configuration
Data type representing the cached compression configuration.

type Type of compression to use, e.g. 'zstd.

workers (default: #f)
Level of the compression to use.

directory (default: #f)
Location to store the cached nars. If unspecified, they will be stored in
/var/cache/nar-herder/nar/TYPE.

directory-max-size (default: #f)
Maximum size in bytes of the directory.

unused-removal-duration (default: #f)
If a cached nar isn’t used for unused-removal-duration, it will be sched-
uled for removal.

unused-removal-duration must denote a duration: 5d means 5 days, 1m
means 1 month, and so on.

ttl (default: #f)
If specified this overrides the ttl used for narinfos when this cached
compression is available.

new-ttl (default: #f)
As with the new-ttl option for nar-herder-configuration, this value
will override the ttl when used for narinfo requests.

11.10.35 Linux Services

Early OOM Service

Early OOM (https://github.com/rfjakob/earlyoom), also known as Earlyoom, is a min-
imalist out of memory (OOM) daemon that runs in user space and provides a more respon-
sive and configurable alternative to the in-kernel OOM killer. It is useful to prevent the
system from becoming unresponsive when it runs out of memory.

[Variable]earlyoom-service-type
The service type for running earlyoom, the Early OOM daemon. Its value must be a
earlyoom-configuration object, described below. The service can be instantiated
in its default configuration with:

(service earlyoom-service-type)

[Data Type]earlyoom-configuration
This is the configuration record for the earlyoom-service-type.

earlyoom (default: earlyoom)
The Earlyoom package to use.

minimum-available-memory (default: 10)
The threshold for the minimum available memory, in percentages.

https://github.com/rfjakob/earlyoom

Chapter 11: System Configuration 569

minimum-free-swap (default: 10)
The threshold for the minimum free swap memory, in percentages.

prefer-regexp (default: #f)
A regular expression (as a string) to match the names of the processes
that should be preferably killed.

avoid-regexp (default: #f)
A regular expression (as a string) to match the names of the processes
that should not be killed.

memory-report-interval (default: 0)
The interval in seconds at which a memory report is printed. It is disabled
by default.

ignore-positive-oom-score-adj? (default: #f)
A boolean indicating whether the positive adjustments set in
/proc/*/oom_score_adj should be ignored.

show-debug-messages? (default: #f)
A boolean indicating whether debug messages should be printed. The
logs are saved at /var/log/earlyoom.log.

send-notification-command (default: #f)
This can be used to provide a custom command used for sending notifi-
cations.

fstrim Service

The command fstrim can be used to discard (or trim) unused blocks on a mounted file
system.

Warning: Running fstrim frequently, or even using mount -o discard, might
negatively affect the lifetime of poor-quality SSD devices. For most desktop and
server systems a sufficient trimming frequency is once a week. Note that not
all devices support a queued trim, so each trim command incurs a performance
penalty on whatever else might be trying to use the disk at the time.

[Variable]fstrim-service-type
Type for a service that periodically runs fstrim, whose value must be an <fstrim-

configuration> object. The service can be instantiated in its default configuration
with:

(service fstrim-service-type)

[Data Type]fstrim-configuration
Available fstrim-configuration fields are:

package (default: util-linux) (type: file-like)
The package providing the fstrim command.

schedule (default: "0 0 * * 0") (type: mcron-time)
Schedule for launching fstrim. This can be a procedure, a list or a string.
For additional information, see Section “Job specification” in the mcron
manual. By default this is set to run weekly on Sunday at 00:00.

Chapter 11: System Configuration 570

listed-in (default: '("/etc/fstab" "/proc/self/mountinfo")) (type:
maybe-list-of-strings)

List of files in fstab or kernel mountinfo format. All missing or empty files
are silently ignored. The evaluation of the list stops after the first non-
empty file. File systems with X-fstrim.notrim mount option in fstab
are skipped.

verbose? (default: #t) (type: boolean)
Verbose execution.

quiet-unsupported? (default: #t) (type: boolean)
Suppress error messages if trim operation (ioctl) is unsupported.

extra-arguments (type: maybe-list-of-strings)
Extra options to append to fstrim (run ‘man fstrim’ for more informa-
tion).

Kernel Module Loader Service

The kernel module loader service allows one to load loadable kernel modules at boot. This
is especially useful for modules that don’t autoload and need to be manually loaded, as is
the case with ddcci.

[Variable]kernel-module-loader-service-type
The service type for loading loadable kernel modules at boot with modprobe. Its
value must be a list of strings representing module names. For example loading
the drivers provided by ddcci-driver-linux, in debugging mode by passing some
module parameters, can be done as follow:

(use-modules (gnu) (gnu services))

(use-package-modules linux)

(use-service-modules linux)

(define ddcci-config

(plain-file "ddcci.conf"

"options ddcci dyndbg delay=120"))

(operating-system

...

(services (cons* (service kernel-module-loader-service-type

'("ddcci" "ddcci_backlight"))

(simple-service 'ddcci-config etc-service-type

(list `("modprobe.d/ddcci.conf"

,ddcci-config)))

%base-services))

(kernel-loadable-modules (list ddcci-driver-linux)))

Cachefilesd Service

The Cachefilesd service starts a daemon that caches network file system data locally. It
is especially useful for NFS and AFS shares, where it reduces latencies for repeated access
when reading files.

Chapter 11: System Configuration 571

The daemon can be configured as follows:

(service cachefilesd-service-type

(cachefilesd-configuration

(cache-directory "/var/cache/fscache")))

[Variable]cachefilesd-service-type
The service type for starting cachefilesd. The value for this service type is a
cachefilesd-configuration, whose only required field is cache-directory.

[Data Type]cachefilesd-configuration
Available cachefilesd-configuration fields are:

cachefilesd (default: cachefilesd) (type: file-like)
The cachefilesd package to use.

debug-output? (default: #f) (type: boolean)
Print debugging output to stderr.

use-syslog? (default: #t) (type: boolean)
Log to syslog facility instead of stdout.

scan? (default: #t) (type: boolean)
Scan for cachable objects.

cache-directory (type: maybe-string)
Location of the cache directory.

cache-name (default: "CacheFiles") (type: maybe-string)
Name of cache (keep unique).

security-context (type: maybe-string)
SELinux security context.

pause-culling-for-block-percentage (default: 7) (type:
maybe-non-negative-integer)

Pause culling when available blocks exceed this percentage.

pause-culling-for-file-percentage (default: 7) (type:
maybe-non-negative-integer)

Pause culling when available files exceed this percentage.

resume-culling-for-block-percentage (default: 5) (type:
maybe-non-negative-integer)

Start culling when available blocks drop below this percentage.

resume-culling-for-file-percentage (default: 5) (type:
maybe-non-negative-integer)

Start culling when available files drop below this percentage.

pause-caching-for-block-percentage (default: 1) (type:
maybe-non-negative-integer)

Pause further allocations when available blocks drop below this percent-
age.

Chapter 11: System Configuration 572

pause-caching-for-file-percentage (default: 1) (type:
maybe-non-negative-integer)

Pause further allocations when available files drop below this percentage.

log2-table-size (default: 12) (type: maybe-non-negative-integer)
Size of tables holding cullable objects in logarithm of base 2.

cull? (default: #t) (type: boolean)
Create free space by culling (consumes system load).

trace-function-entry-in-kernel-module? (default: #f) (type: boolean)
Trace function entry in the kernel module (for debugging).

trace-function-exit-in-kernel-module? (default: #f) (type: boolean)
Trace function exit in the kernel module (for debugging).

trace-internal-checkpoints-in-kernel-module? (default: #f) (type: boolean)
Trace internal checkpoints in the kernel module (for debugging).

Rasdaemon Service

The Rasdaemon service provides a daemon which monitors platform RAS (Reliability, Avail-
ability, and Serviceability) reports from Linux kernel trace events, logging them to syslogd.

Reliability, Availability and Serviceability is a concept used on servers meant to measure
their robustness.

Relability is the probability that a system will produce correct outputs:

• Generally measured as Mean Time Between Failures (MTBF), and

• Enhanced by features that help to avoid, detect and repair hardware faults

Availability is the probability that a system is operational at a given time:

• Generally measured as a percentage of downtime per a period of time, and

• Often uses mechanisms to detect and correct hardware faults in runtime.

Serviceability is the simplicity and speed with which a system can be repaired or main-
tained:

• Generally measured on Mean Time Between Repair (MTBR).

Among the monitoring measures, the most usual ones include:

• CPU – detect errors at instruction execution and at L1/L2/L3 caches;

• Memory – add error correction logic (ECC) to detect and correct errors;

• I/O – add CRC checksums for transferred data;

• Storage – RAID, journal file systems, checksums, Self-Monitoring, Analysis and Re-
porting Technology (SMART).

By monitoring the number of occurrences of error detections, it is possible to identify if
the probability of hardware errors is increasing, and, on such case, do a preventive mainte-
nance to replace a degraded component while those errors are correctable.

For detailed information about the types of error events gathered and how to make
sense of them, see the kernel administrator’s guide at https://www.kernel.org/doc/html/
latest/admin-guide/ras.html.

https://www.kernel.org/doc/html/latest/admin-guide/ras.html
https://www.kernel.org/doc/html/latest/admin-guide/ras.html

Chapter 11: System Configuration 573

[Variable]rasdaemon-service-type
Service type for the rasdaemon service. It accepts a rasdaemon-configuration

object. Instantiating like

(service rasdaemon-service-type)

will load with a default configuration, which monitors all events and logs to syslogd.

[Data Type]rasdaemon-configuration
The data type representing the configuration of rasdaemon.

record? (default: #f)
A boolean indicating whether to record the events in an SQLite
database. This provides a more structured access to the information
contained in the log file. The database location is hard-coded to
/var/lib/rasdaemon/ras-mc_event.db.

Zram Device Service

The Zram device service provides a compressed swap device in system memory. The Linux
Kernel documentation has more information about zram (https://www.kernel.org/doc/
html/latest/admin-guide/blockdev/zram.html) devices.

[Variable]zram-device-service-type
This service creates the zram block device, formats it as swap and enables it as a
swap device. The service’s value is a zram-device-configuration record.

[Data Type]zram-device-configuration
This is the data type representing the configuration for the zram-device service.

size (default "1G")
This is the amount of space you wish to provide for the zram device.
It accepts a string and can be a number of bytes or use a suffix,
eg.: "512M" or 1024000.

compression-algorithm (default 'lzo)
This is the compression algorithm you wish to use. It is difficult
to list all the possible compression options, but common ones sup-
ported by Guix’s Linux Libre Kernel include 'lzo, 'lz4 and 'zstd.

memory-limit (default 0)
This is the maximum amount of memory which the zram device
can use. Setting it to ’0’ disables the limit. While it is generally
expected that compression will be 2:1, it is possible that uncom-
pressable data can be written to swap and this is a method to limit
how much memory can be used. It accepts a string and can be a
number of bytes or use a suffix, eg.: "2G".

priority (default #f)
This is the priority of the swap device created from the zram de-
vice. See Section 11.6 [Swap Space], page 253, for a description of
swap priorities. You might want to set a specific priority for the
zram device, otherwise it could end up not being used much for the
reasons described there.

https://www.kernel.org/doc/html/latest/admin-guide/blockdev/zram.html
https://www.kernel.org/doc/html/latest/admin-guide/blockdev/zram.html

Chapter 11: System Configuration 574

11.10.36 Hurd Services

[Variable]hurd-console-service-type
This service starts the fancy VGA console client on the Hurd.

The service’s value is a hurd-console-configuration record.

[Data Type]hurd-console-configuration
This is the data type representing the configuration for the hurd-console-service.

hurd (default: hurd)
The Hurd package to use.

[Variable]hurd-getty-service-type
This service starts a tty using the Hurd getty program.

The service’s value is a hurd-getty-configuration record.

[Data Type]hurd-getty-configuration
This is the data type representing the configuration for the hurd-getty-service.

hurd (default: hurd)
The Hurd package to use.

tty The name of the console this Getty runs on—e.g., "tty1".

baud-rate (default: 38400)
An integer specifying the baud rate of the tty.

11.10.37 Miscellaneous Services

Fingerprint Service

The (gnu services authentication) module provides a DBus service to read and identify
fingerprints via a fingerprint sensor.

[Variable]fprintd-service-type
The service type for fprintd, which provides the fingerprint reading capability.

(service fprintd-service-type)

System Control Service

The (gnu services sysctl) provides a service to configure kernel parameters at boot.

[Variable]sysctl-service-type
The service type for sysctl, which modifies kernel parameters under /proc/sys/.
To enable IPv4 forwarding, it can be instantiated as:

(service sysctl-service-type

(sysctl-configuration

(settings '(("net.ipv4.ip_forward" . "1")))))

Since sysctl-service-type is used in the default lists of services, %base-services
and %desktop-services, you can use modify-services to change its configuration

Chapter 11: System Configuration 575

and add the kernel parameters that you want (see Section 11.19.3 [Service Reference],
page 618).

(modify-services %base-services

(sysctl-service-type config =>

(sysctl-configuration

(settings (append '(("net.ipv4.ip_forward" . "1"))

%default-sysctl-settings)))))

[Data Type]sysctl-configuration
The data type representing the configuration of sysctl.

sysctl (default: (file-append procps "/sbin/sysctl")
The sysctl executable to use.

settings (default: %default-sysctl-settings)
An association list specifies kernel parameters and their values.

[Variable]%default-sysctl-settings
An association list specifying the default sysctl parameters on Guix System.

PC/SC Smart Card Daemon Service

The (gnu services security-token) module provides the following service to run pcscd,
the PC/SC Smart Card Daemon. pcscd is the daemon program for pcsc-lite and the
MuscleCard framework. It is a resource manager that coordinates communications with
smart card readers, smart cards and cryptographic tokens that are connected to the system.

[Variable]pcscd-service-type
Service type for the pcscd service. Its value must be a pcscd-configuration object.
To run pcscd in the default configuration, instantiate it as:

(service pcscd-service-type)

[Data Type]pcscd-configuration
The data type representing the configuration of pcscd.

pcsc-lite (default: pcsc-lite)
The pcsc-lite package that provides pcscd.

usb-drivers (default: (list ccid))
List of packages that provide USB drivers to pcscd. Drivers are expected
to be under pcsc/drivers in the store directory of the package.

LIRC Service

The (gnu services lirc) module provides the following service.

[Variable]lirc-service-type
Type for a service that runs LIRC (http://www.lirc.org), a daemon that decodes
infrared signals from remote controls.

The value for this service is a <lirc-configuration> object.

http://www.lirc.org

Chapter 11: System Configuration 576

[Data Type]lirc-configuration
Data type representing the configuration of lircd.

lirc (default: lirc) (type: file-like)
Package object for lirc.

device (default: #f) (type: string)
driver (default: #f) (type: string)
config-file (default: #f) (type: string-or-file-like)

TODO. See lircd manual for details.

extra-options (default: '()) (type: list-of-string)
Additional command-line options to pass to lircd.

SPICE Service

The (gnu services spice) module provides the following service.

[Variable]spice-vdagent-service-type
Type of the service that runs VDAGENT (https://www.spice-space.org), a dae-
mon that enables sharing the clipboard with a vm and setting the guest display
resolution when the graphical console window resizes.

[Data Type]spice-vdagent-configuration
Data type representing the configuration of spice-vdagent-service-type.

spice-vdagent (default: spice-vdagent) (type: file-like)
Package object for VDAGENT.

inputattach Service

The inputattach (https://linuxwacom.github.io/) service allows you to use input de-
vices such as Wacom tablets, touchscreens, or joysticks with the Xorg display server.

[Variable]inputattach-service-type
Type of a service that runs inputattach on a device and dispatches events from it.

[Data Type]inputattach-configuration

device-type (default: "wacom")
The type of device to connect to. Run inputattach --help, from the
inputattach package, to see the list of supported device types.

device (default: "/dev/ttyS0")
The device file to connect to the device.

baud-rate (default: #f)
Baud rate to use for the serial connection. Should be a number or #f.

log-file (default: #f)
If true, this must be the name of a file to log messages to.

https://www.spice-space.org
https://linuxwacom.github.io/

Chapter 11: System Configuration 577

Dictionary Service

The (gnu services dict) module provides the following service:

[Variable]dicod-service-type
This is the type of the service that runs the dicod daemon, an implementation of
DICT server (see Section “Dicod” in GNU Dico Manual).

You can add open localhost to your ~/.dico file to make localhost the default
server for dico client (see Section “Initialization File” in GNU Dico Manual).

Note: This service is also available for Guix Home, where it runs di-
rectly with your user privileges (see Section 13.3.16 [Miscellaneous Home
Services], page 666).

[Data Type]dicod-configuration
Data type representing the configuration of dicod.

dico (default: dico)
Package object of the GNU Dico dictionary server.

interfaces (default: ’("localhost"))
This is the list of IP addresses and ports and possibly socket file names
to listen to (see Section “Server Settings” in GNU Dico Manual).

handlers (default: ’())
List of <dicod-handler> objects denoting handlers (module instances).

databases (default: (list %dicod-database:gcide))
List of <dicod-database> objects denoting dictionaries to be served.

[Data Type]dicod-handler
Data type representing a dictionary handler (module instance).

name Name of the handler (module instance).

module (default: #f)
Name of the dicod module of the handler (instance). If it is #f, the
module has the same name as the handler. (see Section “Modules” in
GNU Dico Manual).

options List of strings or gexps representing the arguments for the module handler

[Data Type]dicod-database
Data type representing a dictionary database.

name Name of the database, will be used in DICT commands.

handler Name of the dicod handler (module instance) used by this database (see
Section “Handlers” in GNU Dico Manual).

complex? (default: #f)
Whether the database configuration complex. The complex configuration
will need a corresponding <dicod-handler> object, otherwise not.

options List of strings or gexps representing the arguments for the database (see
Section “Databases” in GNU Dico Manual).

Chapter 11: System Configuration 578

[Variable]%dicod-database:gcide
A <dicod-database> object serving the GNU Collaborative International Dictionary
of English using the gcide package.

The following is an example dicod-service-type configuration.

(service dicod-service-type

(dicod-configuration

(handlers (list

(dicod-handler

(name "wordnet")

(module "wordnet")

(options

(list #~(string-append "wnhome=" #$wordnet))))))

(databases (list

(dicod-database

(name "wordnet")

(complex? #t)

(handler "wordnet"))

%dicod-database:gcide))))

Docker Service

The (gnu services docker) module provides the following services.

[Variable]docker-service-type
This is the type of the service that runs Docker (https://www.docker.com), a dae-
mon that can execute application bundles (sometimes referred to as “containers”) in
isolated environments.

[Data Type]docker-configuration
This is the data type representing the configuration of Docker and Containerd.

docker (default: docker)
The Docker daemon package to use.

docker-cli (default: docker-cli)
The Docker client package to use.

containerd (default: containerd)
The Containerd package to use.

proxy (default docker-libnetwork-cmd-proxy)
The Docker user-land networking proxy package to use.

enable-proxy? (default #t)
Enable or disable the use of the Docker user-land networking proxy.

debug? (default #f)
Enable or disable debug output.

enable-iptables? (default #t)
Enable or disable the addition of iptables rules.

https://www.docker.com

Chapter 11: System Configuration 579

environment-variables (default: '())
List of environment variables to set for dockerd.

This must be a list of strings where each string has the form ‘key=value’
as in this example:

(list "LANGUAGE=eo:ca:eu"

"TMPDIR=/tmp/dockerd")

config-file (type: maybe-file-like)
JSON configuration file pass to dockerd.

[Variable]singularity-service-type
This is the type of the service that allows you to run Singularity (https://www.
sylabs.io/singularity/), a Docker-style tool to create and run application bun-
dles (aka. “containers”). The value for this service is the Singularity package to
use.

The service does not install a daemon; instead, it installs helper programs as setuid-
root (see Section 11.11 [Setuid Programs], page 587) such that unprivileged users can
invoke singularity run and similar commands.

OCI backed services

Should you wish to manage your Docker containers with the same consistent interface you
use for your other Shepherd services, oci-container-service-type is the tool to use: given an
Open Container Initiative (OCI) container image, it will run it in a Shepherd service. One
example where this is useful: it lets you run services that are available as Docker/OCI
images but not yet packaged for Guix.

[Variable]oci-container-service-type
This is a thin wrapper around Docker’s CLI that executes OCI images backed pro-
cesses as Shepherd Services.

(service oci-container-service-type

(list

(oci-container-configuration

(image "prom/prometheus")

(network "host")

(ports

'(("9000" . "9000")

("9090" . "9090"))))

(oci-container-configuration

(image "grafana/grafana:10.0.1")

(network "host")

(ports

'(("3000" . "3000")))

(volumes

'("/var/lib/grafana:/var/lib/grafana")))))

In this example two different Shepherd services are going be added to the system.
Each oci-container-configuration record translates to a docker run invocation
and its fields directly map to options. You can refer to the upstream (https://docs.

https://www.sylabs.io/singularity/
https://www.sylabs.io/singularity/
https://docs.docker.com/engine/reference/commandline/run

Chapter 11: System Configuration 580

docker.com/engine/reference/commandline/run), documentation for the seman-
tics of each value. If the images are not found they will be pulled (https://docs.
docker.com/engine/reference/commandline/pull/). The spawned services are
going to be attached to the host network and are supposed to behave like other
processes.

[Data Type]oci-container-configuration
Available oci-container-configuration fields are:

user (default: "oci-container") (type: string)
The user under whose authority docker commands will be run.

group (default: "docker") (type: string)
The group under whose authority docker commands will be run.

command (default: ()) (type: list-of-strings)
Overwrite the default command (CMD) of the image.

entrypoint (default: "") (type: string)
Overwrite the default entrypoint (ENTRYPOINT) of the image.

environment (default: ()) (type: list)
Set environment variables. This can be a list of pairs or strings, even
mixed:

(list '("LANGUAGE" . "eo:ca:eu")

"JAVA_HOME=/opt/java")

String are passed directly to the Docker CLI. You can refer to
the upstream (https://docs.docker.com/engine/reference/
commandline/run/#env) documentation for semantics.

image (type: string)
The image used to build the container. Images are re-
solved by the Docker Engine, and follow the usual format
myregistry.local:5000/testing/test-image:tag.

provision (default: "") (type: string)
Set the name of the provisioned Shepherd service.

network (default: "") (type: string)
Set a Docker network for the spawned container.

ports (default: ()) (type: list)
Set the port or port ranges to expose from the spawned container. This
can be a list of pairs or strings, even mixed:

(list '("8080" . "80")

"10443:443")

String are passed directly to the Docker CLI. You can refer to
the upstream (https://docs.docker.com/engine/reference/
commandline/run/#publish) documentation for semantics.

https://docs.docker.com/engine/reference/commandline/run
https://docs.docker.com/engine/reference/commandline/run
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/engine/reference/commandline/run/#publish
https://docs.docker.com/engine/reference/commandline/run/#publish

Chapter 11: System Configuration 581

volumes (default: ()) (type: list)
Set volume mappings for the spawned container. This can be a list of
pairs or strings, even mixed:

(list '("/root/data/grafana" . "/var/lib/grafana")

"/gnu/store:/gnu/store")

String are passed directly to the Docker CLI. You can refer to
the upstream (https://docs.docker.com/engine/reference/
commandline/run/#volume) documentation for semantics.

container-user (default: "") (type: string)
Set the current user inside the spawned container. You can refer to
the upstream (https://docs.docker.com/engine/reference/run/
#user) documentation for semantics.

workdir (default: "") (type: string)
Set the current working for the spawned Shepherd service. You can refer
to the upstream (https://docs.docker.com/engine/reference/run/#
workdir) documentation for semantics.

Auditd Service

The (gnu services auditd) module provides the following service.

[Variable]auditd-service-type
This is the type of the service that runs auditd (https://people.redhat.com/
sgrubb/audit/), a daemon that tracks security-relevant information on your system.

Examples of things that can be tracked:

1. File accesses

2. System calls

3. Invoked commands

4. Failed login attempts

5. Firewall filtering

6. Network access

auditctl from the audit package can be used in order to add or remove events
to be tracked (until the next reboot). In order to permanently track events, put the
command line arguments of auditctl into a file called audit.rules in the configuration
directory (see below). aureport from the audit package can be used in order to
view a report of all recorded events. The audit daemon by default logs into the file
/var/log/audit.log.

[Data Type]auditd-configuration
This is the data type representing the configuration of auditd.

audit (default: audit)
The audit package to use.

https://docs.docker.com/engine/reference/commandline/run/#volume
https://docs.docker.com/engine/reference/commandline/run/#volume
https://docs.docker.com/engine/reference/run/#user
https://docs.docker.com/engine/reference/run/#user
https://docs.docker.com/engine/reference/run/#workdir
https://docs.docker.com/engine/reference/run/#workdir
https://people.redhat.com/sgrubb/audit/
https://people.redhat.com/sgrubb/audit/

Chapter 11: System Configuration 582

configuration-directory (default:
%default-auditd-configuration-directory)

The directory containing the configuration file for the audit package,
which must be named auditd.conf, and optionally some audit rules to
instantiate on startup.

R-Shiny service

The (gnu services science) module provides the following service.

[Variable]rshiny-service-type
This is a type of service which is used to run a webapp created with r-shiny. This
service sets the R_LIBS_USER environment variable and runs the provided script to
call runApp.

[Data Type]rshiny-configuration
This is the data type representing the configuration of rshiny.

package (default: r-shiny)
The package to use.

binary (default "rshiny")
The name of the binary or shell script located at package/bin/ to
run when the service is run.

The common way to create this file is as follows:

...

(let* ((out (assoc-ref %outputs "out"))

(targetdir (string-append out "/share/" ,name))

(app (string-append out "/bin/" ,name))

(Rbin (search-input-file %build-inputs "/bin/Rscript")))

;; ...

(mkdir-p (string-append out "/bin"))

(call-with-output-file app

(lambda (port)

(format port

"#!~a

library(shiny)

setwd(\"~a\")

runApp(launch.browser=0, port=4202)~%\n"

Rbin targetdir))))

Nix service

The (gnu services nix) module provides the following service.

[Variable]nix-service-type
This is the type of the service that runs build daemon of the Nix (https://nixos.
org/nix/) package manager. Here is an example showing how to use it:

(use-modules (gnu))

(use-service-modules nix)

https://nixos.org/nix/
https://nixos.org/nix/

Chapter 11: System Configuration 583

(use-package-modules package-management)

(operating-system

;; ...

(packages (append (list nix)

%base-packages))

(services (append (list (service nix-service-type))

%base-services)))

After guix system reconfigure configure Nix for your user:

• Add a Nix channel and update it. See Nix channels (https://nixos.wiki/
wiki/Nix_channels) for more information about the available channels. If you
would like to use the unstable Nix channel you can do this by running:

$ nix-channel --add https://nixos.org/channels/nixpkgs-unstable

$ nix-channel --update

• Create your Nix profile directory:

$ sudo mkdir -p /nix/var/nix/profiles/per-user/$USER

$ sudo chown $USER:root /nix/var/nix/profiles/per-user/$USER

• Create a symlink to your profile and activate Nix profile:

$ ln -s "/nix/var/nix/profiles/per-user/$USER/profile" ~/.nix-profile

$ source /run/current-system/profile/etc/profile.d/nix.sh

[Data Type]nix-configuration
This data type represents the configuration of the Nix daemon.

nix (default: nix)
The Nix package to use.

sandbox (default: #t)
Specifies whether builds are sandboxed by default.

build-directory (default: "/tmp")
The directory where build directory are stored during builds. This is
useful to change if, for example, the default location does not have enough
space to hold build trees for big packages.

This is similar to setting the TMPDIR environment variable for guix-

daemon. Section 2.2.1 [Build Environment Setup], page 5, for more info.

build-sandbox-items (default: '())
This is a list of strings or objects appended to the build-sandbox-items
field of the configuration file.

extra-config (default: '())
This is a list of strings or objects appended to the configuration file. It
is used to pass extra text to be added verbatim to the configuration file.

extra-options (default: '())
Extra command line options for nix-service-type.

https://nixos.wiki/wiki/Nix_channels
https://nixos.wiki/wiki/Nix_channels

Chapter 11: System Configuration 584

Fail2Ban service

fail2ban (http://www.fail2ban.org/) scans log files (e.g. /var/log/apache/error_

log) and bans IP addresses that show malicious signs – repeated password failures, attempts
to make use of exploits, etc.

fail2ban-service-type service type is provided by the (gnu services security)

module.

This service type runs the fail2ban daemon. It can be configured in various ways,
which are:

Basic configuration
The basic parameters of the Fail2Ban service can be configured via its fail2ban
configuration, which is documented below.

User-specified jail extensions
The fail2ban-jail-service function can be used to add new Fail2Ban jails.

Shepherd extension mechanism
Service developers can extend the fail2ban-service-type service type itself
via the usual service extension mechanism.

[Variable]fail2ban-service-type
This is the type of the service that runs fail2ban daemon. Below is an example of
a basic, explicit configuration:

(append

(list

(service fail2ban-service-type

(fail2ban-configuration

(extra-jails

(list

(fail2ban-jail-configuration

(name "sshd")

(enabled? #t))))))

;; There is no implicit dependency on an actual SSH

;; service, so you need to provide one.

(service openssh-service-type))

%base-services)

[Procedure]fail2ban-jail-service svc-type jail
Extend svc-type, a <service-type> object with jail, a fail2ban-jail-

configuration object.

For example:

(append

(list

(service

;; The 'fail2ban-jail-service' procedure can extend any service type

;; with a fail2ban jail. This removes the requirement to explicitly

;; extend services with fail2ban-service-type.

(fail2ban-jail-service

http://www.fail2ban.org/

Chapter 11: System Configuration 585

openssh-service-type

(fail2ban-jail-configuration

(name "sshd")

(enabled? #t)))

(openssh-configuration ...))))

Below is the reference for the different jail-service-type configuration records.

[Data Type]fail2ban-configuration
Available fail2ban-configuration fields are:

fail2ban (default: fail2ban) (type: package)
The fail2ban package to use. It is used for both binaries
and as base default configuration that is to be extended with
<fail2ban-jail-configuration> objects.

run-directory (default: "/var/run/fail2ban") (type: string)
The state directory for the fail2ban daemon.

jails (default: '()) (type: list-of-fail2ban-jail-configurations)
Instances of <fail2ban-jail-configuration> collected from
extensions.

extra-jails (default: '()) (type: list-of-fail2ban-jail-configurations)
Instances of <fail2ban-jail-configuration> explicitly provided.

extra-content (default: '()) (type: text-config)
Extra raw content to add to the end of the jail.local file, provided as
a list of file-like objects.

[Data Type]fail2ban-ignore-cache-configuration
Available fail2ban-ignore-cache-configuration fields are:

key (type: string)
Cache key.

max-count (type: integer)
Cache size.

max-time (type: integer)
Cache time.

[Data Type]fail2ban-jail-action-configuration
Available fail2ban-jail-action-configuration fields are:

name (type: string)
Action name.

arguments (default: '()) (type: list-of-arguments)
Action arguments.

[Data Type]fail2ban-jail-configuration
Available fail2ban-jail-configuration fields are:

name (type: string)
Required name of this jail configuration.

Chapter 11: System Configuration 586

enabled? (default: #t) (type: boolean)
Whether this jail is enabled.

backend (type: maybe-symbol)
Backend to use to detect changes in the log-path. The default is
’auto. To consult the defaults of the jail configuration, refer to the
/etc/fail2ban/jail.conf file of the fail2ban package.

max-retry (type: maybe-integer)
The number of failures before a host gets banned (e.g. (max-retry 5)).

max-matches (type: maybe-integer)
The number of matches stored in ticket (resolvable via tag <matches>)
in action.

find-time (type: maybe-string)
The time window during which the maximum retry count must be reached
for an IP address to be banned. A host is banned if it has generated
max-retry during the last find-time seconds (e.g. (find-time "10m")).
It can be provided in seconds or using Fail2Ban’s "time abbreviation
format", as described in man 5 jail.conf.

ban-time (type: maybe-string)
The duration, in seconds or time abbreviated format, that a ban should
last. (e.g. (ban-time "10m")).

ban-time-increment? (type: maybe-boolean)
Whether to consider past bans to compute increases to the default ban
time of a specific IP address.

ban-time-factor (type: maybe-string)
The coefficient to use to compute an exponentially growing ban time.

ban-time-formula (type: maybe-string)
This is the formula used to calculate the next value of a ban time.

ban-time-multipliers (type: maybe-string)
Used to calculate next value of ban time instead of formula.

ban-time-max-time (type: maybe-string)
The maximum number of seconds a ban should last.

ban-time-rnd-time (type: maybe-string)
The maximum number of seconds a randomized ban time should last.
This can be useful to stop “clever” botnets calculating the exact time an
IP address can be unbanned again.

ban-time-overall-jails? (type: maybe-boolean)
When true, it specifies the search of an IP address in the database should
be made across all jails. Otherwise, only the current jail of the ban IP
address is considered.

ignore-self? (type: maybe-boolean)
Never ban the local machine’s own IP address.

Chapter 11: System Configuration 587

ignore-ip (default: '()) (type: list-of-strings)
A list of IP addresses, CIDR masks or DNS hosts to ignore. fail2ban

will not ban a host which matches an address in this list.

ignore-cache (type: maybe-fail2ban-ignore-cache-configuration)
Provide cache parameters for the ignore failure check.

filter (type: maybe-fail2ban-jail-filter-configuration)
The filter to use by the jail, specified via a <fail2ban-jail-filter-

configuration> object. By default, jails have names matching their
filter name.

log-time-zone (type: maybe-string)
The default time zone for log lines that do not have one.

log-encoding (type: maybe-symbol)
The encoding of the log files handled by the jail. Possible values are:
'ascii, 'utf-8 and 'auto.

log-path (default: '()) (type: list-of-strings)
The file names of the log files to be monitored.

action (default: '()) (type: list-of-fail2ban-jail-actions)
A list of <fail2ban-jail-action-configuration>.

extra-content (default: '()) (type: text-config)
Extra content for the jail configuration, provided as a list of file-like ob-
jects.

[Data Type]fail2ban-jail-filter-configuration
Available fail2ban-jail-filter-configuration fields are:

name (type: string)
Filter to use.

mode (type: maybe-string)
Mode for filter.

11.11 Setuid Programs

Some programs need to run with elevated privileges, even when they are launched by un-
privileged users. A notorious example is the passwd program, which users can run to
change their password, and which needs to access the /etc/passwd and /etc/shadow files—
something normally restricted to root, for obvious security reasons. To address that, passwd
should be setuid-root, meaning that it always runs with root privileges (see Section “How
Change Persona” in The GNU C Library Reference Manual, for more info about the setuid
mechanism).

The store itself cannot contain setuid programs: that would be a security issue since
any user on the system can write derivations that populate the store (see Section 8.9 [The
Store], page 150). Thus, a different mechanism is used: instead of changing the setuid or
setgid bits directly on files that are in the store, we let the system administrator declare
which programs should be entrusted with these additional privileges.

Chapter 11: System Configuration 588

The setuid-programs field of an operating-system declaration contains a list of
<setuid-program> denoting the names of programs to have a setuid or setgid bit set (see
Section 11.2 [Using the Configuration System], page 233). For instance, the mount.nfs

program, which is part of the nfs-utils package, with a setuid root can be designated like
this:

(setuid-program

(program (file-append nfs-utils "/sbin/mount.nfs")))

And then, to make mount.nfs setuid on your system, add the previous example to your
operating system declaration by appending it to %setuid-programs like this:

(operating-system

;; Some fields omitted...

(setuid-programs

(append (list (setuid-program

(program (file-append nfs-utils "/sbin/mount.nfs"))))

%setuid-programs)))

[Data Type]setuid-program
This data type represents a program with a setuid or setgid bit set.

program A file-like object having its setuid and/or setgid bit set.

setuid? (default: #t)
Whether to set user setuid bit.

setgid? (default: #f)
Whether to set group setgid bit.

user (default: 0)
UID (integer) or user name (string) for the user owner of the program,
defaults to root.

group (default: 0)
GID (integer) group name (string) for the group owner of the program,
defaults to root.

A default set of setuid programs is defined by the %setuid-programs variable of the
(gnu system) module.

[Variable]%setuid-programs
A list of <setuid-program> denoting common programs that are setuid-root.

The list includes commands such as passwd, ping, su, and sudo.

Under the hood, the actual setuid programs are created in the /run/setuid-programs

directory at system activation time. The files in this directory refer to the “real” binaries,
which are in the store.

Chapter 11: System Configuration 589

11.12 X.509 Certificates

Web servers available over HTTPS (that is, HTTP over the transport-layer security mech-
anism, TLS) send client programs an X.509 certificate that the client can then use to
authenticate the server. To do that, clients verify that the server’s certificate is signed by
a so-called certificate authority (CA). But to verify the CA’s signature, clients must have
first acquired the CA’s certificate.

Web browsers such as GNU IceCat include their own set of CA certificates, such that
they are able to verify CA signatures out-of-the-box.

However, most other programs that can talk HTTPS—wget, git, w3m, etc.—need to be
told where CA certificates can be found.

For users of Guix System, this is done by adding a package that provides certificates
to the packages field of the operating-system declaration (see Section 11.3 [operating-
system Reference], page 242). Guix includes one such package, nss-certs, which is a set
of CA certificates provided as part of Mozilla’s Network Security Services.

This package is part of %base-packages, so there is no need to explicitly add it. The
/etc/ssl/certs directory, which is where most applications and libraries look for certifi-
cates by default, points to the certificates installed globally.

Unprivileged users, including users of Guix on a foreign distro, can also install their own
certificate package in their profile. A number of environment variables need to be defined
so that applications and libraries know where to find them. Namely, the OpenSSL library
honors the SSL_CERT_DIR and SSL_CERT_FILE variables. Some applications add their own
environment variables; for instance, the Git version control system honors the certificate
bundle pointed to by the GIT_SSL_CAINFO environment variable. Thus, you would typically
run something like:

guix install nss-certs

export SSL_CERT_DIR="$HOME/.guix-profile/etc/ssl/certs"

export SSL_CERT_FILE="$HOME/.guix-profile/etc/ssl/certs/ca-certificates.crt"

export GIT_SSL_CAINFO="$SSL_CERT_FILE"

As another example, R requires the CURL_CA_BUNDLE environment variable to point to
a certificate bundle, so you would have to run something like this:

guix install nss-certs

export CURL_CA_BUNDLE="$HOME/.guix-profile/etc/ssl/certs/ca-certificates.crt"

For other applications you may want to look up the required environment variable in
the relevant documentation.

11.13 Name Service Switch

The (gnu system nss) module provides bindings to the configuration file of the libc name
service switch or NSS (see Section “NSS Configuration File” in The GNU C Library Ref-
erence Manual). In a nutshell, the NSS is a mechanism that allows libc to be extended
with new “name” lookup methods for system databases, which includes host names, service
names, user accounts, and more (see Section “Name Service Switch” in The GNU C Library
Reference Manual).

The NSS configuration specifies, for each system database, which lookup method is to be
used, and how the various methods are chained together—for instance, under which circum-

Chapter 11: System Configuration 590

stances NSS should try the next method in the list. The NSS configuration is given in the
name-service-switch field of operating-system declarations (see Section 11.3 [operating-
system Reference], page 242).

As an example, the declaration below configures the NSS to use the nss-mdns back-end
(https://0pointer.de/lennart/projects/nss-mdns/), which supports host name
lookups over multicast DNS (mDNS) for host names ending in .local:

(name-service-switch

(hosts (list %files ;first, check /etc/hosts

;; If the above did not succeed, try

;; with 'mdns_minimal'.

(name-service

(name "mdns_minimal")

;; 'mdns_minimal' is authoritative for

;; '.local'. When it returns "not found",

;; no need to try the next methods.

(reaction (lookup-specification

(not-found => return))))

;; Then fall back to DNS.

(name-service

(name "dns"))

;; Finally, try with the "full" 'mdns'.

(name-service

(name "mdns")))))

Do not worry: the %mdns-host-lookup-nss variable (see below) contains this config-
uration, so you will not have to type it if all you want is to have .local host lookup
working.

Note that, in this case, in addition to setting the name-service-switch of the
operating-system declaration, you also need to use avahi-service-type (see
Section 11.10.5 [Networking Services], page 301), or %desktop-services, which includes it
(see Section 11.10.9 [Desktop Services], page 347). Doing this makes nss-mdns accessible
to the name service cache daemon (see Section 11.10.1 [Base Services], page 263).

For convenience, the following variables provide typical NSS configurations.

[Variable]%default-nss
This is the default name service switch configuration, a name-service-switch object.

[Variable]%mdns-host-lookup-nss
This is the name service switch configuration with support for host name lookup over
multicast DNS (mDNS) for host names ending in .local.

The reference for name service switch configuration is given below. It is a direct mapping
of the configuration file format of the C library , so please refer to the C library manual for
more information (see Section “NSS Configuration File” in The GNU C Library Reference

https://0pointer.de/lennart/projects/nss-mdns/
https://0pointer.de/lennart/projects/nss-mdns/

Chapter 11: System Configuration 591

Manual). Compared to the configuration file format of libc NSS, it has the advantage not
only of adding this warm parenthetic feel that we like, but also static checks: you will know
about syntax errors and typos as soon as you run guix system.

[Data Type]name-service-switch
This is the data type representation the configuration of libc’s name service switch
(NSS). Each field below represents one of the supported system databases.

aliases

ethers

group

gshadow

hosts

initgroups

netgroup

networks

password

public-key

rpc

services

shadow The system databases handled by the NSS. Each of these fields must be
a list of <name-service> objects (see below).

[Data Type]name-service
This is the data type representing an actual name service and the associated lookup
action.

name A string denoting the name service (see Section “Services in the NSS
configuration” in The GNU C Library Reference Manual).

Note that name services listed here must be visible to nscd. This is
achieved by passing the #:name-services argument to nscd-service

the list of packages providing the needed name services (see
Section 11.10.1 [Base Services], page 263).

reaction An action specified using the lookup-specification macro (see Section
“Actions in the NSS configuration” in The GNU C Library Reference
Manual). For example:

(lookup-specification (unavailable => continue)

(success => return))

11.14 Initial RAM Disk

For bootstrapping purposes, the Linux-Libre kernel is passed an initial RAM disk, or initrd.
An initrd contains a temporary root file system as well as an initialization script. The latter
is responsible for mounting the real root file system, and for loading any kernel modules
that may be needed to achieve that.

The initrd-modules field of an operating-system declaration allows you to specify
Linux-libre kernel modules that must be available in the initrd. In particular, this is where

Chapter 11: System Configuration 592

you would list modules needed to actually drive the hard disk where your root partition is—
although the default value of initrd-modules should cover most use cases. For example,
assuming you need the megaraid_sas module in addition to the default modules to be able
to access your root file system, you would write:

(operating-system

;; ...

(initrd-modules (cons "megaraid_sas" %base-initrd-modules)))

[Variable]%base-initrd-modules
This is the list of kernel modules included in the initrd by default.

Furthermore, if you need lower-level customization, the initrd field of an operating-

system declaration allows you to specify which initrd you would like to use. The (gnu

system linux-initrd) module provides three ways to build an initrd: the high-level base-
initrd procedure and the low-level raw-initrd and expression->initrd procedures.

The base-initrd procedure is intended to cover most common uses. For example, if
you want to add a bunch of kernel modules to be loaded at boot time, you can define the
initrd field of the operating system declaration like this:

(initrd (lambda (file-systems . rest)

;; Create a standard initrd but set up networking

;; with the parameters QEMU expects by default.

(apply base-initrd file-systems

#:qemu-networking? #t

rest)))

The base-initrd procedure also handles common use cases that involves using the
system as a QEMU guest, or as a “live” system with volatile root file system.

The base-initrd procedure is built from raw-initrd procedure. Unlike base-initrd,
raw-initrd doesn’t do anything high-level, such as trying to guess which kernel modules
and packages should be included to the initrd. An example use of raw-initrd is when
a user has a custom Linux kernel configuration and default kernel modules included by
base-initrd are not available.

The initial RAM disk produced by base-initrd or raw-initrd honors several options
passed on the Linux kernel command line (that is, arguments passed via the linux command
of GRUB, or the -append option of QEMU), notably:

gnu.load=boot

Tell the initial RAM disk to load boot, a file containing a Scheme program,
once it has mounted the root file system.

Guix uses this option to yield control to a boot program that runs the service
activation programs and then spawns the GNU Shepherd, the initialization
system.

root=root

Mount root as the root file system. root can be a device name like /dev/sda1,
a file system label, or a file system UUID. When unspecified, the device name
from the root file system of the operating system declaration is used.

Chapter 11: System Configuration 593

rootfstype=type

Set the type of the root file system. It overrides the type field of the root file
system specified via the operating-system declaration, if any.

rootflags=options

Set the mount options of the root file system. It overrides the options field of
the root file system specified via the operating-system declaration, if any.

fsck.mode=mode

Whether to check the root file system for errors before mounting it. mode is one
of skip (never check), force (always check), or auto to respect the root <file-
system> object’s check? setting (see Section 11.4 [File Systems], page 246) and
run a full scan only if the file system was not cleanly shut down.

auto is the default if this option is not present or if mode is not one of the
above.

fsck.repair=level

The level of repairs to perform automatically if errors are found in the root file
system. level is one of no (do not write to root at all if possible), yes (repair
as much as possible), or preen to repair problems considered safe to repair
automatically.

preen is the default if this option is not present or if level is not one of the
above.

gnu.system=system

Have /run/booted-system and /run/current-system point to system.

modprobe.blacklist=modules...

Instruct the initial RAM disk as well as the modprobe command (from the kmod
package) to refuse to load modules. modules must be a comma-separated list
of module names—e.g., usbkbd,9pnet.

gnu.repl Start a read-eval-print loop (REPL) from the initial RAM disk before it tries
to load kernel modules and to mount the root file system. Our marketing team
calls it boot-to-Guile. The Schemer in you will love it. See Section “Using
Guile Interactively” in GNU Guile Reference Manual, for more information on
Guile’s REPL.

Now that you know all the features that initial RAM disks produced by base-initrd

and raw-initrd provide, here is how to use it and customize it further.

[Procedure]raw-initrd file-systems [#:linux-modules ’()] [#:pre-mount #t]
[#:mapped-devices ’()] [#:keyboard-layout #f] [#:helper-packages ’()]
[#:qemu-networking? #f] [#:volatile-root? #f]

Return a derivation that builds a raw initrd. file-systems is a list of file systems to
be mounted by the initrd, possibly in addition to the root file system specified on
the kernel command line via root. linux-modules is a list of kernel modules to be
loaded at boot time. mapped-devices is a list of device mappings to realize before
file-systems are mounted (see Section 11.5 [Mapped Devices], page 251). pre-mount
is a G-expression to evaluate before realizing mapped-devices. helper-packages is a

Chapter 11: System Configuration 594

list of packages to be copied in the initrd. It may include e2fsck/static or other
packages needed by the initrd to check the root file system.

When true, keyboard-layout is a <keyboard-layout> record denoting the desired
console keyboard layout. This is done before mapped-devices are set up and before
file-systems are mounted such that, should the user need to enter a passphrase or use
the REPL, this happens using the intended keyboard layout.

When qemu-networking? is true, set up networking with the standard QEMU param-
eters. When virtio? is true, load additional modules so that the initrd can be used
as a QEMU guest with para-virtualized I/O drivers.

When volatile-root? is true, the root file system is writable but any changes to it are
lost.

[Procedure]base-initrd file-systems [#:mapped-devices ’()] [#:keyboard-layout
#f] [#:qemu-networking? #f] [#:volatile-root? #f] [#:linux-modules ’()]

Return as a file-like object a generic initrd, with kernel modules taken from linux.
file-systems is a list of file-systems to be mounted by the initrd, possibly in addition to
the root file system specified on the kernel command line via root. mapped-devices
is a list of device mappings to realize before file-systems are mounted.

When true, keyboard-layout is a <keyboard-layout> record denoting the desired
console keyboard layout. This is done before mapped-devices are set up and before
file-systems are mounted such that, should the user need to enter a passphrase or use
the REPL, this happens using the intended keyboard layout.

qemu-networking? and volatile-root? behaves as in raw-initrd.

The initrd is automatically populated with all the kernel modules necessary for file-
systems and for the given options. Additional kernel modules can be listed in linux-
modules. They will be added to the initrd, and loaded at boot time in the order in
which they appear.

Needless to say, the initrds we produce and use embed a statically-linked Guile, and the
initialization program is a Guile program. That gives a lot of flexibility. The expression-
>initrd procedure builds such an initrd, given the program to run in that initrd.

[Procedure]expression->initrd exp [#:guile %guile-static-stripped] [#:name
"guile-initrd"]

Return as a file-like object a Linux initrd (a gzipped cpio archive) containing guile
and that evaluates exp, a G-expression, upon booting. All the derivations referenced
by exp are automatically copied to the initrd.

11.15 Bootloader Configuration

The operating system supports multiple bootloaders. The bootloader is configured using
bootloader-configuration declaration. All the fields of this structure are bootloader
agnostic except for one field, bootloader that indicates the bootloader to be configured
and installed.

Some of the bootloaders do not honor every field of bootloader-configuration. For
instance, the extlinux bootloader does not support themes and thus ignores the theme field.

Chapter 11: System Configuration 595

[Data Type]bootloader-configuration
The type of a bootloader configuration declaration.

bootloader

The bootloader to use, as a bootloader object. For now
grub-bootloader, grub-efi-bootloader, grub-efi-removable-

bootloader, grub-efi-netboot-bootloader, grub-efi-

netboot-removable-bootloader, extlinux-bootloader and
u-boot-bootloader are supported.

Available bootloaders are described in (gnu bootloader ...) modules.
In particular, (gnu bootloader u-boot) contains definitions of bootload-
ers for a wide range of ARM and AArch64 systems, using the U-Boot
bootloader (https://www.denx.de/wiki/U-Boot/).

grub-bootloader allows you to boot in particular Intel-based machines
in “legacy” BIOS mode.

grub-efi-bootloader allows to boot on modern systems using the Uni-
fied Extensible Firmware Interface (UEFI). This is what you should use
if the installation image contains a /sys/firmware/efi directory when
you boot it on your system.

grub-efi-removable-bootloader allows you to boot your system from
removable media by writing the GRUB file to the UEFI-specification
location of /EFI/BOOT/BOOTX64.efi of the boot directory, usually
/boot/efi. This is also useful for some UEFI firmwares that
“forget” their configuration from their non-volatile storage. Like
grub-efi-bootloader, this can only be used if the /sys/firmware/efi
directory is available.

Note: This will overwrite the GRUB file from any other op-
erating systems that also place their GRUB file in the UEFI-
specification location; making them unbootable.

grub-efi-netboot-bootloader allows you to boot your system over net-
work through TFTP. In combination with an NFS root file system this
allows you to build a diskless Guix system.

The installation of the grub-efi-netboot-bootloader generates the
content of the TFTP root directory at targets (see Section 11.15 [Boot-
loader Configuration], page 594) below the sub-directory efi/Guix, to be
served by a TFTP server. You may want to mount your TFTP server di-
rectories onto the targets to move the required files to the TFTP server
automatically during installation.

If you plan to use an NFS root file system as well (actually if you mount
the store from an NFS share), then the TFTP server needs to serve the
file /boot/grub/grub.cfg and other files from the store (like GRUBs
background image, the kernel (see Section 11.3 [operating-system Refer-
ence], page 242) and the initrd (see Section 11.3 [operating-system Ref-
erence], page 242)), too. All these files from the store will be accessed
by GRUB through TFTP with their normal store path, for example as
tftp://tftp-server/gnu/store/...-initrd/initrd.cpio.gz.

https://www.denx.de/wiki/U-Boot/
https://www.denx.de/wiki/U-Boot/

Chapter 11: System Configuration 596

Two symlinks are created to make this possible. For
each target in the targets field, the first symlink is
‘target’/efi/Guix/boot/grub/grub.cfg pointing to ../../../boot/grub/grub.cfg,
where ‘target’ may be /boot. In this case the link is not leaving the
served TFTP root directory, but otherwise it does. The second link is
‘target’/gnu/store and points to ../gnu/store. This link is leaving
the served TFTP root directory.

The assumption behind all this is that you have an NFS server exporting
the root file system for your Guix system, and additionally a TFTP server
exporting your targets directories—usually a single /boot—from that
same root file system for your Guix system. In this constellation the
symlinks will work.

For other constellations you will have to program your own bootloader
installer, which then takes care to make necessary files from the store
accessible through TFTP, for example by copying them into the TFTP
root directory for your targets.

It is important to note that symlinks pointing outside the TFTP root
directory may need to be allowed in the configuration of your TFTP
server. Further the store link exposes the whole store through TFTP.
Both points need to be considered carefully for security aspects. It is
advised to disable any TFTP write access!

Please note, that this bootloader will not modify the ‘UEFI Boot Man-
ager’ of the system.

Beside the grub-efi-netboot-bootloader, the already mentioned
TFTP and NFS servers, you also need a properly configured DHCP
server to make the booting over netboot possible. For all this we can
currently only recommend you to look for instructions about PXE

(Preboot eXecution Environment).

If a local EFI System Partition (ESP) or a similar partition with a FAT
file system is mounted in targets, then symlinks cannot be created.
In this case everything will be prepared for booting from local storage,
matching the behavior of grub-efi-bootloader, with the difference that
all GRUB binaries are copied to targets, necessary for booting over the
network.

grub-efi-netboot-removable-bootloader is identical to grub-

efi-netboot-bootloader with the exception that the sub-directory
efi/boot will be used instead of efi/Guix to comply with the UEFI
specification for removable media.

Note: This will overwrite the GRUB file from any other op-
erating systems that also place their GRUB file in the UEFI-
specification location; making them unbootable.

targets This is a list of strings denoting the targets onto which to install the
bootloader.

The interpretation of targets depends on the bootloader in question. For
grub-bootloader, for example, they should be device names understood

Chapter 11: System Configuration 597

by the bootloader installer command, such as /dev/sda or (hd0) (see
Section “Invoking grub-install” in GNU GRUB Manual). For grub-

efi-bootloader and grub-efi-removable-bootloader they should be
mount points of the EFI file system, usually /boot/efi. For grub-efi-
netboot-bootloader, targets should be the mount points correspond-
ing to TFTP root directories served by your TFTP server.

menu-entries (default: '())
A possibly empty list of menu-entry objects (see below), denoting entries
to appear in the bootloader menu, in addition to the current system entry
and the entry pointing to previous system generations.

default-entry (default: 0)
The index of the default boot menu entry. Index 0 is for the entry of the
current system.

timeout (default: 5)
The number of seconds to wait for keyboard input before booting. Set to
0 to boot immediately, and to -1 to wait indefinitely.

keyboard-layout (default: #f)
If this is #f, the bootloader’s menu (if any) uses the default keyboard
layout, usually US English (“qwerty”).

Otherwise, this must be a keyboard-layout object (see Section 11.8
[Keyboard Layout], page 259).

Note: This option is currently ignored by bootloaders other
than grub and grub-efi.

theme (default: #f)
The bootloader theme object describing the theme to use. If no theme
is provided, some bootloaders might use a default theme, that’s true for
GRUB.

terminal-outputs (default: '(gfxterm))
The output terminals used for the bootloader boot menu, as a list of
symbols. GRUB accepts the values: console, serial, serial_{0-3},
gfxterm, vga_text, mda_text, morse, and pkmodem. This field corre-
sponds to the GRUB variable GRUB_TERMINAL_OUTPUT (see Section “Sim-
ple configuration” in GNU GRUB manual).

terminal-inputs (default: '())
The input terminals used for the bootloader boot menu, as a list of sym-
bols. For GRUB, the default is the native platform terminal as deter-
mined at run-time. GRUB accepts the values: console, serial, serial_
{0-3}, at_keyboard, and usb_keyboard. This field corresponds to the
GRUB variable GRUB_TERMINAL_INPUT (see Section “Simple configura-
tion” in GNU GRUB manual).

serial-unit (default: #f)
The serial unit used by the bootloader, as an integer from 0 to 3. For
GRUB, it is chosen at run-time; currently GRUB chooses 0, which corre-
sponds to COM1 (see Section “Serial terminal” in GNU GRUB manual).

Chapter 11: System Configuration 598

serial-speed (default: #f)
The speed of the serial interface, as an integer. For GRUB, the default
value is chosen at run-time; currently GRUB chooses 9600 bps (see Sec-
tion “Serial terminal” in GNU GRUB manual).

device-tree-support? (default: #t)
Whether to support Linux device tree (https://en.wikipedia.org/
wiki/Devicetree) files loading.

This option in enabled by default. In some cases involving the u-boot

bootloader, where the device tree has already been loaded in RAM, it
can be handy to disable the option by setting it to #f.

extra-initrd (default: #f)
File name of an additional initrd to load during the boot. It may or may
not point to a file in the store, but the main use case is for out-of-store
files containing secrets.

In order to be able to provide decryption keys for the LUKS device, they
need to be available in the initial ram disk. However they cannot be
stored inside the usual initrd, since it is stored in the store and being
a world-readable (as files in the store are) is not a desired property for
a initrd containing decryption keys. You can therefore use this field to
instruct GRUB to also load a manually created initrd not stored in the
store.

For any use case not involving secrets, you should use regular initrd (see
Section 11.3 [operating-system Reference], page 242) instead.

Suitable image can be created for example like this:

echo /key-file.bin | cpio -oH newc >/key-file.cpio

chmod 0000 /key-file.cpio

After it is created, you can use it in this manner:

;; Operating system with encrypted boot partition

(operating-system

...

(bootloader (bootloader-configuration

(bootloader grub-efi-bootloader)

(targets '("/boot/efi"))

;; Load the initrd with a key file

(extra-initrd "/key-file.cpio")))

(mapped-devices

(list (mapped-device

(source (uuid "12345678-1234-1234-1234-123456789abc"))

(target "my-root")

(type (luks-device-mapping-with-options

;; And use it to unlock the root device

#:key-file "/key-file.bin"))))))

Be careful when using this option, since pointing to a file that is not
readable by the grub while booting will cause the boot to fail and require
a manual edit of the initrd line in the grub menu.

https://en.wikipedia.org/wiki/Devicetree
https://en.wikipedia.org/wiki/Devicetree

Chapter 11: System Configuration 599

Currently only supported by GRUB.

Should you want to list additional boot menu entries via the menu-entries field above,
you will need to create them with the menu-entry form. For example, imagine you want to
be able to boot another distro (hard to imagine!), you can define a menu entry along these
lines:

(menu-entry

(label "The Other Distro")

(linux "/boot/old/vmlinux-2.6.32")

(linux-arguments '("root=/dev/sda2"))

(initrd "/boot/old/initrd"))

Details below.

[Data Type]menu-entry
The type of an entry in the bootloader menu.

label The label to show in the menu—e.g., "GNU".

linux (default: #f)
The Linux kernel image to boot, for example:

(file-append linux-libre "/bzImage")

For GRUB, it is also possible to specify a device explicitly in the file path
using GRUB’s device naming convention (see Section “Naming conven-
tion” in GNU GRUB manual), for example:

"(hd0,msdos1)/boot/vmlinuz"

If the device is specified explicitly as above, then the device field is
ignored entirely.

linux-arguments (default: '())
The list of extra Linux kernel command-line arguments—e.g.,
'("console=ttyS0").

initrd (default: #f)
A G-Expression or string denoting the file name of the initial RAM disk
to use (see Section 8.12 [G-Expressions], page 159).

device (default: #f)
The device where the kernel and initrd are to be found—i.e., for GRUB,
root for this menu entry (see Section “root” in GNU GRUB manual).

This may be a file system label (a string), a file system UUID (a bytevec-
tor, see Section 11.4 [File Systems], page 246), or #f, in which case the
bootloader will search the device containing the file specified by the linux
field (see Section “search” in GNU GRUB manual). It must not be an
OS device name such as /dev/sda1.

multiboot-kernel (default: #f)
The kernel to boot in Multiboot-mode (see Section “multiboot” in GNU
GRUB manual). When this field is set, a Multiboot menu-entry is gen-
erated. For example:

(file-append mach "/boot/gnumach")

Chapter 11: System Configuration 600

multiboot-arguments (default: '())
The list of extra command-line arguments for the multiboot-kernel.

For example, when running in QEMU it can be useful to use a text-based
console (use options --nographic --serial mon:stdio):

'("console=com0")

To use the new and still experimental rumpdisk user-level disk driver
(https://darnassus.sceen.net/~hurd-web/rump_kernel/) instead of
GNU Mach’s in-kernel IDE driver, set kernel-arguments to:

'("noide")

Of course, these options can be combined:

'("console=com0" "noide")

multiboot-modules (default: '())
The list of commands for loading Multiboot modules. For example:

(list (list (file-append hurd "/hurd/ext2fs.static") "ext2fs"

...)

(list (file-append libc "/lib/ld.so.1") "exec"

...))

chain-loader (default: #f)
A string that can be accepted by grub’s chainloader directive. This has
no effect if either linux or multiboot-kernel fields are specified. The
following is an example of chainloading a different GNU/Linux system.

(bootloader

(bootloader-configuration

;; ...

(menu-entries

(list

(menu-entry

(label "GNU/Linux")

(device (uuid "1C31-A17C" 'fat))

(chain-loader "/EFI/GNULinux/grubx64.efi"))))))

For now only GRUB has theme support. GRUB themes are created using the grub-

theme form, which is not fully documented yet.

[Data Type]grub-theme
Data type representing the configuration of the GRUB theme.

gfxmode (default: '("auto"))
The GRUB gfxmode to set (a list of screen resolution strings, see Section
“gfxmode” in GNU GRUB manual).

[Procedure]grub-theme
Return the default GRUB theme used by the operating system if no theme field is
specified in bootloader-configuration record.

It comes with a fancy background image displaying the GNU and Guix logos.

https://darnassus.sceen.net/~hurd-web/rump_kernel/
https://darnassus.sceen.net/~hurd-web/rump_kernel/

Chapter 11: System Configuration 601

For example, to override the default resolution, you may use something like

(bootloader

(bootloader-configuration

;; ...

(theme (grub-theme

(inherit (grub-theme))

(gfxmode '("1024x786x32" "auto"))))))

11.16 Invoking guix system

Once you have written an operating system declaration as seen in the previous section, it
can be instantiated using the guix system command. The synopsis is:

guix system options... action file

file must be the name of a file containing an operating-system declaration. action
specifies how the operating system is instantiated. Currently the following values are sup-
ported:

search Display available service type definitions that match the given regular expres-
sions, sorted by relevance:

$ guix system search console

name: console-fonts

location: gnu/services/base.scm:806:2

extends: shepherd-root

description: Install the given fonts on the specified ttys (fonts are per

+ virtual console on GNU/Linux). The value of this service is a list of

+ tty/font pairs. The font can be the name of a font provided by the `kbd'

+ package or any valid argument to `setfont', as in this example:

+

+ '(("tty1" . "LatGrkCyr-8x16")

+ ("tty2" . (file-append

+ font-tamzen

+ "/share/kbd/consolefonts/TamzenForPowerline10x20.psf"))

+ ("tty3" . (file-append

+ font-terminus

+ "/share/consolefonts/ter-132n"))) ; for HDPI

relevance: 9

name: mingetty

location: gnu/services/base.scm:1190:2

extends: shepherd-root

description: Provide console login using the `mingetty' program.

relevance: 2

name: login

location: gnu/services/base.scm:860:2

extends: pam

description: Provide a console log-in service as specified by its

Chapter 11: System Configuration 602

+ configuration value, a `login-configuration' object.

relevance: 2

...

As for guix package --search, the result is written in recutils format, which
makes it easy to filter the output (see GNU recutils manual).

edit Edit or view the definition of the given service types.

For example, the command below opens your editor, as specified by the EDITOR
environment variable, on the definition of the openssh service type:

guix system edit openssh

reconfigure

Build the operating system described in file, activate it, and switch to it11.

Note: It is highly recommended to run guix pull once before you
run guix system reconfigure for the first time (see Section 5.7
[Invoking guix pull], page 54). Failing to do that you would see an
older version of Guix once reconfigure has completed.

This effects all the configuration specified in file: user accounts, system services,
global package list, setuid programs, etc. The command starts system services
specified in file that are not currently running; if a service is currently running
this command will arrange for it to be upgraded the next time it is stopped
(e.g. by herd stop X or herd restart X).

This command creates a new generation whose number is one greater than the
current generation (as reported by guix system list-generations). If that
generation already exists, it will be overwritten. This behavior mirrors that of
guix package (see Section 5.2 [Invoking guix package], page 35).

It also adds a bootloader menu entry for the new OS configuration, —unless
--no-bootloader is passed. For GRUB, it moves entries for older configura-
tions to a submenu, allowing you to choose an older system generation at boot
time should you need it.

Upon completion, the new system is deployed under /run/current-system.
This directory contains provenance meta-data: the list of channels in use (see
Chapter 6 [Channels], page 66) and file itself, when available. You can view it
by running:

guix system describe

This information is useful should you later want to inspect how this particular
generation was built. In fact, assuming file is self-contained, you can later
rebuild generation n of your operating system with:

guix time-machine \

-C /var/guix/profiles/system-n-link/channels.scm -- \

system reconfigure \

/var/guix/profiles/system-n-link/configuration.scm

11 This action (and the related actions switch-generation and roll-back) are usable only on systems
already running Guix System.

Chapter 11: System Configuration 603

You can think of it as some sort of built-in version control! Your system is not
just a binary artifact: it carries its own source. See Section 11.19.3 [Service
Reference], page 618, for more information on provenance tracking.

By default, reconfigure prevents you from downgrading your system, which
could (re)introduce security vulnerabilities and also cause problems with “state-
ful” services such as database management systems. You can override that
behavior by passing --allow-downgrades.

switch-generation

Switch to an existing system generation. This action atomically switches the
system profile to the specified system generation. It also rearranges the system’s
existing bootloader menu entries. It makes the menu entry for the specified
system generation the default, and it moves the entries for the other generations
to a submenu, if supported by the bootloader being used. The next time the
system boots, it will use the specified system generation.

The bootloader itself is not being reinstalled when using this command. Thus,
the installed bootloader is used with an updated configuration file.

The target generation can be specified explicitly by its generation number. For
example, the following invocation would switch to system generation 7:

guix system switch-generation 7

The target generation can also be specified relative to the current generation
with the form +N or -N, where +3means “3 generations ahead of the current gen-
eration,” and -1 means “1 generation prior to the current generation.” When
specifying a negative value such as -1, you must precede it with -- to prevent
it from being parsed as an option. For example:

guix system switch-generation -- -1

Currently, the effect of invoking this action is only to switch the system profile to
an existing generation and rearrange the bootloader menu entries. To actually
start using the target system generation, you must reboot after running this
action. In the future, it will be updated to do the same things as reconfigure,
like activating and deactivating services.

This action will fail if the specified generation does not exist.

roll-back

Switch to the preceding system generation. The next time the system boots, it
will use the preceding system generation. This is the inverse of reconfigure,
and it is exactly the same as invoking switch-generation with an argument
of -1.

Currently, as with switch-generation, you must reboot after running this
action to actually start using the preceding system generation.

delete-generations

Delete system generations, making them candidates for garbage collection (see
Section 5.6 [Invoking guix gc], page 51, for information on how to run the
“garbage collector”).

Chapter 11: System Configuration 604

This works in the same way as ‘guix package --delete-generations’ (see
Section 5.2 [Invoking guix package], page 35). With no arguments, all system
generations but the current one are deleted:

guix system delete-generations

You can also select the generations you want to delete. The example below
deletes all the system generations that are more than two months old:

guix system delete-generations 2m

Running this command automatically reinstalls the bootloader with an updated
list of menu entries—e.g., the “old generations” sub-menu in GRUB no longer
lists the generations that have been deleted.

build Build the derivation of the operating system, which includes all the configura-
tion files and programs needed to boot and run the system. This action does
not actually install anything.

init Populate the given directory with all the files necessary to run the operating
system specified in file. This is useful for first-time installations of Guix System.
For instance:

guix system init my-os-config.scm /mnt

copies to /mnt all the store items required by the configuration specified in my-

os-config.scm. This includes configuration files, packages, and so on. It also
creates other essential files needed for the system to operate correctly—e.g., the
/etc, /var, and /run directories, and the /bin/sh file.

This command also installs bootloader on the targets specified in
my-os-config, unless the --no-bootloader option was passed.

vm Build a virtual machine (VM) that contains the operating system declared in
file, and return a script to run that VM.

Note: The vm action and others below can use KVM support in the
Linux-libre kernel. Specifically, if the machine has hardware virtu-
alization support, the corresponding KVM kernel module should be
loaded, and the /dev/kvm device node must exist and be readable
and writable by the user and by the build users of the daemon (see
Section 2.2.1 [Build Environment Setup], page 5).

Arguments given to the script are passed to QEMU as in the example below,
which enables networking and requests 1 GiB of RAM for the emulated machine:

$ /gnu/store/...-run-vm.sh -m 1024 -smp 2 -nic user,model=virtio-net-pci

It’s possible to combine the two steps into one:

$ $(guix system vm my-config.scm) -m 1024 -smp 2 -nic user,model=virtio-net-pci

The VM shares its store with the host system.

By default, the root file system of the VM is mounted volatile; the
--persistent option can be provided to make it persistent instead. In that
case, the VM disk-image file will be copied from the store to the TMPDIR

directory to make it writable.

Additional file systems can be shared between the host and the VM using the
--share and --expose command-line options: the former specifies a directory

Chapter 11: System Configuration 605

to be shared with write access, while the latter provides read-only access to the
shared directory.

The example below creates a VM in which the user’s home directory is acces-
sible read-only, and where the /exchange directory is a read-write mapping of
$HOME/tmp on the host:

guix system vm my-config.scm \

--expose=$HOME --share=$HOME/tmp=/exchange

On GNU/Linux, the default is to boot directly to the kernel; this has the
advantage of requiring only a very tiny root disk image since the store of the
host can then be mounted.

The --full-boot option forces a complete boot sequence, starting with the
bootloader. This requires more disk space since a root image containing at
least the kernel, initrd, and bootloader data files must be created.

The --image-size option can be used to specify the size of the image.

The --no-graphic option will instruct guix system to spawn a headless VM
that will use the invoking tty for IO. Among other things, this enables copy-
pasting, and scrollback. Use the ctrl-a prefix to issue QEMU commands; e.g.
ctrl-a h prints a help, ctrl-a x quits the VM, and ctrl-a c switches between
the QEMU monitor and the VM.

image The image command can produce various image types. The image type can be
selected using the --image-type option. It defaults to mbr-hybrid-raw. When
its value is iso9660, the --label option can be used to specify a volume ID with
image. By default, the root file system of a disk image is mounted non-volatile;
the --volatile option can be provided to make it volatile instead. When
using image, the bootloader installed on the generated image is taken from the
provided operating-system definition. The following example demonstrates
how to generate an image that uses the grub-efi-bootloader bootloader and
boot it with QEMU:

image=$(guix system image --image-type=qcow2 \

gnu/system/examples/lightweight-desktop.tmpl)

cp $image /tmp/my-image.qcow2

chmod +w /tmp/my-image.qcow2

qemu-system-x86_64 -enable-kvm -hda /tmp/my-image.qcow2 -m 1000 \

-bios $(guix build ovmf)/share/firmware/ovmf_x64.bin

When using the mbr-hybrid-raw image type, a raw disk image is produced;
it can be copied as is to a USB stick, for instance. Assuming /dev/sdc is the
device corresponding to a USB stick, one can copy the image to it using the
following command:

dd if=$(guix system image my-os.scm) of=/dev/sdc status=progress

The --list-image-types command lists all the available image types.

When using the qcow2 image type, the returned image is in qcow2 format, which
the QEMU emulator can efficiently use. See Section 11.18 [Running Guix in
a VM], page 613, for more information on how to run the image in a virtual
machine. The grub-bootloader bootloader is always used independently of

Chapter 11: System Configuration 606

what is declared in the operating-system file passed as argument. This is to
make it easier to work with QEMU, which uses the SeaBIOS BIOS by default,
expecting a bootloader to be installed in the Master Boot Record (MBR).

When using the docker image type, a Docker image is produced. Guix builds
the image from scratch, not from a pre-existing Docker base image. As a result,
it contains exactly what you define in the operating system configuration file.
You can then load the image and launch a Docker container using commands
like the following:

image_id="$(docker load < guix-system-docker-image.tar.gz)"

container_id="$(docker create $image_id)"

docker start $container_id

This command starts a new Docker container from the specified image. It
will boot the Guix system in the usual manner, which means it will start any
services you have defined in the operating system configuration. You can get
an interactive shell running in the container using docker exec:

docker exec -ti $container_id /run/current-system/profile/bin/bash --login

Depending on what you run in the Docker container, it may be necessary to
give the container additional permissions. For example, if you intend to build
software using Guix inside of the Docker container, you may need to pass the
--privileged option to docker create.

Last, the --network option applies to guix system docker-image: it produces
an image where network is supposedly shared with the host, and thus without
services like nscd or NetworkManager.

container

Return a script to run the operating system declared in file within a container.
Containers are a set of lightweight isolation mechanisms provided by the ker-
nel Linux-libre. Containers are substantially less resource-demanding than full
virtual machines since the kernel, shared objects, and other resources can be
shared with the host system; this also means they provide thinner isolation.

Currently, the script must be run as root in order to support more than a single
user and group. The container shares its store with the host system.

As with the vm action (see [guix system vm], page 604), additional file systems
to be shared between the host and container can be specified using the --share
and --expose options:

guix system container my-config.scm \

--expose=$HOME --share=$HOME/tmp=/exchange

The --share and --expose options can also be passed to the generated script
to bind-mount additional directories into the container.

Note: This option requires Linux-libre 3.19 or newer.

options can contain any of the common build options (see Section 9.1.1 [Common Build
Options], page 173). In addition, options can contain one of the following:

Chapter 11: System Configuration 607

--expression=expr

-e expr Consider the operating-system expr evaluates to. This is an alternative to spec-
ifying a file which evaluates to an operating system. This is used to generate the
Guix system installer see Section 3.9 [Building the Installation Image], page 29).

--system=system

-s system Attempt to build for system instead of the host system type. This works as per
guix build (see Section 9.1 [Invoking guix build], page 173).

--target=triplet

Cross-build for triplet, which must be a valid GNU triplet, such as "aarch64-
linux-gnu" (see Section “Specifying target triplets” in Autoconf).

--derivation

-d Return the derivation file name of the given operating system without building
anything.

--save-provenance

As discussed above, guix system init and guix system reconfigure always
save provenance information via a dedicated service (see Section 11.19.3 [Service
Reference], page 618). However, other commands don’t do that by default.
If you wish to, say, create a virtual machine image that contains provenance
information, you can run:

guix system image -t qcow2 --save-provenance config.scm

That way, the resulting image will effectively “embed its own source” in the
form of meta-data in /run/current-system. With that information, one can
rebuild the image to make sure it really contains what it pretends to contain;
or they could use that to derive a variant of the image.

--image-type=type

-t type For the image action, create an image with given type.

When this option is omitted, guix system uses the mbr-hybrid-raw image
type.

--image-type=iso9660 produces an ISO-9660 image, suitable for burning on
CDs and DVDs.

--image-size=size

For the image action, create an image of the given size. size may be a number
of bytes, or it may include a unit as a suffix (see Section “Block size” in GNU
Coreutils).

When this option is omitted, guix system computes an estimate of the image
size as a function of the size of the system declared in file.

--network

-N For the container action, allow containers to access the host network, that is,
do not create a network namespace.

--root=file

-r file Make file a symlink to the result, and register it as a garbage collector root.

Chapter 11: System Configuration 608

--skip-checks

Skip pre-installation safety checks.

By default, guix system init and guix system reconfigure perform safety
checks: they make sure the file systems that appear in the operating-system

declaration actually exist (see Section 11.4 [File Systems], page 246), and that
any Linux kernel modules that may be needed at boot time are listed in initrd-

modules (see Section 11.14 [Initial RAM Disk], page 591). Passing this option
skips these tests altogether.

--allow-downgrades

Instruct guix system reconfigure to allow system downgrades.

By default, reconfigure prevents you from downgrading your system. It
achieves that by comparing the provenance info of your system (shown by
guix system describe) with that of your guix command (shown by guix

describe). If the commits for guix are not descendants of those used for your
system, guix system reconfigure errors out. Passing --allow-downgrades

allows you to bypass these checks.

Note: Make sure you understand its security implications before
using --allow-downgrades.

--on-error=strategy

Apply strategy when an error occurs when reading file. strategy may be one
of the following:

nothing-special

Report the error concisely and exit. This is the default strategy.

backtrace

Likewise, but also display a backtrace.

debug Report the error and enter Guile’s debugger. From there, you can
run commands such as ,bt to get a backtrace, ,locals to display
local variable values, and more generally inspect the state of the
program. See Section “Debug Commands” in GNU Guile Reference
Manual, for a list of available debugging commands.

Once you have built, configured, re-configured, and re-re-configured your Guix installa-
tion, you may find it useful to list the operating system generations available on disk—and
that you can choose from the bootloader boot menu:

describe Describe the running system generation: its file name, the kernel and bootloader
used, etc., as well as provenance information when available.

The --list-installed flag is available, with the same syntax that is used
in guix package --list-installed (see Section 5.2 [Invoking guix package],
page 35). When the flag is used, the description will include a list of packages
that are currently installed in the system profile, with optional filtering based
on a regular expression.

Note: The running system generation—referred to by
/run/current-system—is not necessarily the current system
generation—referred to by /var/guix/profiles/system: it

Chapter 11: System Configuration 609

differs when, for instance, you chose from the bootloader menu to
boot an older generation.

It can also differ from the booted system generation—referred to by
/run/booted-system—for instance because you reconfigured the
system in the meantime.

list-generations

List a summary of each generation of the operating system available on disk,
in a human-readable way. This is similar to the --list-generations option
of guix package (see Section 5.2 [Invoking guix package], page 35).

Optionally, one can specify a pattern, with the same syntax that is used in guix

package --list-generations, to restrict the list of generations displayed. For
instance, the following command displays generations that are up to 10 days
old:

$ guix system list-generations 10d

The --list-installed flag may also be specified, with the same syntax that
is used in guix package --list-installed. This may be helpful if trying to
determine when a package was added to the system.

The guix system command has even more to offer! The following sub-commands allow
you to visualize how your system services relate to each other:

extension-graph

Emit to standard output the service extension graph of the operating system
defined in file (see Section 11.19.1 [Service Composition], page 615, for more
information on service extensions). By default the output is in Dot/Graphviz
format, but you can choose a different format with --graph-backend, as with
guix graph (see Section 9.10 [Invoking guix graph], page 211):

The command:

$ guix system extension-graph file | xdot -

shows the extension relations among services.

Note: The dot program is provided by the graphviz package.

shepherd-graph

Emit to standard output the dependency graph of shepherd services of the op-
erating system defined in file. See Section 11.19.4 [Shepherd Services], page 623,
for more information and for an example graph.

Again, the default output format is Dot/Graphviz, but you can pass --graph-
backend to select a different one.

11.17 Invoking guix deploy

We’ve already seen operating-system declarations used to manage a machine’s configu-
ration locally. Suppose you need to configure multiple machines, though—perhaps you’re
managing a service on the web that’s comprised of several servers. guix deploy enables
you to use those same operating-system declarations to manage multiple remote hosts at
once as a logical “deployment”.

Chapter 11: System Configuration 610

Note: The functionality described in this section is still under development and
is subject to change. Get in touch with us on guix-devel@gnu.org!

guix deploy file

Such an invocation will deploy the machines that the code within file evaluates to. As
an example, file might contain a definition like this:

;; This is a Guix deployment of a "bare bones" setup, with

;; no X11 display server, to a machine with an SSH daemon

;; listening on localhost:2222. A configuration such as this

;; may be appropriate for virtual machine with ports

;; forwarded to the host's loopback interface.

(use-service-modules networking ssh)

(use-package-modules bootloaders)

(define %system

(operating-system

(host-name "gnu-deployed")

(timezone "Etc/UTC")

(bootloader (bootloader-configuration

(bootloader grub-bootloader)

(targets '("/dev/vda"))

(terminal-outputs '(console))))

(file-systems (cons (file-system

(mount-point "/")

(device "/dev/vda1")

(type "ext4"))

%base-file-systems))

(services

(append (list (service dhcp-client-service-type)

(service openssh-service-type

(openssh-configuration

(permit-root-login #t)

(allow-empty-passwords? #t))))

%base-services))))

(list (machine

(operating-system %system)

(environment managed-host-environment-type)

(configuration (machine-ssh-configuration

(host-name "localhost")

(system "x86_64-linux")

(user "alice")

(identity "./id_rsa")

(port 2222)))))

The file should evaluate to a list of machine objects. This example, upon being de-
ployed, will create a new generation on the remote system realizing the operating-system

mailto:guix-devel@gnu.org

Chapter 11: System Configuration 611

declaration %system. environment and configuration specify how the machine should be
provisioned—that is, how the computing resources should be created and managed. The
above example does not create any resources, as a 'managed-host is a machine that is
already running the Guix system and available over the network. This is a particularly sim-
ple case; a more complex deployment may involve, for example, starting virtual machines
through a Virtual Private Server (VPS) provider. In such a case, a different environment
type would be used.

Do note that you first need to generate a key pair on the coordinator machine to allow
the daemon to export signed archives of files from the store (see Section 5.11 [Invoking guix
archive], page 63), though this step is automatic on Guix System:

guix archive --generate-key

Each target machine must authorize the key of the master machine so that it accepts store
items it receives from the coordinator:

guix archive --authorize < coordinator-public-key.txt

user, in this example, specifies the name of the user account to log in as to perform the
deployment. Its default value is root, but root login over SSH may be forbidden in some
cases. To work around this, guix deploy can log in as an unprivileged user and employ
sudo to escalate privileges. This will only work if sudo is currently installed on the remote
and can be invoked non-interactively as user. That is, the line in sudoers granting user

the ability to use sudo must contain the NOPASSWD tag. This can be accomplished with the
following operating system configuration snippet:

(use-modules ...

(gnu system)) ;for %sudoers-specification

(define %user "username")

(operating-system

...

(sudoers-file

(plain-file "sudoers"

(string-append (plain-file-content %sudoers-specification)

(format #f "~a ALL = NOPASSWD: ALL~%"

%user)))))

For more information regarding the format of the sudoers file, consult man sudoers.

Once you’ve deployed a system on a set of machines, you may find it useful to run a
command on all of them. The --execute or -x option lets you do that; the example below
runs uname -a on all the machines listed in the deployment file:

guix deploy file -x -- uname -a

One thing you may often need to do after deployment is restart specific services on all
the machines, which you can do like so:

guix deploy file -x -- herd restart service

The guix deploy -x command returns zero if and only if the command succeeded on all
the machines.

Below are the data types you need to know about when writing a deployment file.

Chapter 11: System Configuration 612

[Data Type]machine
This is the data type representing a single machine in a heterogeneous Guix deploy-
ment.

operating-system

The object of the operating system configuration to deploy.

environment

An environment-type describing how the machine should be
provisioned.

configuration (default: #f)
An object describing the configuration for the machine’s environment.
If the environment has a default configuration, #f may be used. If #f is
used for an environment with no default configuration, however, an error
will be thrown.

[Data Type]machine-ssh-configuration
This is the data type representing the SSH client parameters for a machine with an
environment of managed-host-environment-type.

host-name

build-locally? (default: #t)
If false, system derivations will be built on the machine being deployed
to.

system The system type describing the architecture of the machine being de-
ployed to—e.g., "x86_64-linux".

authorize? (default: #t)
If true, the coordinator’s signing key will be added to the remote’s ACL
keyring.

port (default: 22)
user (default: "root")
identity (default: #f)

If specified, the path to the SSH private key to use to authenticate with
the remote host.

host-key (default: #f)
This should be the SSH host key of the machine, which looks like this:

ssh-ed25519 AAAAC3Nz... root@example.org

When host-key is #f, the server is authenticated against the
~/.ssh/known_hosts file, just like the OpenSSH ssh client does.

allow-downgrades? (default: #f)
Whether to allow potential downgrades.

Like guix system reconfigure, guix deploy compares the channel com-
mits currently deployed on the remote host (as returned by guix system

describe) to those currently in use (as returned by guix describe) to
determine whether commits currently in use are descendants of those de-
ployed. When this is not the case and allow-downgrades? is false, it

Chapter 11: System Configuration 613

raises an error. This ensures you do not accidentally downgrade remote
machines.

safety-checks? (default: #t)
Whether to perform “safety checks” before deployment. This includes
verifying that devices and file systems referred to in the operating system
configuration actually exist on the target machine, and making sure that
Linux modules required to access storage devices at boot time are listed
in the initrd-modules field of the operating system.

These safety checks ensure that you do not inadvertently deploy a system
that would fail to boot. Be careful before turning them off!

[Data Type]digital-ocean-configuration
This is the data type describing the Droplet that should be created for a machine
with an environment of digital-ocean-environment-type.

ssh-key The path to the SSH private key to use to authenticate with the remote
host. In the future, this field may not exist.

tags A list of string “tags” that uniquely identify the machine. Must be given
such that no two machines in the deployment have the same set of tags.

region A Digital Ocean region slug, such as "nyc3".

size A Digital Ocean size slug, such as "s-1vcpu-1gb"

enable-ipv6?

Whether or not the droplet should be created with IPv6 networking.

11.18 Running Guix in a Virtual Machine

To run Guix in a virtual machine (VM), one can use the pre-built Guix VM image
distributed at https://ftp.gnu.org/gnu/guix/guix-system-vm-image-db86261.

x86_64-linux.qcow2. This image is a compressed image in QCOW format. You can pass
it to an emulator such as QEMU (https://qemu.org/) (see below for details).

This image boots the Xfce graphical environment and it contains some commonly used
tools. You can install more software in the image by running guix package in a terminal
(see Section 5.2 [Invoking guix package], page 35). You can also reconfigure the system based
on its initial configuration file available as /run/current-system/configuration.scm (see
Section 11.2 [Using the Configuration System], page 233).

Instead of using this pre-built image, one can also build their own image using guix

system image (see Section 11.16 [Invoking guix system], page 601).

If you built your own image, you must copy it out of the store (see Section 8.9 [The
Store], page 150) and give yourself permission to write to the copy before you can use
it. When invoking QEMU, you must choose a system emulator that is suitable for your
hardware platform. Here is a minimal QEMU invocation that will boot the result of guix
system image -t qcow2 on x86 64 hardware:

$ qemu-system-x86_64 \

-nic user,model=virtio-net-pci \

-enable-kvm -m 2048 \

https://ftp.gnu.org/gnu/guix/guix-system-vm-image-db86261.x86_64-linux.qcow2
https://ftp.gnu.org/gnu/guix/guix-system-vm-image-db86261.x86_64-linux.qcow2
https://qemu.org/

Chapter 11: System Configuration 614

-device virtio-blk,drive=myhd \

-drive if=none,file=guix-system-vm-image-db86261.x86_64-linux.qcow2,id=myhd

Here is what each of these options means:

qemu-system-x86_64

This specifies the hardware platform to emulate. This should match the host.

-nic user,model=virtio-net-pci

Enable the unprivileged user-mode network stack. The guest OS can access the
host but not vice versa. This is the simplest way to get the guest OS online.
model specifies which network device to emulate: virtio-net-pci is a special
device made for virtualized operating systems and recommended for most uses.
Assuming your hardware platform is x86 64, you can get a list of available NIC
models by running qemu-system-x86_64 -nic model=help.

-enable-kvm

If your system has hardware virtualization extensions, enabling the virtual ma-
chine support (KVM) of the Linux kernel will make things run faster.

-m 2048 RAM available to the guest OS, in mebibytes. Defaults to 128 MiB, which may
be insufficient for some operations.

-device virtio-blk,drive=myhd

Create a virtio-blk drive called “myhd”. virtio-blk is a “paravirtualiza-
tion” mechanism for block devices that allows QEMU to achieve better per-
formance than if it were emulating a complete disk drive. See the QEMU and
KVM documentation for more info.

-drive if=none,file=/tmp/qemu-image,id=myhd

Use our QCOW image, the guix-system-vm-image-db86261.x86_64-

linux.qcow2 file, as the backing store of the “myhd” drive.

The default run-vm.sh script that is returned by an invocation of guix system vm does
not add a -nic user flag by default. To get network access from within the vm add the
(dhcp-client-service) to your system definition and start the VM using $(guix system

vm config.scm) -nic user. An important caveat of using -nic user for networking is
that ping will not work, because it uses the ICMP protocol. You’ll have to use a different
command to check for network connectivity, for example guix download.

11.18.1 Connecting Through SSH

To enable SSH inside a VM you need to add an SSH server like openssh-service-type

to your VM (see Section 11.10.5 [Networking Services], page 301). In addition you need to
forward the SSH port, 22 by default, to the host. You can do this with

$(guix system vm config.scm) -nic user,model=virtio-net-pci,hostfwd=tcp::10022-:22

To connect to the VM you can run

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -p 10022 localhost

The -p tells ssh the port you want to connect to. -o UserKnownHostsFile=/dev/null

prevents ssh from complaining every time you modify your config.scm file and the -o

StrictHostKeyChecking=no prevents you from having to allow a connection to an unknown
host every time you connect.

Chapter 11: System Configuration 615

Note: If you find the above ‘hostfwd’ example not to be working (e.g., your
SSH client hangs attempting to connect to the mapped port of your VM), make
sure that your Guix System VM has networking support, such as by using the
dhcp-client-service-type service type.

11.18.2 Using virt-viewer with Spice

As an alternative to the default qemu graphical client you can use the remote-viewer from
the virt-viewer package. To connect pass the -spice port=5930,disable-ticketing

flag to qemu. See previous section for further information on how to do this.

Spice also allows you to do some nice stuff like share your clipboard with your VM. To
enable that you’ll also have to pass the following flags to qemu:

-device virtio-serial-pci,id=virtio-serial0,max_ports=16,bus=pci.0,addr=0x5

-chardev spicevmc,name=vdagent,id=vdagent

-device virtserialport,nr=1,bus=virtio-serial0.0,chardev=vdagent,\

name=com.redhat.spice.0

You’ll also need to add the (spice-vdagent-service) to your system definition (see
Section 11.10.37 [Miscellaneous Services], page 574).

11.19 Defining Services

The previous sections show the available services and how one can combine them in an
operating-system declaration. But how do we define them in the first place? And what
is a service anyway?

11.19.1 Service Composition

Here we define a service as, broadly, something that extends the functionality of the op-
erating system. Often a service is a process—a daemon—started when the system boots:
a secure shell server, a Web server, the Guix build daemon, etc. Sometimes a service is a
daemon whose execution can be triggered by another daemon—e.g., an FTP server started
by inetd or a D-Bus service activated by dbus-daemon. Occasionally, a service does not
map to a daemon. For instance, the “account” service collects user accounts and makes sure
they exist when the system runs; the “udev” service collects device management rules and
makes them available to the eudev daemon; the /etc service populates the /etc directory
of the system.

Guix system services are connected by extensions. For instance, the secure shell ser-
vice extends the Shepherd—the initialization system, running as PID 1—by giving it the
command lines to start and stop the secure shell daemon (see Section 11.10.5 [Network-
ing Services], page 301); the UPower service extends the D-Bus service by passing it its
.service specification, and extends the udev service by passing it device management
rules (see Section 11.10.9 [Desktop Services], page 347); the Guix daemon service extends
the Shepherd by passing it the command lines to start and stop the daemon, and extends
the account service by passing it a list of required build user accounts (see Section 11.10.1
[Base Services], page 263).

All in all, services and their “extends” relations form a directed acyclic graph (DAG).
If we represent services as boxes and extensions as arrows, a typical system might provide
something like this:

Chapter 11: System Configuration 616

shepherd

boot

pam

etc

activation

system

profile

accounts

lshd

udev nscd

extends

nss-mdnskvm-rulescolord

dbus

upowerpolkit

elogind

extends

guix

At the bottom, we see the system service, which produces the directory containing
everything to run and boot the system, as returned by the guix system build command.
See Section 11.19.3 [Service Reference], page 618, to learn about the other service types
shown here. See [system-extension-graph], page 609, for information on how to generate
this representation for a particular operating system definition.

Technically, developers can define service types to express these relations. There can
be any number of services of a given type on the system—for instance, a system running
two instances of the GNU secure shell server (lsh) has two instances of lsh-service-type,
with different parameters.

The following section describes the programming interface for service types and services.

11.19.2 Service Types and Services

A service type is a node in the DAG described above. Let us start with a simple example, the
service type for the Guix build daemon (see Section 2.3 [Invoking guix-daemon], page 11):

(define guix-service-type

(service-type

(name 'guix)

(extensions

Chapter 11: System Configuration 617

(list (service-extension shepherd-root-service-type guix-shepherd-service)

(service-extension account-service-type guix-accounts)

(service-extension activation-service-type guix-activation)))

(default-value (guix-configuration))))

It defines three things:

1. A name, whose sole purpose is to make inspection and debugging easier.

2. A list of service extensions, where each extension designates the target service type
and a procedure that, given the parameters of the service, returns a list of objects to
extend the service of that type.

Every service type has at least one service extension. The only exception is the boot
service type, which is the ultimate service.

3. Optionally, a default value for instances of this type.

In this example, guix-service-type extends three services:

shepherd-root-service-type

The guix-shepherd-service procedure defines how the Shepherd service is
extended. Namely, it returns a <shepherd-service> object that defines how
guix-daemon is started and stopped (see Section 11.19.4 [Shepherd Services],
page 623).

account-service-type

This extension for this service is computed by guix-accounts, which returns
a list of user-group and user-account objects representing the build user
accounts (see Section 2.3 [Invoking guix-daemon], page 11).

activation-service-type

Here guix-activation is a procedure that returns a gexp, which is a code
snippet to run at “activation time”—e.g., when the service is booted.

A service of this type is instantiated like this:

(service guix-service-type

(guix-configuration

(build-accounts 5)

(extra-options '("--gc-keep-derivations"))))

The second argument to the service form is a value representing the parameters of this
specific service instance. See [guix-configuration-type], page 272, for information about the
guix-configuration data type. When the value is omitted, the default value specified by
guix-service-type is used:

(service guix-service-type)

guix-service-type is quite simple because it extends other services but is not extensible
itself.

The service type for an extensible service looks like this:

(define udev-service-type

(service-type (name 'udev)

(extensions

(list (service-extension shepherd-root-service-type

Chapter 11: System Configuration 618

udev-shepherd-service)))

(compose concatenate) ;concatenate the list of rules

(extend (lambda (config rules)

(udev-configuration

(inherit config)

(rules (append (udev-configuration-rules config)

rules)))))))

This is the service type for the eudev device management daemon (https://github.
com/eudev-project/eudev). Compared to the previous example, in addition to an exten-
sion of shepherd-root-service-type, we see two new fields:

compose This is the procedure to compose the list of extensions to services of this type.

Services can extend the udev service by passing it lists of rules; we compose
those extensions simply by concatenating them.

extend This procedure defines how the value of the service is extended with the com-
position of the extensions.

Udev extensions are composed into a list of rules, but the udev service value
is itself a <udev-configuration> record. So here, we extend that record by
appending the list of rules it contains to the list of contributed rules.

description

This is a string giving an overview of the service type. The string can contain
Texinfo markup (see Section “Overview” in GNU Texinfo). The guix system

search command searches these strings and displays them (see Section 11.16
[Invoking guix system], page 601).

There can be only one instance of an extensible service type such as udev-service-type.
If there were more, the service-extension specifications would be ambiguous.

Still here? The next section provides a reference of the programming interface for ser-
vices.

11.19.3 Service Reference

We have seen an overview of service types (see Section 11.19.2 [Service Types and Services],
page 616). This section provides a reference on how to manipulate services and service
types. This interface is provided by the (gnu services) module.

[Procedure]service type [value]
Return a new service of type, a <service-type> object (see below). value can be
any object; it represents the parameters of this particular service instance.

When value is omitted, the default value specified by type is used; if type does not
specify a default value, an error is raised.

For instance, this:

(service openssh-service-type)

is equivalent to this:

(service openssh-service-type

https://github.com/eudev-project/eudev
https://github.com/eudev-project/eudev

Chapter 11: System Configuration 619

(openssh-configuration))

In both cases the result is an instance of openssh-service-type with the default
configuration.

[Procedure]service? obj
Return true if obj is a service.

[Procedure]service-kind service
Return the type of service—i.e., a <service-type> object.

[Procedure]service-value service
Return the value associated with service. It represents its parameters.

Here is an example of how a service is created and manipulated:

(define s

(service nginx-service-type

(nginx-configuration

(nginx nginx)

(log-directory log-directory)

(run-directory run-directory)

(file config-file))))

(service? s)

⇒ #t

(eq? (service-kind s) nginx-service-type)

⇒ #t

The modify-services form provides a handy way to change the parameters of some of
the services of a list such as %base-services (see Section 11.10.1 [Base Services], page 263).
It evaluates to a list of services. Of course, you could always use standard list combinators
such as map and fold to do that (see Section “SRFI-1” in GNU Guile Reference Manual);
modify-services simply provides a more concise form for this common pattern.

[Special Form]modify-services services (type variable => body) . . .
Modify the services listed in services according to the given clauses. Each clause has
the form:

(type variable => body)

where type is a service type—e.g., guix-service-type—and variable is an identifier
that is bound within the body to the service parameters—e.g., a guix-configuration
instance—of the original service of that type.

The body should evaluate to the new service parameters, which will be used to
configure the new service. This new service will replace the original in the resulting
list. Because a service’s service parameters are created using define-record-type*,
you can write a succinct body that evaluates to the new service parameters by using
the inherit feature that define-record-type* provides.

Clauses can also have the following form:

(delete type)

Chapter 11: System Configuration 620

Such a clause removes all services of the given type from services.

See Section 11.2 [Using the Configuration System], page 233, for example usage.

Next comes the programming interface for service types. This is something you want
to know when writing new service definitions, but not necessarily when simply looking for
ways to customize your operating-system declaration.

[Data Type]service-type
This is the representation of a service type (see Section 11.19.2 [Service Types and
Services], page 616).

name This is a symbol, used only to simplify inspection and debugging.

extensions

A non-empty list of <service-extension> objects (see below).

compose (default: #f)
If this is #f, then the service type denotes services that cannot be
extended—i.e., services that do not receive “values” from other services.

Otherwise, it must be a one-argument procedure. The procedure is called
by fold-services and is passed a list of values collected from extensions.
It may return any single value.

extend (default: #f)
If this is #f, services of this type cannot be extended.

Otherwise, it must be a two-argument procedure: fold-services calls
it, passing it the initial value of the service as the first argument and
the result of applying compose to the extension values as the second
argument. It must return a value that is a valid parameter value for the
service instance.

description

This is a string, possibly using Texinfo markup, describing in a couple of
sentences what the service is about. This string allows users to find about
the service through guix system search (see Section 11.16 [Invoking guix
system], page 601).

default-value (default: &no-default-value)
The default value associated for instances of this service type. This allows
users to use the service form without its second argument:

(service type)

The returned service in this case has the default value specified by type.

See Section 11.19.2 [Service Types and Services], page 616, for examples.

[Procedure]service-extension target-type compute
Return a new extension for services of type target-type. compute must be a one-
argument procedure: fold-services calls it, passing it the value associated with the
service that provides the extension; it must return a valid value for the target service.

[Procedure]service-extension? obj
Return true if obj is a service extension.

Chapter 11: System Configuration 621

Occasionally, you might want to simply extend an existing service. This involves creating
a new service type and specifying the extension of interest, which can be verbose; the
simple-service procedure provides a shorthand for this.

[Procedure]simple-service name target value
Return a service that extends target with value. This works by creating a singleton
service type name, of which the returned service is an instance.

For example, this extends mcron (see Section 11.10.2 [Scheduled Job Execution],
page 283) with an additional job:

(simple-service 'my-mcron-job mcron-service-type

#~(job '(next-hour (3)) "guix gc -F 2G"))

At the core of the service abstraction lies the fold-services procedure, which is respon-
sible for “compiling” a list of services down to a single directory that contains everything
needed to boot and run the system—the directory shown by the guix system build com-
mand (see Section 11.16 [Invoking guix system], page 601). In essence, it propagates service
extensions down the service graph, updating each node parameters on the way, until it
reaches the root node.

[Procedure]fold-services services [#:target-type system-service-type]
Fold services by propagating their extensions down to the root of type target-type;
return the root service adjusted accordingly.

Lastly, the (gnu services) module also defines several essential service types, some of
which are listed below.

[Variable]system-service-type
This is the root of the service graph. It produces the system directory as returned by
the guix system build command.

[Variable]boot-service-type
The type of the “boot service”, which produces the boot script. The boot script is
what the initial RAM disk runs when booting.

[Variable]etc-service-type
The type of the /etc service. This service is used to create files under /etc and can
be extended by passing it name/file tuples such as:

(list `("issue" ,(plain-file "issue" "Welcome!\n")))

In this example, the effect would be to add an /etc/issue file pointing to the given
file.

[Variable]setuid-program-service-type
Type for the “setuid-program service”. This service collects lists of executable file
names, passed as gexps, and adds them to the set of setuid and setgid programs on
the system (see Section 11.11 [Setuid Programs], page 587).

[Variable]profile-service-type
Type of the service that populates the system profile—i.e., the programs under
/run/current-system/profile. Other services can extend it by passing it lists of
packages to add to the system profile.

Chapter 11: System Configuration 622

[Variable]provenance-service-type
This is the type of the service that records provenance meta-data in the system itself.
It creates several files under /run/current-system:

channels.scm

This is a “channel file” that can be passed to guix pull -C or guix time-

machine -C, and which describes the channels used to build the system,
if that information was available (see Chapter 6 [Channels], page 66).

configuration.scm

This is the file that was passed as the value for this provenance-

service-type service. By default, guix system reconfigure

automatically passes the OS configuration file it received on the
command line.

provenance

This contains the same information as the two other files but in a format
that is more readily processable.

In general, these two pieces of information (channels and configuration file) are enough
to reproduce the operating system “from source”.

Caveats: This information is necessary to rebuild your operating system,
but it is not always sufficient. In particular, configuration.scm itself is
insufficient if it is not self-contained—if it refers to external Guile modules
or to extra files. If you want configuration.scm to be self-contained,
we recommend that modules or files it refers to be part of a channel.

Besides, provenance meta-data is “silent” in the sense that it does not
change the bits contained in your system, except for the meta-data bits
themselves. Two different OS configurations or sets of channels can lead
to the same system, bit-for-bit; when provenance-service-type is used,
these two systems will have different meta-data and thus different store
file names, which makes comparison less trivial.

This service is automatically added to your operating system configuration when you
use guix system reconfigure, guix system init, or guix deploy.

[Variable]linux-loadable-module-service-type
Type of the service that collects lists of packages containing kernel-loadable modules,
and adds them to the set of kernel-loadable modules.

This service type is intended to be extended by other service types, such as below:

(simple-service 'installing-module

linux-loadable-module-service-type

(list module-to-install-1

module-to-install-2))

This does not actually load modules at bootup, only adds it to the kernel profile so
that it can be loaded by other means.

Chapter 11: System Configuration 623

11.19.4 Shepherd Services

The (gnu services shepherd) module provides a way to define services managed by the
GNU Shepherd, which is the initialization system—the first process that is started when
the system boots, also known as PID 1 (see Section “Introduction” in The GNU Shepherd
Manual).

Services in the Shepherd can depend on each other. For instance, the SSH daemon may
need to be started after the syslog daemon has been started, which in turn can only happen
once all the file systems have been mounted. The simple operating system defined earlier
(see Section 11.2 [Using the Configuration System], page 233) results in a service graph like
this:

user-file-systems

user-processes

root-file-system

file-system-/dev/pts file-system-/dev/shm file-system-/gnu/store

nscd guix-daemon urandom-seedsyslogd term-tty6

udev host-name

term-tty5 term-tty4term-tty3 term-tty2 term-tty1networking

ssh-daemon console-font-tty6 console-font-tty5 console-font-tty4console-font-tty3 console-font-tty2 console-font-tty1 loopback

You can actually generate such a graph for any operating system definition using the
guix system shepherd-graph command (see [system-shepherd-graph], page 609).

The %shepherd-root-service is a service object representing PID 1, of type shepherd-
root-service-type; it can be extended by passing it lists of <shepherd-service> objects.

[Data Type]shepherd-service
The data type representing a service managed by the Shepherd.

Chapter 11: System Configuration 624

provision

This is a list of symbols denoting what the service provides.

These are the names that may be passed to herd start, herd status,
and similar commands (see Section “Invoking herd” in The GNU Shep-
herd Manual). See Section “Defining Services” in The GNU Shepherd
Manual, for details.

requirement (default: '())
List of symbols denoting the Shepherd services this one depends on.

one-shot? (default: #f)
Whether this service is one-shot. One-shot services stop immediately
after their start action has completed. See Section “Slots of services” in
The GNU Shepherd Manual, for more info.

respawn? (default: #t)
Whether to restart the service when it stops, for instance when the un-
derlying process dies.

respawn-limit (default: #f)
Set a limit on how many times and how frequently a service may be
restarted by Shepherd before it is disabled. See Section “Defining Ser-
vices” in The GNU Shepherd Manual, for details.

respawn-delay (default: #f)
When true, this is the delay in seconds before restarting a failed service.

start

stop (default: #~(const #f))
The start and stop fields refer to the Shepherd’s facilities to start and
stop processes (see Section “Service De- and Constructors” in The GNU
Shepherd Manual). They are given as G-expressions that get expanded
in the Shepherd configuration file (see Section 8.12 [G-Expressions],
page 159).

actions (default: '())
This is a list of shepherd-action objects (see below) defining actions
supported by the service, in addition to the standard start and stop

actions. Actions listed here become available as herd sub-commands:

herd action service [arguments...]

auto-start? (default: #t)
Whether this service should be started automatically by the Shepherd.
If it is #f the service has to be started manually with herd start.

documentation

A documentation string, as shown when running:

herd doc service-name

where service-name is one of the symbols in provision (see Section “In-
voking herd” in The GNU Shepherd Manual).

Chapter 11: System Configuration 625

modules (default: %default-modules)
This is the list of modules that must be in scope when start and stop

are evaluated.

The example below defines a Shepherd service that spawns syslogd, the system logger
from the GNU Networking Utilities (see Section “syslogd invocation” in GNU Inetutils):

(let ((config (plain-file "syslogd.conf" "...")))

(shepherd-service

(documentation "Run the syslog daemon (syslogd).")

(provision '(syslogd))

(requirement '(user-processes))

(start #~(make-forkexec-constructor

(list #$(file-append inetutils "/libexec/syslogd")

"--rcfile" #$config)

#:pid-file "/var/run/syslog.pid"))

(stop #~(make-kill-destructor))))

Key elements in this example are the start and stop fields: they are staged code
snippets that use the make-forkexec-constructor procedure provided by the Shepherd
and its dual, make-kill-destructor (see Section “Service De- and Constructors” in The
GNU Shepherd Manual). The start field will have shepherd spawn syslogd with the given
option; note that we pass config after --rcfile, which is a configuration file declared above
(contents of this file are omitted). Likewise, the stop field tells how this service is to be
stopped; in this case, it is stopped by making the kill system call on its PID. Code staging
is achieved using G-expressions: #~ stages code, while #$ “escapes” back to host code (see
Section 8.12 [G-Expressions], page 159).

[Data Type]shepherd-action
This is the data type that defines additional actions implemented by a Shepherd
service (see above).

name Symbol naming the action.

documentation

This is a documentation string for the action. It can be viewed by run-
ning:

herd doc service action action

procedure

This should be a gexp that evaluates to a procedure of at least one argu-
ment, which is the “running value” of the service (see Section “Slots of
services” in The GNU Shepherd Manual).

The following example defines an action called say-hello that kindly greets the user:

(shepherd-action

(name 'say-hello)

(documentation "Say hi!")

(procedure #~(lambda (running . args)

(format #t "Hello, friend! arguments: ~s\n"

args)

Chapter 11: System Configuration 626

#t)))

Assuming this action is added to the example service, then you can do:

herd say-hello example

Hello, friend! arguments: ()

herd say-hello example a b c

Hello, friend! arguments: ("a" "b" "c")

This, as you can see, is a fairly sophisticated way to say hello. See Section “Defining
Services” in The GNU Shepherd Manual, for more info on actions.

[Procedure]shepherd-configuration-action
Return a configuration action to display file, which should be the name of the
service’s configuration file.

It can be useful to equip services with that action. For example, the service for the
Tor anonymous router (see Section 11.10.5 [Networking Services], page 301) is defined
roughly like this:

(let ((torrc (plain-file "torrc" ...)))

(shepherd-service

(provision '(tor))

(requirement '(user-processes loopback syslogd))

(start #~(make-forkexec-constructor

(list #$(file-append tor "/bin/tor") "-f" #$torrc)

#:user "tor" #:group "tor"))

(stop #~(make-kill-destructor))

(actions (list (shepherd-configuration-action torrc)))

(documentation "Run the Tor anonymous network overlay.")))

Thanks to this action, administrators can inspect the configuration file passed to tor

with this shell command:

cat $(herd configuration tor)

This can come in as a handy debugging tool!

[Variable]shepherd-root-service-type
The service type for the Shepherd “root service”—i.e., PID 1.

This is the service type that extensions target when they want to create shepherd
services (see Section 11.19.2 [Service Types and Services], page 616, for an exam-
ple). Each extension must pass a list of <shepherd-service>. Its value must be a
shepherd-configuration, as described below.

[Data Type]shepherd-configuration
This data type represents the Shepherd’s configuration.

shepherd (default: shepherd)

The Shepherd package to use.

services (default: '())

A list of <shepherd-service> to start. You should probably use the
service extension mechanism instead (see Section 11.19.4 [Shepherd Ser-
vices], page 623).

Chapter 11: System Configuration 627

The following example specifies the Shepherd package for the operating system:

(operating-system

;; ...

(services (append (list openssh-service-type))

;; ...

%desktop-services)

;; ...

;; Use own Shepherd package.

(essential-services

(modify-services (operating-system-default-essential-services

this-operating-system)

(shepherd-root-service-type config => (shepherd-configuration

(inherit config)

(shepherd my-shepherd))))))

[Variable]%shepherd-root-service
This service represents PID 1.

11.19.5 Complex Configurations

Some programs might have rather complex configuration files or formats, and to make it
easier to create Scheme bindings for these configuration files, you can use the utilities defined
in the (gnu services configuration) module.

The main utility is the define-configuration macro, a helper used to define a Scheme
record type (see Section “Record Overview” in GNU Guile Reference Manual). The fields
from this Scheme record can be serialized using serializers, which are procedures that take
some kind of Scheme value and translates them into another Scheme value or Section 8.12
[G-Expressions], page 159.

[Macro]define-configuration name clause1 clause2 . . .
Create a record type named name that contains the fields found in the clauses.

A clause has the following form:

(field-name

type-decl

documentation

option*

...)

field-name is an identifier that denotes the name of the field in the generated record.

type-decl is either type for fields that require a value to be set or (type default-

value) otherwise.

type is the type of the value corresponding to field-name; since Guile is untyped, a
predicate procedure—type?—will be called on the value corresponding to the field to
ensure that the value is of the correct type. This means that if say, type is package,
then a procedure named package? will be applied on the value to make sure that it
is indeed a <package> object.

default-value is the default value corresponding to the field; if none is specified, the
user is forced to provide a value when creating an object of the record type.

Chapter 11: System Configuration 628

documentation is a string formatted with Texinfo syntax which should provide a
description of what setting this field does.

option* is one of the following subclauses:

empty-serializer

Exclude this field from serialization.

(serializer serializer)

serializer is the name of a procedure which takes two arguments, the
first is the name of the field, and the second is the value corresponding
to the field. The procedure should return a string or Section 8.12 [G-
Expressions], page 159, that represents the content that will be serialized
to the configuration file. If none is specified, a procedure of the name
serialize-type will be used.

An example of a simple serializer procedure:

(define (serialize-boolean field-name value)

(let ((value (if value "true" "false")))

#~(string-append '#$field-name " = " #$value)))

(sanitizer sanitizer)

sanitizer is a procedure which takes one argument, a user-supplied value,
and returns a “sanitized” value for the field. If no sanitizer is specified, a
default sanitizer is used, which raises an error if the value is not of type
type.

An example of a sanitizer for a field that accepts both strings and symbols
looks like this:

(define (sanitize-foo value)

(cond ((string? value) value)

((symbol? value) (symbol->string value))

(else (error "bad value"))))

In some cases multiple different configuration records might be defined in the same
file, but their serializers for the same type might have to be different, because they
have different configuration formats. For example, the serialize-boolean procedure
for the Getmail service would have to be different from the one for the Transmission
service. To make it easier to deal with this situation, one can specify a serializer
prefix by using the prefix literal in the define-configuration form. This means
that one doesn’t have to manually specify a custom serializer for every field.

(define (foo-serialize-string field-name value)

...)

(define (bar-serialize-string field-name value)

...)

(define-configuration foo-configuration

(label

string

"The name of label.")

Chapter 11: System Configuration 629

(prefix foo-))

(define-configuration bar-configuration

(ip-address

string

"The IPv4 address for this device.")

(prefix bar-))

However, in some cases you might not want to serialize any of the values of the
record, to do this, you can use the no-serialization literal. There is also the
define-configuration/no-serialization macro which is a shorthand of this.

;; Nothing will be serialized to disk.

(define-configuration foo-configuration

(field

(string "test")

"Some documentation.")

(no-serialization))

;; The same thing as above.

(define-configuration/no-serialization bar-configuration

(field

(string "test")

"Some documentation."))

[Macro]define-maybe type
Sometimes a field should not be serialized if the user doesn’t specify a value. To
achieve this, you can use the define-maybe macro to define a “maybe type”; if the
value of a maybe type is left unset, or is set to the %unset-value value, then it will
not be serialized.

When defining a “maybe type”, the corresponding serializer for the regular type will
be used by default. For example, a field of type maybe-string will be serialized
using the serialize-string procedure by default, you can of course change this by
specifying a custom serializer procedure. Likewise, the type of the value would have
to be a string, or left unspecified.

(define-maybe string)

(define (serialize-string field-name value)

...)

(define-configuration baz-configuration

(name

;; If set to a string, the `serialize-string' procedure will be used

;; to serialize the string. Otherwise this field is not serialized.

maybe-string

"The name of this module."))

Like with define-configuration, one can set a prefix for the serializer name by
using the prefix literal.

Chapter 11: System Configuration 630

(define-maybe integer

(prefix baz-))

(define (baz-serialize-integer field-name value)

...)

There is also the no-serialization literal, which when set means that no seri-
alizer will be defined for the “maybe type”, regardless of whether its value is set
or not. define-maybe/no-serialization is a shorthand for specifying the no-

serialization literal.

(define-maybe/no-serialization symbol)

(define-configuration/no-serialization test-configuration

(mode

maybe-symbol

"Docstring."))

[Procedure]maybe-value-set? value
Predicate to check whether a user explicitly specified the value of a maybe field.

[Procedure]serialize-configuration configuration fields
Return a G-expression that contains the values corresponding to the fields of
configuration, a record that has been generated by define-configuration. The
G-expression can then be serialized to disk by using something like mixed-text-file.

Once you have defined a configuration record, you will most likely also want to document
it so that other people know to use it. To help with that, there are two procedures, both of
which are documented below.

[Procedure]generate-documentation documentation documentation-name
Generate a Texinfo fragment from the docstrings in documentation, a list of (label
fields sub-documentation ...). label should be a symbol and should be the name
of the configuration record. fields should be a list of all the fields available for the
configuration record.

sub-documentation is a (field-name configuration-name) tuple. field-name is
the name of the field which takes another configuration record as its value, and
configuration-name is the name of that configuration record.

sub-documentation is only needed if there are nested configuration records. For
example, the getmail-configuration record (see Section 11.10.13 [Mail Services],
page 374) accepts a getmail-configuration-file record in one of its rcfile field,
therefore documentation for getmail-configuration-file is nested in getmail-

configuration.

(generate-documentation

`((getmail-configuration ,getmail-configuration-fields

(rcfile getmail-configuration-file))

...)

'getmail-configuration)

documentation-name should be a symbol and should be the name of the configuration
record.

Chapter 11: System Configuration 631

[Procedure]configuration->documentation configuration-symbol
Take configuration-symbol, the symbol corresponding to the name used when defining
a configuration record with define-configuration, and print the Texinfo documen-
tation of its fields. This is useful if there aren’t any nested configuration records since
it only prints the documentation for the top-level fields.

As of right now, there is no automated way to generate documentation for configuration
records and put them in the manual. Instead, every time you make a change to the doc-
strings of a configuration record, you have to manually call generate-documentation or
configuration->documentation, and paste the output into the doc/guix.texi file.

Below is an example of a record type created using define-configuration and friends.

(use-modules (gnu services)

(guix gexp)

(gnu services configuration)

(srfi srfi-26)

(srfi srfi-1))

;; Turn field names, which are Scheme symbols into strings

(define (uglify-field-name field-name)

(let ((str (symbol->string field-name)))

;; field? -> is-field

(if (string-suffix? "?" str)

(string-append "is-" (string-drop-right str 1))

str)))

(define (serialize-string field-name value)

#~(string-append #$(uglify-field-name field-name) " = " #$value "\n"))

(define (serialize-integer field-name value)

(serialize-string field-name (number->string value)))

(define (serialize-boolean field-name value)

(serialize-string field-name (if value "true" "false")))

(define (serialize-contact-name field-name value)

#~(string-append "\n[" #$value "]\n"))

(define (list-of-contact-configurations? lst)

(every contact-configuration? lst))

(define (serialize-list-of-contact-configurations field-name value)

#~(string-append #$@(map (cut serialize-configuration <>

contact-configuration-fields)

value)))

(define (serialize-contacts-list-configuration configuration)

(mixed-text-file

Chapter 11: System Configuration 632

"contactrc"

#~(string-append "[Owner]\n"

#$(serialize-configuration

configuration contacts-list-configuration-fields))))

(define-maybe integer)

(define-maybe string)

(define-configuration contact-configuration

(name

string

"The name of the contact."

serialize-contact-name)

(phone-number

maybe-integer

"The person's phone number.")

(email

maybe-string

"The person's email address.")

(married?

boolean

"Whether the person is married."))

(define-configuration contacts-list-configuration

(name

string

"The name of the owner of this contact list.")

(email

string

"The owner's email address.")

(contacts

(list-of-contact-configurations '())

"A list of @code{contact-configuation} records which contain

information about all your contacts."))

A contacts list configuration could then be created like this:

(define my-contacts

(contacts-list-configuration

(name "Alice")

(email "alice@example.org")

(contacts

(list (contact-configuration

(name "Bob")

(phone-number 1234)

(email "bob@gnu.org")

(married? #f))

(contact-configuration

Chapter 11: System Configuration 633

(name "Charlie")

(phone-number 0000)

(married? #t))))))

After serializing the configuration to disk, the resulting file would look like this:

[owner]

name = Alice

email = alice@example.org

[Bob]

phone-number = 1234

email = bob@gnu.org

is-married = false

[Charlie]

phone-number = 0

is-married = true

634

12 System Troubleshooting Tips

Guix System allows rebooting into a previous generation should the last one be malfunction-
ing, which makes it quite robust against being broken irreversibly. This feature depends
on GRUB being correctly functioning though, which means that if for whatever reasons
your GRUB installation becomes corrupted during a system reconfiguration, you may not
be able to easily boot into a previous generation. A technique that can be used in this
case is to chroot into your broken system and reconfigure it from there. Such technique is
explained below.

12.1 Chrooting into an existing system

This section details how to chroot to an already installed Guix System with the aim of
reconfiguring it, for example to fix a broken GRUB installation. The process is similar
to how it would be done on other GNU/Linux systems, but there are some Guix System
particularities such as the daemon and profiles that make it worthy of explaining here.

1. Obtain a bootable image of Guix System. It is recommended the latest
development snapshot so the kernel and the tools used are at least as
as new as those of your installed system; it can be retrieved from the
https://ci.guix.gnu.org (https://ci.guix.gnu.org/search/latest/ISO-9660?
query=spec:images+status:success+system:x86_64-linux+image.iso) URL.
Follow the see Section 3.3 [USB Stick and DVD Installation], page 21, section for
copying it to a bootable media.

2. Boot the image, and proceed with the graphical text-based installer until your network
is configured. Alternatively, you could configure the network manually by following
the [manual-installation-networking], page 25, section. If you get the error ‘RTNETLINK
answers: Operation not possible due to RF-kill’, try ‘rfkill list’ followed by
‘rfkill unblock 0’, where ‘0’ is your device identifier (ID).

3. Switch to a virtual console (tty) if you haven’t already by pressing simultaneously
the Control + Alt + F4 keys. Mount your file system at /mnt. Assuming your root
partition is /dev/sda2, you would do:

mount /dev/sda2 /mnt

4. Mount special block devices and Linux-specific directories:

mount --rbind /proc /mnt/proc

mount --rbind /sys /mnt/sys

mount --rbind /dev /mnt/dev

If your system is EFI-based, you must also mount the ESP partition. Assuming it is
/dev/sda1, you can do so with:

mount /dev/sda1 /mnt/boot/efi

5. Enter your system via chroot:

chroot /mnt /bin/sh

6. Source the system profile as well as your user profile to setup the environment, where
user is the user name used for the Guix System you are attempting to repair:

source /var/guix/profiles/system/profile/etc/profile

https://ci.guix.gnu.org/search/latest/ISO-9660?query=spec:images+status:success+system:x86_64-linux+image.iso
https://ci.guix.gnu.org/search/latest/ISO-9660?query=spec:images+status:success+system:x86_64-linux+image.iso

Chapter 12: System Troubleshooting Tips 635

source /home/user/.guix-profile/etc/profile

To ensure you are working with the Guix revision you normally would as your normal
user, also source your current Guix profile:

source /home/user/.config/guix/current/etc/profile

7. Start a minimal guix-daemon in the background:

guix-daemon --build-users-group=guixbuild --disable-chroot &

8. Edit your Guix System configuration if needed, then reconfigure with:

guix system reconfigure your-config.scm

9. Finally, you should be good to reboot the system to test your fix.

636

13 Home Configuration

Guix supports declarative configuration of home environments by utilizing the configura-
tion mechanism described in the previous chapter (see Section 11.19 [Defining Services],
page 615), but for user’s dotfiles and packages. It works both on Guix System and foreign
distros and allows users to declare all the packages and services that should be installed
and configured for the user. Once a user has written a file containing a home-environment

record, such a configuration can be instantiated by an unprivileged user with the guix home

command (see Section 13.4 [Invoking guix home], page 667).

The user’s home environment usually consists of three basic parts: software, configura-
tion, and state. Software in mainstream distros are usually installed system-wide, but with
GNU Guix most software packages can be installed on a per-user basis without needing
root privileges, and are thus considered part of the user’s home environment. Packages on
their own are not very useful in many cases, because often they require some additional
configuration, usually config files that reside in XDG_CONFIG_HOME (~/.config by default)
or other directories. Everything else can be considered state, like media files, application
databases, and logs.

Using Guix for managing home environments provides a number of advantages:

• All software can be configured in one language (Guile Scheme), this gives users the
ability to share values between configurations of different programs.

• A well-defined home environment is self-contained and can be created in a declarative
and reproducible way—there is no need to grab external binaries or manually edit some
configuration file.

• After every guix home reconfigure invocation, a new home environment generation
will be created. This means that users can rollback to a previous home environment
generation so they don’t have to worry about breaking their configuration.

• It is possible to manage stateful data with Guix Home, this includes the ability to
automatically clone Git repositories on the initial setup of the machine, and periodically
running commands like rsync to sync data with another host. This functionality is
still in an experimental stage, though.

13.1 Declaring the Home Environment

The home environment is configured by providing a home-environment declaration in a
file that can be passed to the guix home command (see Section 13.4 [Invoking guix home],
page 667). The easiest way to get started is by generating an initial configuration with guix

home import:

guix home import ~/src/guix-config

The guix home import command reads some of the “dot files” such as ~/.bashrc found
in your home directory and copies them to the given directory, ~/src/guix-config in this
case; it also reads the contents of your profile, ~/.guix-profile, and, based on that, it
populates ~/src/guix-config/home-configuration.scm with a Home configuration that
resembles your current configuration.

A simple setup can include Bash and a custom text configuration, like in the example
below. Don’t be afraid to declare home environment parts, which overlaps with your current

Chapter 13: Home Configuration 637

dot files: before installing any configuration files, Guix Home will back up existing config
files to a separate place in the home directory.

Note: It is highly recommended that you manage your shell or shells with Guix
Home, because it will make sure that all the necessary scripts are sourced by
the shell configuration file. Otherwise you will need to do it manually. (see
Section 13.2 [Configuring the Shell], page 638).

(use-modules (gnu home)

(gnu home services)

(gnu home services shells)

(gnu services)

(gnu packages admin)

(guix gexp))

(home-environment

(packages (list htop))

(services

(list

(service home-bash-service-type

(home-bash-configuration

(guix-defaults? #t)

(bash-profile (list (plain-file "bash-profile" "\

export HISTFILE=$XDG_CACHE_HOME/.bash_history")))))

(simple-service 'test-config

home-xdg-configuration-files-service-type

(list `("test.conf"

,(plain-file "tmp-file.txt"

"the content of

~/.config/test.conf")))))))

The packages field should be self-explanatory, it will install the list of packages into the
user’s profile. The most important field is services, it contains a list of home services,
which are the basic building blocks of a home environment.

There is no daemon (at least not necessarily) related to a home service, a home service is
just an element that is used to declare part of home environment and extend other parts of
it. The extension mechanism discussed in the previous chapter (see Section 11.19 [Defining
Services], page 615) should not be confused with Shepherd services (see Section 11.19.4
[Shepherd Services], page 623). Using this extension mechanism and some Scheme code
that glues things together gives the user the freedom to declare their own, very custom,
home environments.

Once the configuration looks good, you can first test it in a throw-away “container”:

guix home container config.scm

The command above spawns a shell where your home environment is running. The shell
runs in a container, meaning it’s isolated from the rest of the system, so it’s a good way to

Chapter 13: Home Configuration 638

try out your configuration—you can see if configuration bits are missing or misbehaving,
if daemons get started, and so on. Once you exit that shell, you’re back to the prompt of
your original shell “in the real world”.

Once you have a configuration file that suits your needs, you can reconfigure your home
by running:

guix home reconfigure config.scm

This “builds” your home environment and creates ~/.guix-home pointing to it. Voilà!

Note: Make sure the operating system has elogind, systemd, or a similar mech-
anism to create the XDG run-time directory and has the XDG_RUNTIME_DIR

variable set. Failing that, the on-first-login script will not execute any-
thing, and processes like user Shepherd and its descendants will not start.

If you’re using Guix System, you can embed your home configuration in your system
configuration such that guix system reconfigure will deploy both the system and your
home at once! See [guix-home-service-type], page 565, for how to do that.

13.2 Configuring the Shell

This section is safe to skip if your shell or shells are managed by Guix Home. Otherwise,
read it carefully.

There are a few scripts that must be evaluated by a login shell to activate the home
environment. The shell startup files only read by login shells often have profile suffix. For
more information about login shells see Section “Invoking Bash” in The GNU Bash Refer-
ence Manual and see Section “Bash Startup Files” in The GNU Bash Reference Manual.

The first script that needs to be sourced is setup-environment, which sets all the
necessary environment variables (including variables declared by the user) and the second
one is on-first-login, which starts Shepherd for the current user and performs actions
declared by other home services that extends home-run-on-first-login-service-type.

Guix Home will always create ~/.profile, which contains the following lines:

HOME_ENVIRONMENT=$HOME/.guix-home

. $HOME_ENVIRONMENT/setup-environment

$HOME_ENVIRONMENT/on-first-login

This makes POSIX compliant login shells activate the home environment. However, in
most cases this file won’t be read by most modern shells, because they are run in non POSIX
mode by default and have their own *profile startup files. For example Bash will prefer
~/.bash_profile in case it exists and only if it doesn’t will it fallback to ~/.profile. Zsh
(if no additional options are specified) will ignore ~/.profile, even if ~/.zprofile doesn’t
exist.

To make your shell respect ~/.profile, add . ~/.profile or source ~/.profile to
the startup file for the login shell. In case of Bash, it is ~/.bash_profile, and in case of
Zsh, it is ~/.zprofile.

Note: This step is only required if your shell is not managed by Guix Home.
Otherwise, everything will be done automatically.

Chapter 13: Home Configuration 639

13.3 Home Services

A home service is not necessarily something that has a daemon and is managed by Shepherd
(see Section “Jump Start” in The GNU Shepherd Manual), in most cases it doesn’t. It’s
a simple building block of the home environment, often declaring a set of packages to be
installed in the home environment profile, a set of config files to be symlinked into XDG_

CONFIG_HOME (~/.config by default), and environment variables to be set by a login shell.

There is a service extension mechanism (see Section 11.19.1 [Service Composition],
page 615) which allows home services to extend other home services and utilize capabil-
ities they provide; for example: declare mcron jobs (see GNU Mcron) by extending Sec-
tion 13.3.3 [Mcron Home Service], page 649; declare daemons by extending Section 13.3.5
[Shepherd Home Service], page 651; add commands, which will be invoked on by the Bash
by extending Section 13.3.2 [Shells Home Services], page 644.

A good way to discover available home services is using the guix home search command
(see Section 13.4 [Invoking guix home], page 667). After the required home services are
found, include its module with the use-modules form (see Section “Using Guile Modules” in
The GNU Guile Reference Manual), or the #:use-modules directive (see Section “Creating
Guile Modules” in The GNU Guile Reference Manual) and declare a home service using
the service function, or extend a service type by declaring a new service with the simple-
service procedure from (gnu services).

13.3.1 Essential Home Services

There are a few essential home services defined in (gnu home services), they are mostly
for internal use and are required to build a home environment, but some of them will be
useful for the end user.

[Variable]home-environment-variables-service-type
The service of this type will be instantiated by every home environment automatically
by default, there is no need to define it, but someone may want to extend it with a
list of pairs to set some environment variables.

(list ("ENV_VAR1" . "value1")

("ENV_VAR2" . "value2"))

The easiest way to extend a service type, without defining a new service type is to
use the simple-service helper from (gnu services).

(simple-service 'some-useful-env-vars-service

home-environment-variables-service-type

`(("LESSHISTFILE" . "$XDG_CACHE_HOME/.lesshst")

("SHELL" . ,(file-append zsh "/bin/zsh"))

("USELESS_VAR" . #f)

("_JAVA_AWT_WM_NONREPARENTING" . #t)

("LITERAL_VALUE" . ,(literal-string "${abc}"))))

If you include such a service in you home environment definition, it will add the
following content to the setup-environment script (which is expected to be sourced
by the login shell):

export LESSHISTFILE="$XDG_CACHE_HOME/.lesshst"

export SHELL="/gnu/store/2hsg15n644f0glrcbkb1kqknmmqdar03-zsh-5.8/bin/zsh"

Chapter 13: Home Configuration 640

export _JAVA_AWT_WM_NONREPARENTING

export LITERAL_VALUE='${abc}'

Notice that literal-string above lets us declare that a value is to be interpreted
as a literal string, meaning that “special characters” such as the dollar sign will not
be interpreted by the shell.

Note: Make sure that module (gnu packages shells) is imported with
use-modules or any other way, this namespace contains the definition of
the zsh package, which is used in the example above.

The association list (see Section “Association Lists” in The GNU Guile Reference
manual) is a data structure containing key-value pairs, for home-environment-

variables-service-type the key is always a string, the value can be a string,
string-valued gexp (see Section 8.12 [G-Expressions], page 159), file-like object (see
Section 8.12 [G-Expressions], page 159) or boolean. For gexps, the variable will be
set to the value of the gexp; for file-like objects, it will be set to the path of the file
in the store (see Section 8.9 [The Store], page 150); for #t, it will export the variable
without any value; and for #f, it will omit variable.

[Variable]home-profile-service-type
The service of this type will be instantiated by every home environment automatically,
there is no need to define it, but you may want to extend it with a list of packages if
you want to install additional packages into your profile. Other services, which need
to make some programs available to the user will also extend this service type.

The extension value is just a list of packages:

(list htop vim emacs)

The same approach as simple-service (see Section 11.19.3 [Service Reference],
page 618) for home-environment-variables-service-type can be used here, too.
Make sure that modules containing the specified packages are imported with use-

modules. To find a package or information about its module use guix search (see Sec-
tion 5.2 [Invoking guix package], page 35). Alternatively, specification->package
can be used to get the package record from a string without importing its related
module.

There are few more essential services, but users are not expected to extend them.

[Variable]home-service-type
The root of home services DAG, it generates a folder, which later will be symlinked
to ~/.guix-home, it contains configurations, profile with binaries and libraries, and
some necessary scripts to glue things together.

[Variable]home-run-on-first-login-service-type
The service of this type generates a Guile script, which is expected to be executed
by the login shell. It is only executed if the special flag file inside XDG_RUNTIME_DIR

hasn’t been created, this prevents redundant executions of the script if multiple login
shells are spawned.

It can be extended with a gexp. However, to autostart an application, users should not
use this service, in most cases it’s better to extend home-shepherd-service-type

with a Shepherd service (see Section 11.19.4 [Shepherd Services], page 623), or extend
the shell’s startup file with the required command using the appropriate service type.

Chapter 13: Home Configuration 641

[Variable]home-files-service-type
The service of this type allows to specify a list of files, which will go to ~/.guix-

home/files, usually this directory contains configuration files (to be more precise it
contains symlinks to files in /gnu/store), which should be placed in $XDG_CONFIG_

DIR or in rare cases in $HOME. It accepts extension values in the following format:

`((".sway/config" ,sway-file-like-object)

(".tmux.conf" ,(local-file "./tmux.conf")))

Each nested list contains two values: a subdirectory and file-like object. After building
a home environment ~/.guix-home/files will be populated with appropriate content
and all nested directories will be created accordingly, however, those files won’t go
any further until some other service will do it. By default a home-symlink-manager-

service-type, which creates necessary symlinks in home folder to files from ~/.guix-

home/files and backs up already existing, but clashing configs and other things, is a
part of essential home services (enabled by default), but it’s possible to use alternative
services to implement more advanced use cases like read-only home. Feel free to
experiment and share your results.

It is often the case that Guix Home users already have a setup for versioning their
user configuration files (also known as dot files) in a single directory, and some way of
automatically deploy changes to their user home.

The home-dotfiles-service-type from (gnu home services dotfiles) is designed
to ease the way into using Guix Home for this kind of users, allowing them to point the
service to their dotfiles directory without migrating them to Guix native configurations.

Please keep in mind that it is advisable to keep your dotfiles directories under version
control, for example in the same repository where you’d track your Guix Home configuration.

There are two supported dotfiles directory layouts, for now. The 'plain layout, which
is structured as follows:

~$ tree -a ./dotfiles/

dotfiles/

.gitconfig

.gnupg

gpg-agent.conf

gpg.conf

.guile

.config

guix

channels.scm

nixpkgs

config.nix

.nix-channels

.tmux.conf

.vimrc

This tree structure is installed as is to the home directory upon guix home reconfigure.

The 'stow layout, which must follow the layout suggested by GNU Stow (https://www.
gnu.org/software/stow/) presents an additional application specific directory layer, just
like:

https://www.gnu.org/software/stow/
https://www.gnu.org/software/stow/

Chapter 13: Home Configuration 642

~$ tree -a ./dotfiles/

dotfiles/

git

.gitconfig

gpg

.gnupg

gpg-agent.conf

gpg.conf

guile

.guile

guix

.config

guix

channels.scm

nix

.config

nixpkgs

config.nix

.nix-channels

tmux

.tmux.conf

vim

.vimrc

13 directories, 10 files

For an informal specification please refer to the Stow manual (see Introduction). This
tree structure is installed following GNU Stow’s logic to the home directory upon guix home

reconfigure.

A suitable configuration with a 'plain layout could be:

(home-environment

;; ...

(services

(service home-dotfiles-service-type

(home-dotfiles-configuration

(directories '("./dotfiles"))))))

The expected home directory state would then be:

.

.config

guix

channels.scm

nixpkgs

config.nix

.gitconfig

.gnupg

gpg-agent.conf

gpg.conf

Chapter 13: Home Configuration 643

.guile

.nix-channels

.tmux.conf

.vimrc

[Variable]home-dotfiles-service-type
Return a service which is very similiar to home-files-service-type (and actually
extends it), but designed to ease the way into using Guix Home for users that already
track their dotfiles under some kind of version control. This service allows users
to point Guix Home to their dotfiles directory and have their files automatically
provisioned to their home directory, without migrating all of their dotfiles to Guix
native configurations.

[Data Type]home-dotfiles-configuration
Available home-dotfiles-configuration fields are:

source-directory (default: (current-source-directory)) (type: string)
The path where dotfile directories are resolved. By default dotfile di-
rectories are resolved relative the source location where home-dotfiles-
configuration appears.

layout (default: 'plain) (type: symbol)
The intended layout of the specified directory. It can be either 'stow
or 'plain.

directories (default: '()) (type: list-of-strings)
The list of dotfiles directories where home-dotfiles-service-type will
look for application dotfiles.

packages (type: maybe-list-of-strings)
The names of a subset of the GNU Stow package layer directories. When
provided the home-dotfiles-service-type will only provision dotfiles
from this subset of applications. This field will be ignored if layout is
set to 'plain.

excluded (default: '(".*~" ".*\\.swp" "\\.git" "\\.gitignore")) (type:
list-of-strings)

The list of file patterns home-dotfiles-service-type will exclude while
visiting each one of the directories.

[Variable]home-xdg-configuration-files-service-type
The service is very similar to home-files-service-type (and actually extends it),
but used for defining files, which will go to ~/.guix-home/files/.config, which
will be symlinked to $XDG_CONFIG_DIR by home-symlink-manager-service-type

(for example) during activation. It accepts extension values in the following format:

`(("sway/config" ,sway-file-like-object)

;; -> ~/.guix-home/files/.config/sway/config

;; -> $XDG_CONFIG_DIR/sway/config (by symlink-manager)

("tmux/tmux.conf" ,(local-file "./tmux.conf")))

Chapter 13: Home Configuration 644

[Variable]home-activation-service-type
The service of this type generates a guile script, which runs on every guix home

reconfigure invocation or any other action, which leads to the activation of the
home environment.

[Variable]home-symlink-manager-service-type
The service of this type generates a guile script, which will be executed during acti-
vation of home environment, and do a few following steps:

1. Reads the content of files/ directory of current and pending home environ-
ments.

2. Cleans up all symlinks created by symlink-manager on previous activation. Also,
sub-directories, which become empty also will be cleaned up.

3. Creates new symlinks the following way: It looks files/ directory (usually
defined with home-files-service-type, home-xdg-configuration-files-

service-type and maybe some others), takes the files from files/.config/

subdirectory and put respective links in XDG_CONFIG_DIR. For example
symlink for files/.config/sway/config will end up in $XDG_CONFIG_

DIR/sway/config. The rest files in files/ outside of files/.config/

subdirectory will be treated slightly different: symlink will just go to $HOME.
files/.some-program/config will end up in $HOME/.some-program/config.

4. If some sub-directories are missing, they will be created.

5. If there is a clashing files on the way, they will be backed up.

symlink-manager is a part of essential home services and is enabled and used by
default.

13.3.2 Shells

Shells play a quite important role in the environment initialization process, you can configure
them manually as described in section Section 13.2 [Configuring the Shell], page 638, but the
recommended way is to use home services listed below. It’s both easier and more reliable.

Each home environment instantiates home-shell-profile-service-type, which cre-
ates a ~/.profile startup file for all POSIX-compatible shells. This file contains all
the necessary steps to properly initialize the environment, but many modern shells like
Bash or Zsh prefer their own startup files, that’s why the respective home services (home-
bash-service-type and home-zsh-service-type) ensure that ~/.profile is sourced by
~/.bash_profile and ~/.zprofile, respectively.

Shell Profile Service

[Data Type]home-shell-profile-configuration
Available home-shell-profile-configuration fields are:

profile (default: '()) (type: text-config)
home-shell-profile is instantiated automatically by home-

environment, DO NOT create this service manually, it can only
be extended. profile is a list of file-like objects, which will go to
~/.profile. By default ~/.profile contains the initialization code

Chapter 13: Home Configuration 645

which must be evaluated by the login shell to make home-environment’s
profile available to the user, but other commands can be added to the
file if it is really necessary. In most cases shell’s configuration files are
preferred places for user’s customizations. Extend home-shell-profile
service only if you really know what you do.

Bash Home Service

[Data Type]home-bash-configuration
Available home-bash-configuration fields are:

package (default: bash) (type: package)
The Bash package to use.

guix-defaults? (default: #t) (type: boolean)
Add sane defaults like reading /etc/bashrc and coloring the output of
ls to the top of the .bashrc file.

environment-variables (default: '()) (type: alist)
Association list of environment variables to set for the Bash session. The
rules for the home-environment-variables-service-type apply here
(see Section 13.3.1 [Essential Home Services], page 639). The contents of
this field will be added after the contents of the bash-profile field.

aliases (default: '()) (type: alist)
Association list of aliases to set for the Bash session. The aliases will be
defined after the contents of the bashrc field has been put in the .bashrc
file. The alias will automatically be quoted, so something like this:

'(("ls" . "ls -alF"))

turns into

alias ls="ls -alF"

bash-profile (default: '()) (type: text-config)
List of file-like objects, which will be added to .bash_profile. Used for
executing user’s commands at start of login shell (In most cases the shell
started on tty just after login). .bash_login won’t be ever read, because
.bash_profile always present.

bashrc (default: '()) (type: text-config)
List of file-like objects, which will be added to .bashrc. Used for execut-
ing user’s commands at start of interactive shell (The shell for interactive
usage started by typing bash or by terminal app or any other program).

bash-logout (default: '()) (type: text-config)
List of file-like objects, which will be added to .bash_logout. Used for
executing user’s commands at the exit of login shell. It won’t be read
in some cases (if the shell terminates by exec’ing another process for
example).

You can extend the Bash service by using the home-bash-extension configuration
record, whose fields must mirror that of home-bash-configuration (see [home-bash-
configuration], page 645). The contents of the extensions will be added to the end of the

Chapter 13: Home Configuration 646

corresponding Bash configuration files (see Section “Bash Startup Files” in The GNU
Bash Reference Manual.

For example, here is how you would define a service that extends the Bash service such
that ~/.bash_profile defines an additional environment variable, PS1:

(define bash-fancy-prompt-service

(simple-service 'bash-fancy-prompt

home-bash-service-type

(home-bash-extension

(environment-variables

'(("PS1" . "\\u \\wλ "))))))

You would then add bash-fancy-prompt-service to the list in the services field of
your home-environment. The reference of home-bash-extension follows.

[Data Type]home-bash-extension
Available home-bash-extension fields are:

environment-variables (default: '()) (type: alist)
Additional environment variables to set. These will be combined with
the environment variables from other extensions and the base service to
form one coherent block of environment variables.

aliases (default: '()) (type: alist)
Additional aliases to set. These will be combined with the aliases from
other extensions and the base service.

bash-profile (default: '()) (type: text-config)
Additional text blocks to add to .bash_profile, which will be combined
with text blocks from other extensions and the base service.

bashrc (default: '()) (type: text-config)
Additional text blocks to add to .bashrc, which will be combined with
text blocks from other extensions and the base service.

bash-logout (default: '()) (type: text-config)
Additional text blocks to add to .bash_logout, which will be combined
with text blocks from other extensions and the base service.

Zsh Home Service

[Data Type]home-zsh-configuration
Available home-zsh-configuration fields are:

package (default: zsh) (type: package)
The Zsh package to use.

xdg-flavor? (default: #t) (type: boolean)
Place all the configs to $XDG_CONFIG_HOME/zsh. Makes ~/.zshenv to set
ZDOTDIR to $XDG_CONFIG_HOME/zsh. Shell startup process will continue
with $XDG_CONFIG_HOME/zsh/.zshenv.

environment-variables (default: '()) (type: alist)
Association list of environment variables to set for the Zsh session.

Chapter 13: Home Configuration 647

zshenv (default: '()) (type: text-config)
List of file-like objects, which will be added to .zshenv. Used for setting
user’s shell environment variables. Must not contain commands assuming
the presence of tty or producing output. Will be read always. Will be
read before any other file in ZDOTDIR.

zprofile (default: '()) (type: text-config)
List of file-like objects, which will be added to .zprofile. Used for
executing user’s commands at start of login shell (In most cases the shell
started on tty just after login). Will be read before .zlogin.

zshrc (default: '()) (type: text-config)
List of file-like objects, which will be added to .zshrc. Used for executing
user’s commands at start of interactive shell (The shell for interactive
usage started by typing zsh or by terminal app or any other program).

zlogin (default: '()) (type: text-config)
List of file-like objects, which will be added to .zlogin. Used for execut-
ing user’s commands at the end of starting process of login shell.

zlogout (default: '()) (type: text-config)
List of file-like objects, which will be added to .zlogout. Used for exe-
cuting user’s commands at the exit of login shell. It won’t be read in some
cases (if the shell terminates by exec’ing another process for example).

Inputrc Profile Service

The GNU Readline package (https://tiswww.cwru.edu/php/chet/readline/rltop.
html) includes Emacs and vi editing modes, with the ability to customize the configuration
with settings in the ~/.inputrc file. With the gnu home services shells module, you
can setup your readline configuration in a predictable manner, as shown below. For more
information about configuring an ~/.inputrc file, see Section “Readline Init File” in GNU
Readline.

[Variable]home-inputrc-service-type
This is the service to setup various .inputrc configurations. The settings in .inputrc

are read by all programs which are linked with GNU Readline.

Here is an example of a service and its configuration that you could add to the
services field of your home-environment:

(service home-inputrc-service-type

(home-inputrc-configuration

(key-bindings

`(("Control-l" . "clear-screen")))

(variables

`(("bell-style" . "visible")

("colored-completion-prefix" . #t)

("editing-mode" . "vi")

("show-mode-in-prompt" . #t)))

(conditional-constructs

`(("$if mode=vi" .

https://tiswww.cwru.edu/php/chet/readline/rltop.html
https://tiswww.cwru.edu/php/chet/readline/rltop.html

Chapter 13: Home Configuration 648

,(home-inputrc-configuration

(variables

`(("colored-stats" . #t)

("enable-bracketed-paste" . #t)))))

("$else" .

,(home-inputrc-configuration

(variables

`(("show-all-if-ambiguous" . #t)))))

("endif" . #t)

("$include" . "/etc/inputrc")

("$include" . ,(file-append

(specification->package "readline")

"/etc/inputrc"))))))

The example above starts with a combination of key-bindings and variables.
The conditional-constructs show how it is possible to add conditionals and in-
cludes. In the example above colored-stats is only enabled if the editing mode is
vi style, and it also reads any additional configuration located in /etc/inputrc or
in /gnu/store/...-readline/etc/inputrc.

The value associated with a home-inputrc-service-type instance must be a home-

inputrc-configuration record, as described below.

[Data Type]home-inputrc-configuration
Available home-inputrc-configuration fields are:

key-bindings (default: '()) (type: alist)
Association list of readline key bindings to be added to the ~/.inputrc

file.

'((\"Control-l\" . \"clear-screen\"))

turns into

Control-l: clear-screen

variables (default: '()) (type: alist)
Association list of readline variables to set.

'((\"bell-style\" . \"visible\")

(\"colored-completion-prefix\" . #t))

turns into

set bell-style visible

set colored-completion-prefix on

conditional-constructs (default: '()) (type: alist)
Association list of conditionals to add to the initialization file. This in-
cludes $if, else, endif and include and they receive a value of another
home-inputrc-configuration.

(conditional-constructs

`((\"$if mode=vi\" .

,(home-inputrc-configuration

(variables

Chapter 13: Home Configuration 649

`((\"show-mode-in-prompt\" . #t)))))

(\"$else\" .

,(home-inputrc-configuration

(key-bindings

`((\"Control-l\" . \"clear-screen\")))))

(\"$endif\" . #t)))

turns into

$if mode=vi

set show-mode-in-prompt on

$else

Control-l: clear-screen

$endif

extra-content (default: "") (type: text-config)
Extra content appended as-is to the configuration file. Run man readline

for more information about all the configuration options.

13.3.3 Scheduled User’s Job Execution

The (gnu home services mcron) module provides an interface to GNU mcron, a daemon
to run jobs at scheduled times (see GNU mcron). The information about system’s mcron is
applicable here (see Section 11.10.2 [Scheduled Job Execution], page 283), the only difference
for home services is that they have to be declared in a home-environment record instead
of an operating-system record.

[Variable]home-mcron-service-type
This is the type of the mcron home service, whose value is a home-mcron-

configuration object. It allows to manage scheduled tasks.

This service type can be the target of a service extension that provides additional job
specifications (see Section 11.19.1 [Service Composition], page 615). In other words,
it is possible to define services that provide additional mcron jobs to run.

[Data Type]home-mcron-configuration
Available home-mcron-configuration fields are:

mcron (default: mcron) (type: file-like)
The mcron package to use.

jobs (default: '()) (type: list-of-gexps)
This is a list of gexps (see Section 8.12 [G-Expressions], page 159), where
each gexp corresponds to an mcron job specification (see Section “Syntax”
in GNU mcron).

log? (default: #t) (type: boolean)
Log messages to standard output.

log-format (default: "~1@*~a ~a: ~a~%") (type: string)
(ice-9 format) format string for log messages. The default value
produces messages like "‘pid name: message"’ (see Section “Invoking
mcron” in GNU mcron). Each message is also prefixed by a timestamp
by GNU Shepherd.

Chapter 13: Home Configuration 650

13.3.4 Power Management Home Services

The (gnu home services pm) module provides home services pertaining to battery power.

[Variable]home-batsignal-service-type
Service for batsignal, a program that monitors battery levels and warns the user
through desktop notifications when their battery is getting low. You can also configure
a command to be run when the battery level passes a point deemed “dangerous”. This
service is configured with the home-batsignal-configuration record.

[Data Type]home-batsignal-configuration
Data type representing the configuration for batsignal.

warning-level (default: 15)
The battery level to send a warning message at.

warning-message (default: #f)
The message to send as a notification when the battery level reaches the
warning-level. Setting to #f uses the default message.

critical-level (default: 5)
The battery level to send a critical message at.

critical-message (default: #f)
The message to send as a notification when the battery level reaches the
critical-level. Setting to #f uses the default message.

danger-level (default: 2)
The battery level to run the danger-command at.

danger-command (default: #f)
The command to run when the battery level reaches the danger-level.
Setting to #f disables running the command entirely.

full-level (default: #f)
The battery level to send a full message at. Setting to #f disables sending
the full message entirely.

full-message (default: #f)
The message to send as a notification when the battery level reaches the
full-level. Setting to #f uses the default message.

batteries (default: '())
The batteries to monitor. Setting to '() tries to find batteries automat-
ically.

poll-delay (default: 60)
The time in seconds to wait before checking the batteries again.

icon (default: #f)
A file-like object to use as the icon for battery notifications. Setting to
#f disables notification icons entirely.

notifications? (default: #t)
Whether to send any notifications.

Chapter 13: Home Configuration 651

notifications-expire? (default: #f)
Whether notifications sent expire after a time.

notification-command (default: #f)
Command to use to send messages. Setting to #f sends a notification
through libnotify.

ignore-missing? (default: #f)
Whether to ignore missing battery errors.

13.3.5 Managing User Daemons

The (gnu home services shepherd) module supports the definitions of per-user Shepherd
services (see Section “Introduction” in The GNU Shepherd Manual). You extend home-

shepherd-service-type with new services; Guix Home then takes care of starting the
shepherd daemon for you when you log in, which in turns starts the services you asked for.

[Variable]home-shepherd-service-type
The service type for the userland Shepherd, which allows one to manage long-running
processes or one-shot tasks. User’s Shepherd is not an init process (PID 1), but almost
all other information described in (see Section 11.19.4 [Shepherd Services], page 623)
is applicable here too.

This is the service type that extensions target when they want to create shepherd
services (see Section 11.19.2 [Service Types and Services], page 616, for an example).
Each extension must pass a list of <shepherd-service>. Its value must be a home-

shepherd-configuration, as described below.

[Data Type]home-shepherd-configuration
This data type represents the Shepherd’s configuration.

shepherd (default: shepherd)

The Shepherd package to use.

auto-start? (default: #t)

Whether or not to start Shepherd on first login.

services (default: '())

A list of <shepherd-service> to start. You should probably use the
service extension mechanism instead (see Section 11.19.4 [Shepherd Ser-
vices], page 623).

13.3.6 Secure Shell

The OpenSSH package (https://www.openssh.com) includes a client, the ssh command,
that allows you to connect to remote machines using the SSH (secure shell) protocol. With
the (gnu home services ssh) module, you can set up OpenSSH so that it works in a pre-
dictable fashion, almost independently of state on the local machine. To do that, you
instantiate home-openssh-service-type in your Home configuration, as explained below.

[Variable]home-openssh-service-type
This is the type of the service to set up the OpenSSH client. It takes care of several
things:

https://www.openssh.com

Chapter 13: Home Configuration 652

• providing a ~/.ssh/config file based on your configuration so that ssh knows
about hosts you regularly connect to and their associated parameters;

• providing a ~/.ssh/authorized_keys, which lists public keys that the local SSH
server, sshd, may accept to connect to this user account;

• optionally providing a ~/.ssh/known_hosts file so that ssh can authenticate
hosts you connect to.

Here is an example of a service and its configuration that you could add to the
services field of your home-environment:

(service home-openssh-service-type

(home-openssh-configuration

(hosts

(list (openssh-host (name "ci.guix.gnu.org")

(user "charlie"))

(openssh-host (name "chbouib")

(host-name "chbouib.example.org")

(user "supercharlie")

(port 10022))))

(authorized-keys (list (local-file "alice.pub")))))

The example above lists two hosts and their parameters. For instance, running ssh

chbouib will automatically connect to chbouib.example.org on port 10022, log-
ging in as user ‘supercharlie’. Further, it marks the public key in alice.pub as
authorized for incoming connections.

The value associated with a home-openssh-service-type instance must be a home-

openssh-configuration record, as describe below.

[Data Type]home-openssh-configuration
This is the datatype representing the OpenSSH client and server configuration in
one’s home environment. It contains the following fields:

hosts (default: '())
A list of openssh-host records specifying host names and associated con-
nection parameters (see below). This host list goes into ~/.ssh/config,
which ssh reads at startup.

known-hosts (default: *unspecified*)
This must be either:

• *unspecified*, in which case home-openssh-service-type leaves
it up to ssh and to the user to maintain the list of known hosts at
~/.ssh/known_hosts, or

• a list of file-like objects, in which case those are concatenated and
emitted as ~/.ssh/known_hosts.

The ~/.ssh/known_hosts contains a list of host name/host key pairs
that allow ssh to authenticate hosts you connect to and to detect possible
impersonation attacks. By default, ssh updates it in a TOFU, trust-on-
first-use fashion, meaning that it records the host’s key in that file the first

Chapter 13: Home Configuration 653

time you connect to it. This behavior is preserved when known-hosts is
set to *unspecified*.

If you instead provide a list of host keys upfront in the known-hosts

field, your configuration becomes self-contained and stateless: it can be
replicated elsewhere or at another point in time. Preparing this list can
be relatively tedious though, which is why *unspecified* is kept as a
default.

authorized-keys (default: #false)
The default #false value means: Leave any ~/.ssh/authorized_keys

file alone. Otherwise, this must be a list of file-like objects, each of which
containing an SSH public key that should be authorized to connect to
this machine.

Concretely, these files are concatenated and made available as
~/.ssh/authorized_keys. If an OpenSSH server, sshd, is running on
this machine, then it may take this file into account: this is what sshd
does by default, but be aware that it can also be configured to ignore it.

add-keys-to-agent (default: no)
This string specifies whether keys should be automatically added to a
running ssh-agent. If this option is set to yes and a key is loaded from
a file, the key and its passphrase are added to the agent with the default
lifetime, as if by ssh-add. If this option is set to ask, ssh will require
confirmation. If this option is set to confirm, each use of the key must
be confirmed. If this option is set to no, no keys are added to the agent.
Alternately, this option may be specified as a time interval to specify the
key’s lifetime in ssh-agent, after which it will automatically be removed.
The argument must be no, yes, confirm (optionally followed by a time
interval), ask or a time interval.

[Data Type]openssh-host
Available openssh-host fields are:

name (type: string)
Name of this host declaration. A openssh-host must define only name

or match-criteria. Use host-name \"*\" for top-level options.

host-name (type: maybe-string)
Host name—e.g., "foo.example.org" or "192.168.1.2".

match-criteria (type: maybe-match-criteria)
When specified, this string denotes the set of hosts to which the entry
applies, superseding the host-name field. Its first element must be all or
one of ssh-match-keywords. The rest of the elements are arguments for
the keyword, or other criteria. A openssh-host must define only name

or match-criteria. Other host configuration options will apply to all
hosts matching match-criteria.

Chapter 13: Home Configuration 654

address-family (type: maybe-address-family)
Address family to use when connecting to this host: one of AF_INET (for
IPv4 only), AF_INET6 (for IPv6 only). Additionally, the field can be left
unset to allow any address family.

identity-file (type: maybe-string)
The identity file to use—e.g., "/home/charlie/.ssh/id_ed25519".

port (type: maybe-natural-number)
TCP port number to connect to.

user (type: maybe-string)
User name on the remote host.

forward-x11? (type: maybe-boolean)
Whether to forward remote client connections to the local X11 graphical
display.

forward-x11-trusted? (type: maybe-boolean)
Whether remote X11 clients have full access to the original X11 graphical
display.

forward-agent? (type: maybe-boolean)
Whether the authentication agent (if any) is forwarded to the remote
machine.

compression? (type: maybe-boolean)
Whether to compress data in transit.

proxy (type: maybe-proxy-command-or-jump-list)
The command to use to connect to the server or a list of SSH hosts to
jump through before connecting to the server. The field may be set to
either a proxy-command or a list of proxy-jump records.

As an example, a proxy-command to connect via an HTTP proxy at
192.0.2.0 would be constructed with: (proxy-command "nc -X connect

-x 192.0.2.0:8080 %h %p").

[Data Type]proxy-jump
Available proxy-jump fields are:

user (type: maybe-string)
User name on the remote host.

host-name (type: string)
Host name—e.g., foo.example.org or 192.168.1.2.

port (type: maybe-natural-number)
TCP port number to connect to.

host-key-algorithms (type: maybe-string-list)
The list of accepted host key algorithms—e.g., '("ssh-ed25519").

accepted-key-types (type: maybe-string-list)
The list of accepted user public key types.

Chapter 13: Home Configuration 655

extra-content (default: "") (type: raw-configuration-string)
Extra content appended as-is to this Host block in ~/.ssh/config.

The parcimonie service runs a daemon that slowly refreshes a GnuPG public key from
a keyserver. It refreshes one key at a time; between every key update parcimonie sleeps a
random amount of time, long enough for the previously used Tor circuit to expire. This
process is meant to make it hard for an attacker to correlate the multiple key update.

As an example, here is how you would configure parcimonie to refresh the keys in your
GnuPG keyring, as well as those keyrings created by Guix, such as when running guix

import:

(service home-parcimonie-service-type

(home-parcimonie-configuration

(refresh-guix-keyrings? #t)))

This assumes that the Tor anonymous routing daemon is already running on your system.
On Guix System, this can be achieved by setting up tor-service-type (see Section 11.10.5
[Networking Services], page 301).

The service reference is given below.

[Variable]parcimonie-service-type
This is the service type for parcimonie (Parcimonie’s web site (https://salsa.
debian.org/intrigeri/parcimonie)). Its value must be a home-parcimonie-

configuration, as shown below.

[Data Table]home-parcimonie-configuration
Available home-parcimonie-configuration fields are:

parcimonie (default: parcimonie) (type: file-like)
The parcimonie package to use.

verbose? (default: #f) (type: boolean)
Whether to have more verbose logging from the service.

gnupg-already-torified? (default: #f) (type: boolean)
Whether GnuPG is already configured to pass all traffic through Tor
(https://torproject.org).

refresh-guix-keyrings? (default: #f) (type: boolean)
Guix creates a few keyrings in the $XDG CONFIG DIR, such as when
running guix import (see Section 9.5 [Invoking guix import], page 189).
Setting this to #t will also refresh any keyrings which Guix has created.

extra-content (default: #f) (type: raw-configuration-string)
Raw content to add to the parcimonie command.

The OpenSSH package (https://www.openssh.com) includes a daemon, the ssh-agent
command, that manages keys to connect to remote machines using the SSH (secure shell)
protocol. With the (gnu home services ssh) service, you can configure the OpenSSH
ssh-agent to run upon login. See Section 13.3.7 [GNU Privacy Guard], page 656, for an
alternative to OpenSSH’s ssh-agent.

https://salsa.debian.org/intrigeri/parcimonie
https://salsa.debian.org/intrigeri/parcimonie
https://torproject.org
https://torproject.org
https://www.openssh.com

Chapter 13: Home Configuration 656

Here is an example of a service and its configuration that you could add to the services
field of your home-environment:

(service home-ssh-agent-service-type

(home-ssh-agent-configuration

(extra-options '("-t" "1h30m"))))

[Variable]home-ssh-agent-service-type
This is the type of the ssh-agent home service, whose value is a home-ssh-agent-

configuration object.

[Data Type]home-ssh-agent-configuration
Available home-ssh-agent-configuration fields are:

openssh (default: openssh) (type: file-like)
The OpenSSH package to use.

socket-directory (default: XDG_RUNTIME_DIR/ssh-agent") (type: gexp)
The directory to write the ssh-agent’s socket file.

extra-options (default: '())
Extra options will be passed to ssh-agent, please run man ssh-agent for
more information.

13.3.7 GNU Privacy Guard

The (gnu home services gnupg) module provides services that help you set up the GNU
Privacy Guard, also known as GnuPG or GPG, in your home environment.

The gpg-agent service configures and sets up GPG’s agent, the program that is respon-
sible for managing OpenPGP private keys and, optionally, OpenSSH (secure shell) private
keys (see Section “Invoking GPG-AGENT” in Using the GNU Privacy Guard).

As an example, here is how you would configure gpg-agent with SSH support such that
it uses the Emacs-based Pinentry interface when prompting for a passphrase:

(service home-gpg-agent-service-type

(home-gpg-agent-configuration

(pinentry-program

(file-append pinentry-emacs "/bin/pinentry-emacs"))

(ssh-support? #t)))

The service reference is given below.

[Variable]home-gpg-agent-service-type
This is the service type for gpg-agent (see Section “Invoking GPG-AGENT” in Using
the GNU Privacy Guard). Its value must be a home-gpg-agent-configuration, as
shown below.

[Data Type]home-gpg-agent-configuration
Available home-gpg-agent-configuration fields are:

gnupg (default: gnupg) (type: file-like)
The GnuPG package to use.

Chapter 13: Home Configuration 657

pinentry-program (type: file-like)
Pinentry program to use. Pinentry is a small user interface that gpg-

agent delegates to anytime it needs user input for a passphrase or PIN

(personal identification number) (see Using the PIN-Entry).

ssh-support? (default: #f) (type: boolean)
Whether to enable SSH (secure shell) support. When true, gpg-agent
acts as a drop-in replacement for OpenSSH’s ssh-agent program, taking
care of OpenSSH secret keys and directing passphrase requests to the
chosen Pinentry program.

default-cache-ttl (default: 600) (type: integer)
Time a cache entry is valid, in seconds.

max-cache-ttl (default: 7200) (type: integer)
Maximum time a cache entry is valid, in seconds. After this time a cache
entry will be expired even if it has been accessed recently.

default-cache-ttl-ssh (default: 1800) (type: integer)
Time a cache entry for SSH keys is valid, in seconds.

max-cache-ttl-ssh (default: 7200) (type: integer)
Maximum time a cache entry for SSH keys is valid, in seconds.

extra-content (default: "") (type: raw-configuration-string)
Raw content to add to the end of ~/.gnupg/gpg-agent.conf.

13.3.8 Desktop Home Services

The (gnu home services desktop) module provides services that you may find useful on
“desktop” systems running a graphical user environment such as Xorg.

[Variable]home-x11-service-type
This is the service type representing the X Window graphical display server (also
referred to as “X11”).

X Window is necessarily started by a system service; on Guix System, starting it is
the responsibility of gdm-service-type and similar services (see Section 11.10.7 [X
Window], page 325). At the level of Guix Home, as an unprivileged user, we cannot
start X Window; all we can do is check whether it is running. This is what this service
does.

As a user, you probably don’t need to worry or explicitly instantiate home-x11-

service-type. Services that require an X Window graphical display, such as home-
redshift-service-type below, instantiate it and depend on its corresponding x11-

display Shepherd service (see Section 13.3.5 [Shepherd Home Service], page 651).

When X Window is running, the x11-display Shepherd service starts and sets the
DISPLAY environment variable of the shepherd process, using its original value if it
was already set; otherwise, it fails to start.

The service can also be forced to use a given value for DISPLAY, like so:

herd start x11-display :3

In the example above, x11-display is instructed to set DISPLAY to :3.

Chapter 13: Home Configuration 658

[Variable]home-redshift-service-type
This is the service type for Redshift (https://github.com/jonls/redshift), a pro-
gram that adjusts the display color temperature according to the time of day. Its
associated value must be a home-redshift-configuration record, as shown below.

A typical configuration, where we manually specify the latitude and longitude, might
look like this:

(service home-redshift-service-type

(home-redshift-configuration

(location-provider 'manual)

(latitude 35.81) ;northern hemisphere

(longitude -0.80))) ;west of Greenwich

[Data Type]home-redshift-configuration
Available home-redshift-configuration fields are:

redshift (default: redshift) (type: file-like)
Redshift package to use.

location-provider (default: geoclue2) (type: symbol)
Geolocation provider—'manual or 'geoclue2. In the former case, you
must also specify the latitude and longitude fields so Redshift can
determine daytime at your place. In the latter case, the Geoclue system
service must be running; it will be queried for location information.

adjustment-method (default: randr) (type: symbol)
Color adjustment method.

daytime-temperature (default: 6500) (type: integer)
Daytime color temperature (kelvins).

nighttime-temperature (default: 4500) (type: integer)
Nighttime color temperature (kelvins).

daytime-brightness (type: maybe-inexact-number)
Daytime screen brightness, between 0.1 and 1.0, or left unspecified.

nighttime-brightness (type: maybe-inexact-number)
Nighttime screen brightness, between 0.1 and 1.0, or left unspecified.

latitude (type: maybe-inexact-number)
Latitude, when location-provider is 'manual.

longitude (type: maybe-inexact-number)
Longitude, when location-provider is 'manual.

dawn-time (type: maybe-string)
Custom time for the transition from night to day in the morning—
"HH:MM" format. When specified, solar elevation is not used to determine
the daytime/nighttime period.

dusk-time (type: maybe-string)
Likewise, custom time for the transition from day to night in the evening.

https://github.com/jonls/redshift

Chapter 13: Home Configuration 659

extra-content (default: "") (type: raw-configuration-string)
Extra content appended as-is to the Redshift configuration file. Run man

redshift for more information about the configuration file format.

[Variable]home-dbus-service-type
This is the service type for running a session-specific D-Bus, for unprivileged appli-
cations that require D-Bus to be running.

[Data Type]home-dbus-configuration
The configuration record for home-dbus-service-type.

dbus (default: dbus)
The package providing the /bin/dbus-daemon command.

[Variable]home-unclutter-service-type
This is the service type for Unclutter, a program that runs on the background of an
X11 session and detects when the X pointer hasn’t moved for a specified idle timeout,
after which it hides the cursor so that you can focus on the text underneath. Its
associated value must be a home-unclutter-configuration record, as shown below.

A typical configuration, where we manually specify the idle timeout (in seconds),
might look like this:

(service home-unclutter-service-type

(home-unclutter-configuration

(idle-timeout 2)))

[Data Type]home-unclutter-configuration
The configuration record for home-unclutter-service-type.

unclutter (default: unclutter) (type: file-like)
Unclutter package to use.

idle-timeout (default: 5) (type: integer)
A timeout in seconds after which to hide cursor.

[Variable]home-xmodmap-service-type
This is the service type for the xmodmap (https://gitlab.freedesktop.org/xorg/
app/xmodmap) utility to modify keymaps and pointer button mappings under the Xorg
display server. Its associated value must be a home-xmodmap-configuration record,
as shown below.

The key-map field takes a list of objects, each of which is either a statement (a string)
or an assignment (a pair of strings). As an example, the snippet below swaps around
the Caps_Lock and the Control_L keys, by first removing the keysyms (on the right-
hand side) from the corresponding modifier maps (on the left-hand side), re-assigning
them by swapping each other out, and finally adding back the keysyms to the modifier
maps.

(service home-xmodmap-service-type

(home-xmodmap-configuration

(key-map '(("remove Lock" . "Caps_Lock")

("remove Control" . "Control_L")

https://gitlab.freedesktop.org/xorg/app/xmodmap
https://gitlab.freedesktop.org/xorg/app/xmodmap

Chapter 13: Home Configuration 660

("keysym Control_L" . "Caps_Lock")

("keysym Caps_Lock" . "Control_L")

("add Lock" . "Caps_Lock")

("add Control" . "Control_L")))))

[Data Type]home-xmodmap-configuration
The configuration record for home-xmodmap-service-type. Its available fields are:

xmodmap (default: xmodmap) (type: file-like)
The xmodmap package to use.

key-map (default: '()) (type: list)
The list of expressions to be read by xmodmap on service startup.

13.3.9 Guix Home Services

The (gnu home services guix) module provides services for user-specific Guix configura-
tion.

[Variable]home-channels-service-type
This is the service type for managing $XDG_CONFIG_HOME/guix/channels.scm, the
file that controls the channels received on guix pull (see Chapter 6 [Channels],
page 66). Its associated value is a list of channel records, defined in the (guix

channels) module.

Generally, it is better to extend this service than to directly configure it, as its default
value is the default guix channel(s) defined by %default-channels. If you configure
this service directly, be sure to include a guix channel. See Section 6.1 [Specifying
Additional Channels], page 66, and Section 6.2 [Using a Custom Guix Channel],
page 66, for more details.

A typical extension for adding a channel might look like this:

(simple-service 'variant-packages-service

home-channels-service-type

(list

(channel

(name 'variant-packages)

(url "https://example.org/variant-packages.git"))))

13.3.10 Fonts Home Services

The (gnu home services fontutils) module provides services for user-specific Fontcon-
fig setup. The Fontconfig (https://www.freedesktop.org/wiki/Software/fontconfig)
library is used by many applications to access fonts on the system.

[Variable]home-fontconfig-service-type
This is the service type for generating configurations for Fontconfig. Its associated
value is a list of either strings (or gexps) pointing to fonts locations, or SXML (see
Section “SXML” in GNU Guile Reference Manual) fragments to be converted into
XML and put inside the main fontconfig node.

Generally, it is better to extend this service than to directly configure it, as its
default value is the default Guix Home’s profile font installation path (~/.guix-

https://www.freedesktop.org/wiki/Software/fontconfig

Chapter 13: Home Configuration 661

home/profile/share/fonts). If you configure this service directly, be sure to include
the above directory.

Here’s how you’d extend it to include fonts installed with the Nix package manager,
and to prefer your favourite monospace font:

(simple-service 'additional-fonts-service

home-fontconfig-service-type

(list "~/.nix-profile/share/fonts"

'(alias

(family "monospace")

(prefer

(family "Liberation Mono")))))

13.3.11 Sound Home Services

The (gnu home services sound) module provides services related to sound support.

PulseAudio RTP Streaming Services

The following services dynamically reconfigure the PulseAudio sound server (https://
pulseaudio.org): they let you toggle broadcast of audio output over the network using the
RTP (real-time transport protocol) and, correspondingly, playback of sound received over
RTP. Once home-pulseaudio-rtp-sink-service-type is among your home services, you
can start broadcasting audio output by running this command:

herd start pulseaudio-rtp-sink

You can then run a PulseAudio-capable mixer, such as pavucontrol or pulsemixer

(both from the same-named package) to control which audio stream(s) should be sent to
the RTP “sink”.

By default, audio is broadcasted to a multicast address: any device on the LAN (local area
network) receives it and may play it. Using multicast in this way puts a lot of pressure on
the network and degrades its performance, so you may instead prefer sending to specifically
one device. The first way to do that is by specifying the IP address of the target device
when starting the service:

herd start pulseaudio-rtp-sink 192.168.1.42

The other option is to specify this IP address as the one to use by default in your home
environment configuration:

(service home-pulseaudio-rtp-sink-service-type

"192.168.1.42")

On the device where you intend to receive and play the RTP stream, you can use home-
pulseaudio-rtp-source-service-type, like so:

(service home-pulseaudio-rtp-source-service-type)

This will then let you start the receiving module for PulseAudio:

herd start pulseaudio-rtp-source

Again, by default it will listen on the multicast address. If, instead, you’d like it to listen
for direct incoming connections, you can do that by running:

(service home-pulseaudio-rtp-source-service-type

https://pulseaudio.org
https://pulseaudio.org

Chapter 13: Home Configuration 662

"0.0.0.0")

The reference of these services is given below.

[Variable]home-pulseaudio-rtp-sink-service-type
[Variable]home-pulseaudio-rtp-source-service-type

This is the type of the service to send, respectively receive, audio streams over RTP

(real-time transport protocol).

The value associated with this service is the IP address (a string) where to send,
respectively receive, the audio stream. By default, audio is sent/received on multicast
address %pulseaudio-rtp-multicast-address.

This service defines one Shepherd service: pulseaudio-rtp-sink, respectively
pulseaudio-rtp-source. The service is not started by default, so you have to
explicitly start it when you want to turn it on, as in this example:

herd start pulseaudio-rtp-sink

Stopping the Shepherd service turns off broadcasting.

[Variable]%pulseaudio-rtp-multicast-address
This is the multicast address used by default by the two services above.

PipeWire Home Service

PipeWire (https://pipewire.org) provides a low-latency, graph-based audio and video
processing service. In addition to its native protocol, it can also be used as a replacement
for both JACK and PulseAudio.

While PipeWire provides the media processing and API, it does not, directly, know about
devices such as sound cards, nor how you might want to connect applications, hardware,
and media processing filters. Instead, PipeWire relies on a session manager to specify all
these relationships. While you may use any session manager you wish, for most people the
WirePlumber (https://pipewire.pages.freedesktop.org/wireplumber/) session man-
ager, a reference implementation provided by the PipeWire project itself, suffices, and that
is the one home-pipewire-service-type uses.

PipeWire can be used as a replacement for PulseAudio by setting enable-pulseaudio?

to #t in home-pipewire-configuration, so that existing PulseAudio clients may use it
without any further configuration.

In addition, JACK clients may connect to PipeWire by using the pw-jack program,
which comes with PipeWire. Simply prefix the command with pw-jack when you run it,
and audio data should go through PipeWire:

pw-jack mpv -ao=jack sound-file.wav

For more information on PulseAudio emulation, see https://gitlab.freedesktop.

org/pipewire/pipewire/-/wikis/Config-PulseAudio, for JACK, see https://gitlab.
freedesktop.org/pipewire/pipewire/-/wikis/Config-JACK.

As PipeWire does not use dbus to start its services on demand (as PulseAudio does),
home-pipewire-service-type uses Shepherd to start services when logged in, provision-
ing the pipewire, wireplumber, and, if configured, pipewire-pulseaudio services. See
Section 13.3.5 [Shepherd Home Service], page 651.

https://pipewire.org
https://pipewire.pages.freedesktop.org/wireplumber/
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Config-PulseAudio
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Config-PulseAudio
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Config-JACK
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Config-JACK

Chapter 13: Home Configuration 663

[Variable]home-pipewire-service-type
This provides the service definition for pipewire, which will run on login. Its value
is a home-pipewire-configuration object.

To start the service, add it to the service field of your home-environment, such as:

(service home-pipewire-service-type)

[Data Type]home-pipewire-configuration
Available home-pipewire-configuration fields are:

pipewire (default: pipewire) (type: file-like)
The PipeWire package to use.

wireplumber (default: wireplumber) (type: file-like)
The WirePlumber package to use.

enable-pulseaudio? (default: #t) (type: boolean)
When true, enable PipeWire’s PulseAudio emulation support, allowing
PulseAudio clients to use PipeWire transparently.

13.3.12 Mail Home Services

The (gnu home services mail) module provides services that help you set up the tools to
work with emails in your home environment.

MSMTP (https://marlam.de/msmtp) is a SMTP (Simple Mail Transfer Protocol) client.
It sends mail to a predefined SMTP server that takes care of proper delivery.

The service reference is given below.

[Variable]home-msmtp-service-type
This is the service type for msmtp. Its value must be a home-msmtp-configuration,
as shown below. It provides the ~/.config/msmtp/config file.

As an example, here is how you would configure msmtp for a single account:

(service home-msmtp-service-type

(home-msmtp-configuration

(accounts

(list

(msmtp-account

(name "alice")

(configuration

(msmtp-configuration

(host "mail.example.org")

(port 587)

(user "alice")

(password-eval "pass Mail/alice"))))))))

[Data Type]home-msmtp-configuration
Available home-msmtp-configuration fields are:

defaults (type: msmtp-configuration)
The configuration that will be set as default for all accounts.

https://marlam.de/msmtp

Chapter 13: Home Configuration 664

accounts (default: '()) (type: list-of-msmtp-accounts)
A list of msmtp-account records which contain information about all your
accounts.

default-account (type: maybe-string)
Set the default account.

extra-content (default: "") (type: string)
Extra content appended as-is to the configuration file. Run man msmtp

for more information about the configuration file format.

[Data Type]msmtp-account
Available msmtp-account fields are:

name (type: string)
The unique name of the account.

configuration (type: msmtp-configuration)
The configuration for this given account.

[Data Type]msmtp-configuration
Available msmtp-configuration fields are:

auth? (type: maybe-boolean)
Enable or disable authentication.

tls? (type: maybe-boolean)
Enable or disable TLS (also known as SSL) for secured connections.

tls-starttls? (type: maybe-boolean)
Choose the TLS variant: start TLS from within the session (‘on’, default),
or tunnel the session through TLS (‘off’).

tls-trust-file (type: maybe-string)
Activate server certificate verification using a list of trusted Certification
Authorities (CAs).

log-file (type: maybe-string)
Enable logging to the specified file. An empty argument disables logging.
The file name ‘-’ directs the log information to standard output.

host (type: maybe-string)
The SMTP server to send the mail to.

port (type: maybe-integer)
The port that the SMTP server listens on. The default is 25 ("smtp"),
unless TLS without STARTTLS is used, in which case it is 465 ("smtps").

user (type: maybe-string)
Set the user name for authentication.

from (type: maybe-string)
Set the envelope-from address.

Chapter 13: Home Configuration 665

password-eval (type: maybe-string)
Set the password for authentication to the output (stdout) of the com-
mand cmd.

extra-content (default: "") (type: string)
Extra content appended as-is to the configuration block. Run man msmtp

for more information about the configuration file format.

13.3.13 Messaging Home Services

The ZNC bouncer (https://znc.in) can be run as a daemon to manage your IRC pres-
ence. With the (gnu home services messaging) service, you can configure ZNC to run
upon login.

You will have to provide a ~/.znc/configs/znc.conf separately.

Here is an example of a service and its configuration that you could add to the services
field of your home-environment:

(service home-znc-service-type)

[Variable]home-znc-service-type
This is the type of the ZNC home service, whose value is a home-znc-configuration
object.

[Data Type]home-znc-configuration
Available home-znc-configuration fields are:

znc (default: znc) (type: file-like)
The ZNC package to use.

extra-options (default: '())
Extra options will be passed to znc, please run man znc for more infor-
mation.

13.3.14 Media Home Services

The Kodi media center (https://kodi.tv) can be run as a daemon on a media server.
With the (gnu home services kodi) service, you can configure Kodi to run upon login.

Here is an example of a service and its configuration that you could add to the services
field of your home-environment:

(service home-kodi-service-type

(home-kodi-configuration

(extra-options '("--settings="<settings-file>"))))

[Variable]home-kodi-service-type
This is the type of the Kodi home service, whose value is a home-kodi-configuration
object.

[Data Type]home-kodi-configuration
Available home-kodi-configuration fields are:

kodi (default: kodi) (type: file-like)
The Kodi package to use.

https://znc.in
https://kodi.tv

Chapter 13: Home Configuration 666

extra-options (default: '())
Extra options will be passed to kodi, please run man kodi for more in-
formation.

13.3.15 Networking Home Services

This section lists services somewhat networking-related that you may use with Guix Home.

The (gnu home services syncthing) module provides a service to set up the
https://syncthing.net (Syncthing) continuous file backup service.

[Variable]home-syncthing-service-type
This is the service type for the syncthing daemon; it is the Home counterpart of the
syncthing-service-type system service (see Section 11.10.5 [Networking Services],
page 301). The value for this service type is a syncthing-configuration.

Here is how you would set it up with the default configuration:

(service home-syncthing-service-type)

For a custom configuration, wrap you syncthing-configuration in for-home, as in
this example:

(service home-syncthing-service-type

(for-home

(syncthing-configuration (logflags 5))))

For details about syncthing-configuration, check out the documentation of the
system service (see Section 11.10.5 [Networking Services], page 301).

13.3.16 Miscellaneous Home Services

This section lists Home services that lack a better place.

Dictionary Service

The (gnu home services dict) module provides the following service:

[Variable]home-dicod-service-type
This is the type of the service that runs the dicod daemon, an implementation of
DICT server (see Section “Dicod” in GNU Dico Manual).

You can add open localhost to your ~/.dico file to make localhost the default
server for dico client (see Section “Initialization File” in GNU Dico Manual).

This service is a direct mapping of the dicod-service-type system service (see Sec-
tion 11.10.37 [Miscellaneous Services], page 574). You can use it like this:

(service home-dicod-service-type)

You may specify a custom configuration by providing a dicod-configuration record,
exactly like for dicod-service-type, but wrapping it in for-home:

(service home-dicod-service-type

(for-home

(dicod-configuration ...)))

Syncthing

Chapter 13: Home Configuration 667

13.4 Invoking guix home

Once you have written a home environment declaration (see Section 13.1 [Declaring the
Home Environment], page 636, it can be instantiated using the guix home command. The
synopsis is:

guix home options... action file

file must be the name of a file containing a home-environment declaration. action
specifies how the home environment is instantiated, but there are few auxiliary actions
which don’t instantiate it. Currently the following values are supported:

search Display available home service type definitions that match the given regular
expressions, sorted by relevance:

$ guix home search shell

name: home-shell-profile

location: gnu/home/services/shells.scm:100:2

extends: home-files

description: Create `~/.profile', which is used for environment initialization of POSIX compliant login shells.

+ This service type can be extended with a list of file-like objects.

relevance: 6

name: home-fish

location: gnu/home/services/shells.scm:640:2

extends: home-files home-profile

description: Install and configure Fish, the friendly interactive shell.

relevance: 3

name: home-zsh

location: gnu/home/services/shells.scm:290:2

extends: home-files home-profile

description: Install and configure Zsh.

relevance: 1

name: home-bash

location: gnu/home/services/shells.scm:508:2

extends: home-files home-profile

description: Install and configure GNU Bash.

relevance: 1

...

As for guix search, the result is written in recutils format, which makes it
easy to filter the output (see GNU recutils manual).

container

Spawn a shell in an isolated environment—a container—containing your home
as specified by file.

For example, this is how you would start an interactive shell in a container with
your home:

guix home container config.scm

Chapter 13: Home Configuration 668

This is a throw-away container where you can lightheartedly fiddle with files;
any changes made within the container, any process started—all this disappears
as soon as you exit that shell.

As with guix shell, several options control that container:

--network

-N Enable networking within the container (it is disabled by default).

--expose=source[=target]

--share=source[=target]

As with guix shell, make directory source of the host system avail-
able as target inside the container—read-only if you pass --expose,
and writable if you pass --share (see Section 7.1 [Invoking guix
shell], page 76).

Additionally, you can run a command in that container, instead of spawning
an interactive shell. For instance, here is how you would check which Shepherd
services are started in a throw-away home container:

guix home container config.scm -- herd status

The command to run in the container must come after -- (double hyphen).

edit Edit or view the definition of the given Home service types.

For example, the command below opens your editor, as specified by the EDITOR
environment variable, on the definition of the home-mcron service type:

guix home edit home-mcron

reconfigure

Build the home environment described in file, and switch to it. Switching means
that the activation script will be evaluated and (in basic scenario) symlinks
to configuration files generated from home-environment declaration will be
created in ~. If the file with the same path already exists in home folder
it will be moved to ~/timestamp-guix-home-legacy-configs-backup, where
timestamp is a current UNIX epoch time.

Note: It is highly recommended to run guix pull once before you
run guix home reconfigure for the first time (see Section 5.7 [In-
voking guix pull], page 54).

This effects all the configuration specified in file. The command starts Shepherd
services specified in file that are not currently running; if a service is currently
running, this command will arrange for it to be upgraded the next time it is
stopped (e.g. by herd stop service or herd restart service).

This command creates a new generation whose number is one greater than
the current generation (as reported by guix home list-generations). If that
generation already exists, it will be overwritten. This behavior mirrors that of
guix package (see Section 5.2 [Invoking guix package], page 35).

Upon completion, the new home is deployed under ~/.guix-home. This direc-
tory contains provenance meta-data: the list of channels in use (see Chapter 6
[Channels], page 66) and file itself, when available. You can view the provenance
information by running:

Chapter 13: Home Configuration 669

guix home describe

This information is useful should you later want to inspect how this particular
generation was built. In fact, assuming file is self-contained, you can later
rebuild generation n of your home environment with:

guix time-machine \

-C /var/guix/profiles/per-user/USER/guix-home-n-link/channels.scm -- \

home reconfigure \

/var/guix/profiles/per-user/USER/guix-home-n-link/configuration.scm

You can think of it as some sort of built-in version control! Your home is not
just a binary artifact: it carries its own source.

Note: If you’re using Guix System, [guix-home-service-type],
page 565, on how to embed your home configuration in your
system configuration such that guix system reconfigure deploys
both your system and your home.

switch-generation

Switch to an existing home generation. This action atomically switches the
home profile to the specified home generation.

The target generation can be specified explicitly by its generation number. For
example, the following invocation would switch to home generation 7:

guix home switch-generation 7

The target generation can also be specified relative to the current generation
with the form +N or -N, where +3means “3 generations ahead of the current gen-
eration,” and -1 means “1 generation prior to the current generation.” When
specifying a negative value such as -1, you must precede it with -- to prevent
it from being parsed as an option. For example:

guix home switch-generation -- -1

This action will fail if the specified generation does not exist.

roll-back

Switch to the preceding home generation. This is the inverse of reconfigure,
and it is exactly the same as invoking switch-generation with an argument
of -1.

delete-generations

Delete home generations, making them candidates for garbage collection (see
Section 5.6 [Invoking guix gc], page 51, for information on how to run the
“garbage collector”).

This works in the same way as ‘guix package --delete-generations’ (see
Section 5.2 [Invoking guix package], page 35). With no arguments, all home
generations but the current one are deleted:

guix home delete-generations

You can also select the generations you want to delete. The example below
deletes all the home generations that are more than two months old:

guix home delete-generations 2m

Chapter 13: Home Configuration 670

build Build the derivation of the home environment, which includes all the configura-
tion files and programs needed. This action does not actually install anything.

describe Describe the current home generation: its file name, as well as provenance
information when available.

To show installed packages in the current home generation’s profile, the --list-
installed flag is provided, with the same syntax that is used in guix package

--list-installed (see Section 5.2 [Invoking guix package], page 35). For
instance, the following command shows a table of all the packages with “emacs”
in their name that are installed in the current home generation’s profile:

guix home describe --list-installed=emacs

list-generations

List a summary of each generation of the home environment available on disk,
in a human-readable way. This is similar to the --list-generations option
of guix package (see Section 5.2 [Invoking guix package], page 35).

Optionally, one can specify a pattern, with the same syntax that is used in guix

package --list-generations, to restrict the list of generations displayed. For
instance, the following command displays generations that are up to 10 days
old:

guix home list-generations 10d

The --list-installed flag may also be specified, with the same syntax that is
used in guix home describe. This may be helpful if trying to determine when
a package was added to the home profile.

import Generate a home environment from the packages in the default profile and
configuration files found in the user’s home directory. The configuration files
will be copied to the specified directory, and a home-configuration.scm will
be populated with the home environment. Note that not every home service
that exists is supported (see Section 13.3 [Home Services], page 639).

$ guix home import ~/guix-config

guix home: '/home/alice/guix-config' populated with all the Home configuration files

And there’s more! guix home also provides the following sub-commands to visualize how
the services of your home environment relate to one another:

extension-graph

Emit to standard output the service extension graph of the home environment
defined in file (see Section 11.19.1 [Service Composition], page 615, for more
information on service extensions). By default the output is in Dot/Graphviz
format, but you can choose a different format with --graph-backend, as with
guix graph (see Section 9.10 [Invoking guix graph], page 211):

The command:

guix home extension-graph file | xdot -

shows the extension relations among services.

Chapter 13: Home Configuration 671

shepherd-graph

Emit to standard output the dependency graph of shepherd services of the home
environment defined in file. See Section 11.19.4 [Shepherd Services], page 623,
for more information and for an example graph.

Again, the default output format is Dot/Graphviz, but you can pass --graph-
backend to select a different one.

options can contain any of the common build options (see Section 9.1.1 [Common Build
Options], page 173). In addition, options can contain one of the following:

--expression=expr

-e expr Consider the home-environment expr evaluates to. This is an alternative to
specifying a file which evaluates to a home environment.

--allow-downgrades

Instruct guix home reconfigure to allow system downgrades.

Just like guix system, guix home reconfigure, by default, prevents you from
downgrading your home to older or unrelated revisions compared to the channel
revisions that were used to deploy it—those shown by guix home describe.
Using --allow-downgrades allows you to bypass that check, at the risk of
downgrading your home—be careful!

672

14 Documentation

In most cases packages installed with Guix come with documentation. There are two main
documentation formats: “Info”, a browsable hypertext format used for GNU software, and
“manual pages” (or “man pages”), the linear documentation format traditionally found on
Unix. Info manuals are accessed with the info command or with Emacs, and man pages
are accessed using man.

You can look for documentation of software installed on your system by keyword. For
example, the following command searches for information about “TLS” in Info manuals:

$ info -k TLS

"(emacs)Network Security" -- STARTTLS

"(emacs)Network Security" -- TLS

"(gnutls)Core TLS API" -- gnutls_certificate_set_verify_flags

"(gnutls)Core TLS API" -- gnutls_certificate_set_verify_function

...

The command below searches for the same keyword in man pages1:

$ man -k TLS

SSL (7) - OpenSSL SSL/TLS library

certtool (1) - GnuTLS certificate tool

...

These searches are purely local to your computer so you have the guarantee that doc-
umentation you find corresponds to what you have actually installed, you can access it
off-line, and your privacy is respected.

Once you have these results, you can view the relevant documentation by running, say:

$ info "(gnutls)Core TLS API"

or:

$ man certtool

Info manuals contain sections and indices as well as hyperlinks like those found in Web
pages. The info reader (see Stand-alone GNU Info) and its Emacs counterpart (see Sec-
tion “Misc Help” in The GNU Emacs Manual) provide intuitive key bindings to navigate
manuals. See Section “Getting Started” in Info: An Introduction, for an introduction to
Info navigation.

1 The database searched by man -k is only created in profiles that contain the man-db package.

673

15 Platforms

The packages and systems built by Guix are intended, like most computer programs, to
run on a CPU with a specific instruction set, and under a specific operating system. Those
programs are often also targeting a specific kernel and system library. Those constraints
are captured by Guix in platform records.

15.1 platform Reference

The platform data type describes a platform: an ISA (instruction set architecture), com-
bined with an operating system and possibly additional system-wide settings such as the
ABI (application binary interface).

[Data Type]platform
This is the data type representing a platform.

target This field specifies the platform’s GNU triplet as a string (see Section
“Specifying Target Triplets” in Autoconf).

system This string is the system type as it is known to Guix and passed, for
instance, to the --system option of most commands.

It usually has the form "cpu-kernel", where cpu is the target CPU and
kernel the target operating system kernel.

It can be for instance "aarch64-linux" or "armhf-linux". You will
encounter system types when you perform native builds (see Section 10.2
[Native Builds], page 229).

linux-architecture (default: #false)
This optional string field is only relevant if the kernel is Linux. In that
case, it corresponds to the ARCH variable used when building Linux,
"mips" for instance.

rust-target (default: #false)
This optional string field is used to determine which rust target is best
supported by this platform. For example, the base level system targeted
by armhf-linux system is closest to armv7-unknown-linux-gnueabihf.

glibc-dynamic-linker

This field is the name of the GNU C Library dynamic linker for the corre-
sponding system, as a string. It can be "/lib/ld-linux-armhf.so.3".

15.2 Supported Platforms

The (guix platforms ...) modules export the following variables, each of which is bound
to a platform record.

[Variable]armv7-linux
Platform targeting ARM v7 CPU running GNU/Linux.

[Variable]aarch64-linux
Platform targeting ARM v8 CPU running GNU/Linux.

Chapter 15: Platforms 674

[Variable]mips64-linux
Platform targeting MIPS little-endian 64-bit CPU running GNU/Linux.

[Variable]powerpc-linux
Platform targeting PowerPC big-endian 32-bit CPU running GNU/Linux.

[Variable]powerpc64le-linux
Platform targeting PowerPC little-endian 64-bit CPU running GNU/Linux.

[Variable]riscv64-linux
Platform targeting RISC-V 64-bit CPU running GNU/Linux.

[Variable]i686-linux
Platform targeting x86 CPU running GNU/Linux.

[Variable]x86_64-linux
Platform targeting x86 64-bit CPU running GNU/Linux.

[Variable]x86_64-linux-x32
Platform targeting x86 64-bit CPU running GNU/Linux with the run-time using the
X32 ABI.

[Variable]i686-mingw
Platform targeting x86 CPU running Windows, with run-time support from MinGW.

[Variable]x86_64-mingw
Platform targeting x86 64-bit CPU running Windows, with run-time support from
MinGW.

[Variable]i586-gnu
Platform targeting x86 CPU running GNU/Hurd (also referred to as “GNU”).

[Variable]avr
Platform targeting AVR CPUs without an operating system, with run-time support
from AVR Libc.

[Variable]or1k-elf
Platform targeting OpenRISC 1000 CPU without an operating system and without
a C standard library.

[Variable]xtensa-ath9k-elf
Platform targeting Xtensa CPU used in the Qualcomm Atheros AR7010 and AR9271
USB 802.11n NICs (Network Interface Controllers).

675

16 Creating System Images

When it comes to installing Guix System for the first time on a new machine, you can
basically proceed in three different ways. The first one is to use an existing operating system
on the machine to run the guix system init command (see Section 11.16 [Invoking guix
system], page 601). The second one, is to produce an installation image (see Section 3.9
[Building the Installation Image], page 29). This is a bootable system which role is to
eventually run guix system init. Finally, the third option would be to produce an image
that is a direct instantiation of the system you wish to run. That image can then be copied
on a bootable device such as an USB drive or a memory card. The target machine would
then directly boot from it, without any kind of installation procedure.

The guix system image command is able to turn an operating system definition into a
bootable image. This command supports different image types, such as mbr-hybrid-raw,
iso9660 and docker. Any modern x86_64 machine will probably be able to boot from an
iso9660 image. However, there are a few machines out there that require specific image
types. Those machines, in general using ARM processors, may expect specific partitions at
specific offsets.

This chapter explains how to define customized system images and how to turn them
into actual bootable images.

16.1 image Reference

The image record, described right after, allows you to define a customized bootable system
image.

[Data Type]image
This is the data type representing a system image.

name (default: #false)
The image name as a symbol, 'my-iso9660 for instance. The name is
optional and it defaults to #false.

format The image format as a symbol. The following formats are supported:

• disk-image, a raw disk image composed of one or multiple parti-
tions.

• compressed-qcow2, a compressed qcow2 image composed of one or
multiple partitions.

• docker, a Docker image.

• iso9660, an ISO-9660 image.

• tarball, a tar.gz image archive.

• wsl2, a WSL2 image.

platform (default: #false)
The platform record the image is targeting (see Chapter 15 [Platforms],
page 673), aarch64-linux for instance. By default, this field is set to
#false and the image will target the host platform.

Chapter 16: Creating System Images 676

size (default: 'guess)
The image size in bytes or 'guess. The 'guess symbol, which is the
default, means that the image size will be inferred based on the image
content.

operating-system

The image’s operating-system record that is instantiated.

partition-table-type (default: 'mbr)
The image partition table type as a symbol. Possible values are 'mbr and
'gpt. It default to 'mbr.

partitions (default: '())
The image partitions as a list of partition records (see Section 16.1.1
[partition Reference], page 676).

compression? (default: #true)
Whether the image content should be compressed, as a boolean. It de-
faults to #true and only applies to 'iso9660 image formats.

volatile-root? (default: #true)
Whether the image root partition should be made volatile, as a boolean.

This is achieved by using a RAM backed file system (overlayfs) that is
mounted on top of the root partition by the initrd. It defaults to #true.
When set to #false, the image root partition is mounted as read-write
partition by the initrd.

shared-store? (default: #false)
Whether the image’s store should be shared with the host system, as
a boolean. This can be useful when creating images dedicated to vir-
tual machines. When set to #false, which is the default, the image’s
operating-system closure is copied to the image. Otherwise, when set
to #true, it is assumed that the host store will be made available at boot,
using a 9p mount for instance.

shared-network? (default: #false)
Whether to use the host network interfaces within the image, as a boolean.
This is only used for the 'docker image format. It defaults to #false.

substitutable? (default: #true)
Whether the image derivation should be substitutable, as a boolean. It
defaults to true.

16.1.1 partition Reference

In image record may contain some partitions.

[Data Type]partition
This is the data type representing an image partition.

size (default: 'guess)
The partition size in bytes or 'guess. The 'guess symbol, which is
the default, means that the partition size will be inferred based on the
partition content.

Chapter 16: Creating System Images 677

offset (default: 0)
The partition’s start offset in bytes, relative to the image start or the
previous partition end. It defaults to 0 which means that there is no
offset applied.

file-system (default: "ext4")
The partition file system as a string, defaulting to "ext4". The supported
values are "vfat", "fat16", "fat32" and "ext4". "vfat", "fat16" and
"fat32" partitions without the 'esp flag are by default LBA compatible.

file-system-options (default: '())
The partition file system creation options that should be passed to the
partition creation tool, as a list of strings. This is only supported when
creating "ext4" partitions.

See the "extended-options" man page section of the "mke2fs" tool for
a more complete reference.

label The partition label as a mandatory string, "my-root" for instance.

uuid (default: #false)
The partition UUID as an uuid record (see Section 11.4 [File Systems],
page 246). By default it is #false, which means that the partition cre-
ation tool will attribute a random UUID to the partition.

flags (default: '())
The partition flags as a list of symbols. Possible values are 'boot and
'esp. The 'boot flags should be set if you want to boot from this par-
tition. Exactly one partition should have this flag set, usually the root
one. The 'esp flag identifies a UEFI System Partition.

initializer (default: #false)
The partition initializer procedure as a gexp. This procedure is called to
populate a partition. If no initializer is passed, the initialize-root-

partition procedure from the (gnu build image) module is used.

16.2 Instantiate an Image

Let’s say you would like to create an MBR image with three distinct partitions:

• The ESP (EFI System Partition), a partition of 40 MiB at offset 1024 KiB with a vfat
file system.

• an ext4 partition of 50 MiB data file, and labeled “data”.

• an ext4 bootable partition containing the %simple-os operating-system.

You would then write the following image definition in a my-image.scm file for instance.

(use-modules (gnu)

(gnu image)

(gnu tests)

(gnu system image)

(guix gexp))

Chapter 16: Creating System Images 678

(define MiB (expt 2 20))

(image

(format 'disk-image)

(operating-system %simple-os)

(partitions

(list

(partition

(size (* 40 MiB))

(offset (* 1024 1024))

(label "GNU-ESP")

(file-system "vfat")

(flags '(esp))

(initializer (gexp initialize-efi-partition)))

(partition

(size (* 50 MiB))

(label "DATA")

(file-system "ext4")

(initializer #~(lambda* (root . rest)

(mkdir root)

(call-with-output-file

(string-append root "/data")

(lambda (port)

(format port "my-data"))))))

(partition

(size 'guess)

(label root-label)

(file-system "ext4")

(flags '(boot))

(initializer (gexp initialize-root-partition))))))

Note that the first and third partitions use generic initializers procedures, initialize-
efi-partition and initialize-root-partition respectively. The initialize-efi-partition installs a
GRUB EFI loader that is loading the GRUB bootloader located in the root partition.
The initialize-root-partition instantiates a complete system as defined by the %simple-os

operating-system.

You can now run:

guix system image my-image.scm

to instantiate the image definition. That produces a disk image which has the expected
structure:

$ parted $(guix system image my-image.scm) print

...

Model: (file)

Disk /gnu/store/yhylv1bp5b2ypb97pd3bbhz6jk5nbhxw-disk-image: 1714MB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Disk Flags:

Chapter 16: Creating System Images 679

Number Start End Size Type File system Flags

1 1049kB 43.0MB 41.9MB primary fat16 esp

2 43.0MB 95.4MB 52.4MB primary ext4

3 95.4MB 1714MB 1619MB primary ext4 boot

The size of the boot partition has been inferred to 1619MB so that it is large enough to
host the %simple-os operating-system.

You can also use existing image record definitions and inherit from them to simplify the
image definition. The (gnu system image) module provides the following image definition
variables.

[Variable]mbr-disk-image
An MBR disk-image composed of a single ROOT partition. The ROOT partition
starts at a 1 MiB offset so that the bootloader can install itself in the post-MBR gap.

[Variable]mbr-hybrid-disk-image
An MBR disk-image composed of two partitions: a 64 bits ESP partition and a ROOT
boot partition. The ESP partition starts at a 1 MiB offset so that a BIOS compatible
bootloader can install itself in the post-MBR gap. The image can be used by x86_64

and i686 machines supporting only legacy BIOS booting. The ESP partition ensures
that it can also be used by newer machines relying on UEFI booting, hence the hybrid
denomination.

[Variable]efi-disk-image
A GPT disk-image composed of two partitions: a 64 bits ESP partition and a ROOT
boot partition. This image can be used on most x86_64 and i686 machines, support-
ing BIOS or UEFI booting.

[Variable]efi32-disk-image
Same as efi-disk-image but with a 32 bits EFI partition.

[Variable]iso9660-image
An ISO-9660 image composed of a single bootable partition. This image can also be
used on most x86_64 and i686 machines.

[Variable]docker-image
A Docker image that can be used to spawn a Docker container.

Using the efi-disk-image we can simplify our previous image declaration this way:

(use-modules (gnu)

(gnu image)

(gnu tests)

(gnu system image)

(guix gexp)

(ice-9 match))

(define MiB (expt 2 20))

Chapter 16: Creating System Images 680

(define data

(partition

(size (* 50 MiB))

(label "DATA")

(file-system "ext4")

(initializer #~(lambda* (root . rest)

(mkdir root)

(call-with-output-file

(string-append root "/data")

(lambda (port)

(format port "my-data")))))))

(image

(inherit efi-disk-image)

(operating-system %simple-os)

(partitions

(match (image-partitions efi-disk-image)

((esp root)

(list esp data root)))))

This will give the exact same image instantiation but the image declaration is simpler.

16.3 image-type Reference

The guix system image command can, as we saw above, take a file containing an image

declaration as argument and produce an actual disk image from it. The same command
can also handle a file containing an operating-system declaration as argument. In that
case, how is the operating-system turned into an image?

That’s where the image-type record intervenes. This record defines how to transform
an operating-system record into an image record.

[Data Type]image-type
This is the data type representing an image-type.

name The image-type name as a mandatory symbol, 'efi32-raw for instance.

constructor

The image-type constructor, as a mandatory procedure that takes an
operating-system record as argument and returns an image record.

There are several image-type records provided by the (gnu system image) and the
(gnu system images ...) modules.

[Variable]mbr-raw-image-type
Build an image based on the mbr-disk-image image.

[Variable]mbr-hybrid-raw-image-type
Build an image based on the mbr-hybrid-disk-image image.

[Variable]efi-raw-image-type
Build an image based on the efi-disk-image image.

Chapter 16: Creating System Images 681

[Variable]efi32-raw-image-type
Build an image based on the efi32-disk-image image.

[Variable]qcow2-image-type
Build an image based on the mbr-disk-image image but with the compressed-qcow2
image format.

[Variable]iso-image-type
Build a compressed image based on the iso9660-image image.

[Variable]uncompressed-iso-image-type
Build an image based on the iso9660-image image but with the compression? field
set to #false.

[Variable]docker-image-type
Build an image based on the docker-image image.

[Variable]raw-with-offset-image-type
Build an MBR image with a single partition starting at a 1024KiB offset. This is
useful to leave some room to install a bootloader in the post-MBR gap.

[Variable]pinebook-pro-image-type
Build an image that is targeting the Pinebook Pro machine. The MBR image contains
a single partition starting at a 9MiB offset. The u-boot-pinebook-pro-rk3399-

bootloader bootloader will be installed in this gap.

[Variable]rock64-image-type
Build an image that is targeting the Rock64 machine. The MBR image contains a
single partition starting at a 16MiB offset. The u-boot-rock64-rk3328-bootloader
bootloader will be installed in this gap.

[Variable]novena-image-type
Build an image that is targeting the Novena machine. It has the same characteristics
as raw-with-offset-image-type.

[Variable]pine64-image-type
Build an image that is targeting the Pine64 machine. It has the same characteristics
as raw-with-offset-image-type.

[Variable]hurd-image-type
Build an image that is targeting a i386 machine running the Hurd kernel. The MBR
image contains a single ext2 partitions with specific file-system-options flags.

[Variable]hurd-qcow2-image-type
Build an image similar to the one built by the hurd-image-type but with the format
set to 'compressed-qcow2.

[Variable]wsl2-image-type
Build an image for the WSL2 (Windows Subsystem for Linux 2). It can be imported
by running:

wsl --import Guix ./guix ./wsl2-image.tar.gz

wsl -d Guix

Chapter 16: Creating System Images 682

So, if we get back to the guix system image command taking an operating-system

declaration as argument. By default, the mbr-raw-image-type is used to turn the provided
operating-system into an actual bootable image.

To use a different image-type, the --image-type option can be used. The --list-

image-types option will list all the supported image types. It turns out to be a textual
listing of all the image-types variables described just above (see Section 11.16 [Invoking
guix system], page 601).

16.4 Image Modules

Let’s take the example of the Pine64, an ARM based machine. To be able to produce an
image targeting this board, we need the following elements:

• An operating-system record containing at least an appropriate kernel (linux-libre-
arm64-generic) and bootloader u-boot-pine64-lts-bootloader) for the Pine64.

• Possibly, an image-type record providing a way to turn an operating-system record
to an image record suitable for the Pine64.

• An actual image that can be instantiated with the guix system image command.

The (gnu system images pine64) module provides all those elements: pine64-

barebones-os, pine64-image-type and pine64-barebones-raw-image respectively.

The module returns the pine64-barebones-raw-image in order for users to be able to
run:

guix system image gnu/system/images/pine64.scm

Now, thanks to the pine64-image-type record declaring the 'pine64-raw image-type,
one could also prepare a my-pine.scm file with the following content:

(use-modules (gnu system images pine64))

(operating-system

(inherit pine64-barebones-os)

(timezone "Europe/Athens"))

to customize the pine64-barebones-os, and run:

$ guix system image --image-type=pine64-raw my-pine.scm

Note that there are other modules in the gnu/system/images directory targeting
Novena, Pine64, PinebookPro and Rock64 machines.

683

17 Installing Debugging Files

Program binaries, as produced by the GCC compilers for instance, are typically written in
the ELF format, with a section containing debugging information. Debugging information
is what allows the debugger, GDB, to map binary code to source code; it is required to
debug a compiled program in good conditions.

This chapter explains how to use separate debug info when packages provide it, and how
to rebuild packages with debug info when it’s missing.

17.1 Separate Debug Info

The problem with debugging information is that it takes up a fair amount of disk space. For
example, debugging information for the GNU C Library weighs in at more than 60 MiB.
Thus, as a user, keeping all the debugging info of all the installed programs is usually not
an option. Yet, space savings should not come at the cost of an impediment to debugging—
especially in the GNU system, which should make it easier for users to exert their computing
freedom (see Section 1.2 [GNU Distribution], page 2).

Thankfully, the GNU Binary Utilities (Binutils) and GDB provide a mechanism that
allows users to get the best of both worlds: debugging information can be stripped from
the binaries and stored in separate files. GDB is then able to load debugging information
from those files, when they are available (see Section “Separate Debug Files” in Debugging
with GDB).

The GNU distribution takes advantage of this by storing debugging information in the
lib/debug sub-directory of a separate package output unimaginatively called debug (see
Section 5.4 [Packages with Multiple Outputs], page 49). Users can choose to install the
debug output of a package when they need it. For instance, the following command installs
the debugging information for the GNU C Library and for GNU Guile:

guix install glibc:debug guile:debug

GDB must then be told to look for debug files in the user’s profile, by setting the
debug-file-directory variable (consider setting it from the ~/.gdbinit file, see Section
“Startup” in Debugging with GDB):

(gdb) set debug-file-directory ~/.guix-profile/lib/debug

From there on, GDB will pick up debugging information from the .debug files under
~/.guix-profile/lib/debug.

Below is an alternative GDB script which is useful when working with other profiles.
It takes advantage of the optional Guile integration in GDB. This snippet is included by
default on Guix System in the ~/.gdbinit file.

guile

(use-modules (gdb))

(execute (string-append "set debug-file-directory "

(or (getenv "GDB_DEBUG_FILE_DIRECTORY")

"~/.guix-profile/lib/debug")))

end

In addition, you will most likely want GDB to be able to show the source code being
debugged. To do that, you will have to unpack the source code of the package of interest

Chapter 17: Installing Debugging Files 684

(obtained with guix build --source, see Section 9.1 [Invoking guix build], page 173), and
to point GDB to that source directory using the directory command (see Section “Source
Path” in Debugging with GDB).

The debug output mechanism in Guix is implemented by the gnu-build-system (see
Section 8.5 [Build Systems], page 117). Currently, it is opt-in—debugging information is
available only for the packages with definitions explicitly declaring a debug output. To
check whether a package has a debug output, use guix package --list-available (see
Section 5.2 [Invoking guix package], page 35).

Read on for how to deal with packages lacking a debug output.

17.2 Rebuilding Debug Info

As we saw above, some packages, but not all, provide debugging info in a debug output.
What can you do when debugging info is missing? The --with-debug-info option provides
a solution to that: it allows you to rebuild the package(s) for which debugging info is
missing—and only those—and to graft those onto the application you’re debugging. Thus,
while it’s not as fast as installing a debug output, it is relatively inexpensive.

Let’s illustrate that. Suppose you’re experiencing a bug in Inkscape and would like to
see what’s going on in GLib, a library that’s deep down in its dependency graph. As it
turns out, GLib does not have a debug output and the backtrace GDB shows is all sadness:

(gdb) bt

#0 0x00007ffff5f92190 in g_getenv ()

from /gnu/store/...-glib-2.62.6/lib/libglib-2.0.so.0

#1 0x00007ffff608a7d6 in gobject_init_ctor ()

from /gnu/store/...-glib-2.62.6/lib/libgobject-2.0.so.0

#2 0x00007ffff7fe275a in call_init (l=<optimized out>, argc=argc@entry=1, argv=argv@entry=0x7fffffffcfd8,

env=env@entry=0x7fffffffcfe8) at dl-init.c:72

#3 0x00007ffff7fe2866 in call_init (env=0x7fffffffcfe8, argv=0x7fffffffcfd8, argc=1, l=<optimized out>)

at dl-init.c:118

To address that, you install Inkscape linked against a variant GLib that contains debug
info:

guix install inkscape --with-debug-info=glib

This time, debugging will be a whole lot nicer:

$ gdb --args sh -c 'exec inkscape'

...

(gdb) b g_getenv

Function "g_getenv" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (g_getenv) pending.

(gdb) r

Starting program: /gnu/store/...-profile/bin/sh -c exec\ inkscape

...

(gdb) bt

#0 g_getenv (variable=variable@entry=0x7ffff60c7a2e "GOBJECT_DEBUG") at ../glib-2.62.6/glib/genviron.c:252

#1 0x00007ffff608a7d6 in gobject_init () at ../glib-2.62.6/gobject/gtype.c:4380

Chapter 17: Installing Debugging Files 685

#2 gobject_init_ctor () at ../glib-2.62.6/gobject/gtype.c:4493

#3 0x00007ffff7fe275a in call_init (l=<optimized out>, argc=argc@entry=3, argv=argv@entry=0x7fffffffd088,

env=env@entry=0x7fffffffd0a8) at dl-init.c:72

...

Much better!

Note that there can be packages for which --with-debug-info will not have the desired
effect. See Section 9.1.2 [Package Transformation Options], page 175, for more information.

686

18 Using TEX and LATEX

Guix provides packages for the TEX, LATEX, ConTeXt, LuaTeX, and related typesetting sys-
tems, taken from the TEX Live distribution (https://www.tug.org/texlive/). However,
because TEX Live is so huge and because finding one’s way in this maze is tricky, so this
section provides some guidance on how to deploy the relevant packages to compile TEX and
LATEX documents.

TEX Live currently comes in two mutually exclusive flavors in Guix:

• The “monolithic” texlive package: it comes with every single TEX Live package
(roughly 4,200), but it is huge—more than 4 GiB for a single package!

• A “modular” TEX Live distribution, in which you only install the packages, always
prefixed with ‘texlive-’, you need.

So to insist, these two flavors cannot be combined1. If in the modular setting your
document does not compile, the solution is not to add the monolithic texlive package, but
to add the set of missing packages from the modular distribution.

Building a coherent system that provides all the essential tools and, at the same time,
satisfies all of its internal dependencies can be a difficult task. It is therefore recommended
to start with sets of packages, called collections, and schemes, the name for collections of
collections. The following command lists available schemes and collections (see [Invoking
guix package], page 41):

guix search texlive-\(scheme\|collection\) | recsel -p name,description

If needed, you may then complete your system with individual packages, particularly
when they belong to a large collection you’re not otherwise interested in.

For instance, the following manifest is a reasonable, yet frugal starting point for a French
LATEX user:

(specifications->manifest

'("rubber"

"texlive-scheme-basic"

"texlive-collection-latexrecommended"

"texlive-collection-fontsrecommended"

"texlive-babel-french"

;; From "latexextra" collection.

"texlive-tabularray"

;; From "binextra" collection.

"texlive-texdoc"))

If you come across a document that does not compile in such a basic setting, the main
difficulty is finding the missing packages. In this case, pdflatex and similar commands
tend to fail with obscure error messages along the lines of:

doc.tex: File `tikz.sty' not found.

1 No rule without exception! As the monolithic TEX Live does not contain the biber executable, it is okay
to combine it with texlive-biber, which does.

https://www.tug.org/texlive/

Chapter 18: Using TEX and LATEX 687

doc.tex:7: Emergency stop.

or, for a missing font:

kpathsea: Running mktexmf phvr7t

! I can't find file `phvr7t'.

How do you determine what the missing package is? In the first case, you will find the
answer by running:

$ guix search texlive tikz

name: texlive-pgf

version: 59745

...

In the second case, guix search turns up nothing. Instead, you can search the TEX Live
package database using the tlmgr command:

$ tlmgr info phvr7t

tlmgr: cannot find package phvr7t, searching for other matches:

Packages containing `phvr7t' in their title/description:

Packages containing files matching `phvr7t':

helvetic:

texmf-dist/fonts/tfm/adobe/helvetic/phvr7t.tfm

texmf-dist/fonts/tfm/adobe/helvetic/phvr7tn.tfm

texmf-dist/fonts/vf/adobe/helvetic/phvr7t.vf

texmf-dist/fonts/vf/adobe/helvetic/phvr7tn.vf

tex4ht:

texmf-dist/tex4ht/ht-fonts/alias/adobe/helvetic/phvr7t.htf

The file is available in the TEX Live helvetic package, which is known in Guix as texlive-
helvetic. Quite a ride, but you found it!

688

19 Security Updates

Occasionally, important security vulnerabilities are discovered in software packages and
must be patched. Guix developers try hard to keep track of known vulnerabilities and to
apply fixes as soon as possible in the master branch of Guix (we do not yet provide a
“stable” branch containing only security updates). The guix lint tool helps developers
find out about vulnerable versions of software packages in the distribution:

$ guix lint -c cve

gnu/packages/base.scm:652:2: glibc@2.21: probably vulnerable to CVE-2015-1781, CVE-2015-7547

gnu/packages/gcc.scm:334:2: gcc@4.9.3: probably vulnerable to CVE-2015-5276

gnu/packages/image.scm:312:2: openjpeg@2.1.0: probably vulnerable to CVE-2016-1923, CVE-2016-1924

...

See Section 9.8 [Invoking guix lint], page 206, for more information.

Guix follows a functional package management discipline (see Chapter 1 [Introduction],
page 1), which implies that, when a package is changed, every package that depends on it
must be rebuilt. This can significantly slow down the deployment of fixes in core packages
such as libc or Bash, since basically the whole distribution would need to be rebuilt. Using
pre-built binaries helps (see Section 5.3 [Substitutes], page 44), but deployment may still
take more time than desired.

To address this, Guix implements grafts, a mechanism that allows for fast deployment of
critical updates without the costs associated with a whole-distribution rebuild. The idea is
to rebuild only the package that needs to be patched, and then to “graft” it onto packages
explicitly installed by the user and that were previously referring to the original package.
The cost of grafting is typically very low, and order of magnitudes lower than a full rebuild
of the dependency chain.

For instance, suppose a security update needs to be applied to Bash. Guix developers
will provide a package definition for the “fixed” Bash, say bash-fixed, in the usual way
(see Section 8.2 [Defining Packages], page 98). Then, the original package definition is
augmented with a replacement field pointing to the package containing the bug fix:

(define bash

(package

(name "bash")

;; ...

(replacement bash-fixed)))

From there on, any package depending directly or indirectly on Bash—as reported by
guix gc --requisites (see Section 5.6 [Invoking guix gc], page 51)—that is installed is
automatically “rewritten” to refer to bash-fixed instead of bash. This grafting process
takes time proportional to the size of the package, usually less than a minute for an “average”
package on a recent machine. Grafting is recursive: when an indirect dependency requires
grafting, then grafting “propagates” up to the package that the user is installing.

Currently, the length of the name and version of the graft and that of the package it
replaces (bash-fixed and bash in the example above) must be equal. This restriction
mostly comes from the fact that grafting works by patching files, including binary files,
directly. Other restrictions may apply: for instance, when adding a graft to a package
providing a shared library, the original shared library and its replacement must have the
same SONAME and be binary-compatible.

Chapter 19: Security Updates 689

The --no-grafts command-line option allows you to forcefully avoid grafting (see Sec-
tion 9.1.1 [Common Build Options], page 173). Thus, the command:

guix build bash --no-grafts

returns the store file name of the original Bash, whereas:

guix build bash

returns the store file name of the “fixed”, replacement Bash. This allows you to distinguish
between the two variants of Bash.

To verify which Bash your whole profile refers to, you can run (see Section 5.6 [Invoking
guix gc], page 51):

guix gc -R $(readlink -f ~/.guix-profile) | grep bash

. . . and compare the store file names that you get with those above. Likewise for a complete
Guix system generation:

guix gc -R $(guix system build my-config.scm) | grep bash

Lastly, to check which Bash running processes are using, you can use the lsof command:

lsof | grep /gnu/store/.*bash

690

20 Bootstrapping

Bootstrapping in our context refers to how the distribution gets built “from nothing”. Re-
member that the build environment of a derivation contains nothing but its declared inputs
(see Chapter 1 [Introduction], page 1). So there’s an obvious chicken-and-egg problem: how
does the first package get built? How does the first compiler get compiled?

It is tempting to think of this question as one that only die-hard hackers may care
about. However, while the answer to that question is technical in nature, its implications
are wide-ranging. How the distribution is bootstrapped defines the extent to which we, as
individuals and as a collective of users and hackers, can trust the software we run. It is a
central concern from the standpoint of security and from a user freedom viewpoint.

The GNU system is primarily made of C code, with libc at its core. The GNU build
system itself assumes the availability of a Bourne shell and command-line tools provided by
GNU Coreutils, Awk, Findutils, ‘sed’, and ‘grep’. Furthermore, build programs—programs
that run ./configure, make, etc.—are written in Guile Scheme (see Section 8.10 [Deriva-
tions], page 152). Consequently, to be able to build anything at all, from scratch, Guix
relies on pre-built binaries of Guile, GCC, Binutils, libc, and the other packages mentioned
above—the bootstrap binaries.

These bootstrap binaries are “taken for granted”, though we can also re-create them if
needed (see Section 20.2 [Preparing to Use the Bootstrap Binaries], page 693).

20.1 The Full-Source Bootstrap

Guix—like other GNU/Linux distributions—is traditionally bootstrapped from a set of
bootstrap binaries: Bourne shell, command-line tools provided by GNU Coreutils, Awk,
Findutils, ‘sed’, and ‘grep’ and Guile, GCC, Binutils, and the GNU C Library (see Chap-
ter 20 [Bootstrapping], page 690). Usually, these bootstrap binaries are “taken for granted.”

Taking the bootstrap binaries for granted means that we consider them to be a correct
and trustworthy “seed” for building the complete system. Therein lies a problem: the
combined size of these bootstrap binaries is about 250MB (see Section “Bootstrappable
Builds” in GNU Mes). Auditing or even inspecting these is next to impossible.

For i686-linux and x86_64-linux, Guix now features a full-source bootstrap. This
bootstrap is rooted in hex0-seed from the Stage0 (https://savannah.gnu.org/projects/
stage0) package. The hex0 program is minimalist assembler: it reads space-separated
hexadecimal digits (nibbles) from a file, possibly including comments, and emits on stan-
dard output the bytes corresponding to those hexadecimal numbers. The source code of
this initial hex0 program is a file called hex0_x86.hex0 (https://github.com/oriansj/
bootstrap-seeds/blob/master/POSIX/x86/hex0_x86.hex0) and is written in the hex0

language.

Hex0 is self-hosting, which means that it can build itself:

./hex0-seed hex0_x86.hex0 hex0

Hex0 it is the ASCII-equivalent of the binary program and can be produced by doing
something much like:

sed 's/[;#].*$//g' hex0_x86.hex0 | xxd -r -p > hex0

chmod +x hex0

https://savannah.gnu.org/projects/stage0
https://savannah.gnu.org/projects/stage0
https://github.com/oriansj/bootstrap-seeds/blob/master/POSIX/x86/hex0_x86.hex0
https://github.com/oriansj/bootstrap-seeds/blob/master/POSIX/x86/hex0_x86.hex0

Chapter 20: Bootstrapping 691

It is because of this ASCII-binary equivalence that we can bless this initial 357-byte
binary as source, and hence ‘full-source bootstrap”.

The bootstrap then continues: hex0 builds hex1 and then on to M0, hex2, M1, mescc-
tools and finally M2-Planet. Then, using mescc-tools, M2-Planet we build Mes (see
GNU Mes, a Scheme interpreter and C compiler in Scheme). From here on starts the more
traditional C-based bootstrap of the GNU System.

Another step that Guix has taken is to replace the shell and all its utilities with imple-
mentations in Guile Scheme, the Scheme-only bootstrap. Gash (see Section “Gash” in The
Gash manual) is a POSIX-compatible shell that replaces Bash, and it comes with Gash
Utils which has minimalist replacements for Awk, the GNU Core Utilities, Grep, Gzip, Sed,
and Tar.

Building the GNU System from source is currently only possible by adding some his-
torical GNU packages as intermediate steps1. As Gash and Gash Utils mature, and GNU
packages become more bootstrappable again (e.g., new releases of GNU Sed will also ship
as gzipped tarballs again, as alternative to the hard to bootstrap xz-compression), this set
of added packages can hopefully be reduced again.

The graph below shows the resulting dependency graph for gcc-core-mesboot0, the
bootstrap compiler used for the traditional bootstrap of the rest of the Guix System.

1 Packages such as gcc-2.95.3, binutils-2.14, glibc-2.2.5, gzip-1.2.4, tar-1.22, and some others.
For details, see gnu/packages/commencement.scm.

Chapter 20: Bootstrapping 692

gcc-core-mesboot0@2.95.3

binutils-mesboot0@2.20.1a

gzip-mesboot@1.2.4

patch-mesboot@2.5.9 tcc-boot@0.9.27

make-mesboot0@3.80

gash-boot@0.3.0

gash-utils-boot@0.2.0

bootar@1b

guile-bootstrap@2.0

tcc-boot0@0.9.26-1136-g5bba73cc

mes-boot@0.24

stage0-posix@1.4

bootstrap-seeds@1.0.0

Work is ongoing to bring these bootstraps to the arm-linux and aarch64-linux archi-
tectures and to the Hurd.

If you are interested, join us on ‘#bootstrappable’ on the Libera.Chat IRC network or
discuss on bug-mes@gnu.org or gash-devel@nongnu.org.

mailto:bug-mes@gnu.org
mailto:gash-devel@nongnu.org

Chapter 20: Bootstrapping 693

20.2 Preparing to Use the Bootstrap Binaries

gcc-bootstrap-0.drv

tar

glibc-bootstrap-0.drv

gcc-bootstrap-0-guile-builder

glibc-bootstrap-0-guile-builder build-bootstrap-guile.sh

xz

module-import.drv

module-import-compiled.drv

gcc-4.7.2.tar.xz.drv

bash

guile-bootstrap-2.0.drv

glibc-2.17.tar.xz.drv

module-import.drv

module-import-compiled.drv

module-import-guile-builder

utils.scm

module-import-guile-builder

gcc-4.7.2.tar.xz-guile-builder

ftp-client.scm download.scm

module-import-compiled-guile-builder

glibc-2.17.tar.xz-guile-builder

mkdir guile-2.0.7.tar.xz

module-import-compiled-guile-builder

The figure above shows the very beginning of the dependency graph of the distribution,
corresponding to the package definitions of the (gnu packages bootstrap) module. A
similar figure can be generated with guix graph (see Section 9.10 [Invoking guix graph],
page 211), along the lines of:

guix graph -t derivation \

-e '(@@ (gnu packages bootstrap) %bootstrap-gcc)' \

| dot -Tps > gcc.ps

or, for the further Reduced Binary Seed bootstrap

guix graph -t derivation \

-e '(@@ (gnu packages bootstrap) %bootstrap-mes)' \

| dot -Tps > mes.ps

At this level of detail, things are slightly complex. First, Guile itself consists of an ELF
executable, along with many source and compiled Scheme files that are dynamically loaded
when it runs. This gets stored in the guile-2.0.7.tar.xz tarball shown in this graph.

Chapter 20: Bootstrapping 694

This tarball is part of Guix’s “source” distribution, and gets inserted into the store with
add-to-store (see Section 8.9 [The Store], page 150).

But how do we write a derivation that unpacks this tarball and adds it to the store?
To solve this problem, the guile-bootstrap-2.0.drv derivation—the first one that gets
built—uses bash as its builder, which runs build-bootstrap-guile.sh, which in turn calls
tar to unpack the tarball. Thus, bash, tar, xz, and mkdir are statically-linked binaries,
also part of the Guix source distribution, whose sole purpose is to allow the Guile tarball
to be unpacked.

Once guile-bootstrap-2.0.drv is built, we have a functioning Guile that can be used
to run subsequent build programs. Its first task is to download tarballs containing the
other pre-built binaries—this is what the .tar.xz.drv derivations do. Guix modules such
as ftp-client.scm are used for this purpose. The module-import.drv derivations import
those modules in a directory in the store, using the original layout. The module-import-

compiled.drv derivations compile those modules, and write them in an output directory
with the right layout. This corresponds to the #:modules argument of build-expression-
>derivation (see Section 8.10 [Derivations], page 152).

Finally, the various tarballs are unpacked by the derivations gcc-bootstrap-0.drv,
glibc-bootstrap-0.drv, or bootstrap-mes-0.drv and bootstrap-mescc-tools-0.drv,
at which point we have a working C tool chain.

Building the Build Tools

Bootstrapping is complete when we have a full tool chain that does not depend on the
pre-built bootstrap tools discussed above. This no-dependency requirement is verified by
checking whether the files of the final tool chain contain references to the /gnu/store

directories of the bootstrap inputs. The process that leads to this “final” tool chain is
described by the package definitions found in the (gnu packages commencement) module.

The guix graph command allows us to “zoom out” compared to the graph above, by
looking at the level of package objects instead of individual derivations—remember that
a package may translate to several derivations, typically one derivation to download its
source, one to build the Guile modules it needs, and one to actually build the package from
source. The command:

guix graph -t bag \

-e '(@@ (gnu packages commencement)

glibc-final-with-bootstrap-bash)' | xdot -

displays the dependency graph leading to the “final” C library2, depicted below.

2 You may notice the glibc-intermediate label, suggesting that it is not quite final, but as a good
approximation, we will consider it final.

Chapter 20: Bootstrapping 695

glibc-intermediate-2.24

texinfo-6.3

perl-boot0-5.24.0

gcc-cross-boot0-4.9.4 ld-wrapper-x86_64-guix-linux-gnu-0

binutils-cross-boot0-2.27

make-boot0-4.2.1

diffutils-boot0-3.5

findutils-boot0-4.6.0

file-boot0-5.28

glibc-bootstrap-0

gcc-bootstrap-0 bootstrap-binaries-0

linux-libre-headers-4.4.18

binutils-bootstrap-0

guile-bootstrap-2.0

The first tool that gets built with the bootstrap binaries is GNU Make—noted make-

boot0 above—which is a prerequisite for all the following packages. From there Findutils
and Diffutils get built.

Then come the first-stage Binutils and GCC, built as pseudo cross tools—i.e., with
--target equal to --host. They are used to build libc. Thanks to this cross-build trick,
this libc is guaranteed not to hold any reference to the initial tool chain.

From there the final Binutils and GCC (not shown above) are built. GCC uses ld from
the final Binutils, and links programs against the just-built libc. This tool chain is used
to build the other packages used by Guix and by the GNU Build System: Guile, Bash,
Coreutils, etc.

And voilà! At this point we have the complete set of build tools that the
GNU Build System expects. These are in the %final-inputs variable of the (gnu

packages commencement) module, and are implicitly used by any package that uses
gnu-build-system (see Section 8.5 [Build Systems], page 117).

Chapter 20: Bootstrapping 696

Building the Bootstrap Binaries

Because the final tool chain does not depend on the bootstrap binaries, those rarely need to
be updated. Nevertheless, it is useful to have an automated way to produce them, should
an update occur, and this is what the (gnu packages make-bootstrap) module provides.

The following command builds the tarballs containing the bootstrap binaries (Binutils,
GCC, glibc, for the traditional bootstrap and linux-libre-headers, bootstrap-mescc-tools,
bootstrap-mes for the Reduced Binary Seed bootstrap, and Guile, and a tarball containing
a mixture of Coreutils and other basic command-line tools):

guix build bootstrap-tarballs

The generated tarballs are those that should be referred to in the (gnu packages

bootstrap) module mentioned at the beginning of this section.

Still here? Then perhaps by now you’ve started to wonder: when do we reach a fixed
point? That is an interesting question! The answer is unknown, but if you would like to
investigate further (and have significant computational and storage resources to do so), then
let us know.

Reducing the Set of Bootstrap Binaries

Our traditional bootstrap includes GCC, GNU Libc, Guile, etc. That’s a lot of binary
code! Why is that a problem? It’s a problem because these big chunks of binary code are
practically non-auditable, which makes it hard to establish what source code produced them.
Every unauditable binary also leaves us vulnerable to compiler backdoors as described by
Ken Thompson in the 1984 paper Reflections on Trusting Trust.

This is mitigated by the fact that our bootstrap binaries were generated from an earlier
Guix revision. Nevertheless it lacks the level of transparency that we get in the rest of the
package dependency graph, where Guix always gives us a source-to-binary mapping. Thus,
our goal is to reduce the set of bootstrap binaries to the bare minimum.

The Bootstrappable.org web site (https://bootstrappable.org) lists on-going projects
to do that. One of these is about replacing the bootstrap GCC with a sequence of assem-
blers, interpreters, and compilers of increasing complexity, which could be built from source
starting from a simple and auditable assembler.

Our first major achievement is the replacement of GCC, the GNU C Library and Binutils
by MesCC-Tools (a simple hex linker and macro assembler) and Mes (see GNU Mes, a
Scheme interpreter and C compiler in Scheme). Neither MesCC-Tools nor Mes can be fully
bootstrapped yet and thus we inject them as binary seeds. We call this the Reduced Binary
Seed bootstrap, as it has halved the size of our bootstrap binaries! Also, it has eliminated
the C compiler binary; i686-linux and x86 64-linux Guix packages are now bootstrapped
without any binary C compiler.

Work is ongoing to make MesCC-Tools and Mes fully bootstrappable and we are also
looking at any other bootstrap binaries. Your help is welcome!

https://bootstrappable.org

697

21 Porting to a New Platform

As discussed above, the GNU distribution is self-contained, and self-containment is achieved
by relying on pre-built “bootstrap binaries” (see Chapter 20 [Bootstrapping], page 690).
These binaries are specific to an operating system kernel, CPU architecture, and appli-
cation binary interface (ABI). Thus, to port the distribution to a platform that is not
yet supported, one must build those bootstrap binaries, and update the (gnu packages

bootstrap) module to use them on that platform.

Fortunately, Guix can cross compile those bootstrap binaries. When everything goes
well, and assuming the GNU tool chain supports the target platform, this can be as simple
as running a command like this one:

guix build --target=armv5tel-linux-gnueabi bootstrap-tarballs

For this to work, it is first required to register a new platform as defined in the (guix

platform) module. A platform is making the connection between a GNU triplet (see
Section “Specifying Target Triplets” in Autoconf), the equivalent system in Nix notation,
the name of the glibc-dynamic-linker, and the corresponding Linux architecture name if
applicable (see Chapter 15 [Platforms], page 673).

Once the bootstrap tarball are built, the (gnu packages bootstrap)module needs to be
updated to refer to these binaries on the target platform. That is, the hashes and URLs of
the bootstrap tarballs for the new platform must be added alongside those of the currently
supported platforms. The bootstrap Guile tarball is treated specially: it is expected to be
available locally, and gnu/local.mk has rules to download it for the supported architectures;
a rule for the new platform must be added as well.

In practice, there may be some complications. First, it may be that the extended GNU
triplet that specifies an ABI (like the eabi suffix above) is not recognized by all the GNU
tools. Typically, glibc recognizes some of these, whereas GCC uses an extra --with-abi

configure flag (see gcc.scm for examples of how to handle this). Second, some of the
required packages could fail to build for that platform. Lastly, the generated binaries could
be broken for some reason.

698

22 Contributing

This project is a cooperative effort, and we need your help to make it grow! Please get in
touch with us on guix-devel@gnu.org and #guix on the Libera Chat IRC network. We
welcome ideas, bug reports, patches, and anything that may be helpful to the project. We
particularly welcome help on packaging (see Section 22.8 [Packaging Guidelines], page 711).

We want to provide a warm, friendly, and harassment-free environment, so that anyone
can contribute to the best of their abilities. To this end our project uses a “Contributor
Covenant”, which was adapted from https://contributor-covenant.org/. You can find
a local version in the CODE-OF-CONDUCT file in the source tree.

Contributors are not required to use their legal name in patches and on-line communi-
cation; they can use any name or pseudonym of their choice.

22.1 Requirements

This section lists requirements when building Guix from source. The build procedure for
Guix is the same as for other GNU software, and is not covered here. Please see the files
README and INSTALL in the Guix source tree for additional details.

GNU Guix is available for download from its website at https://www.gnu.org/

software/guix/.

GNU Guix depends on the following packages:

• GNU Guile (https://gnu.org/software/guile/), version 3.0.x, version 3.0.3 or later;

• Guile-Gcrypt (https://notabug.org/cwebber/guile-gcrypt), version 0.1.0 or later;

• Guile-GnuTLS (https://gitlab.com/gnutls/guile/) (see Section “Guile Prepara-
tions” in GnuTLS-Guile)1;

• Guile-SQLite3 (https://notabug.org/guile-sqlite3/guile-sqlite3), version
0.1.0 or later;

• Guile-zlib (https://notabug.org/guile-zlib/guile-zlib), version 0.1.0 or later;

• Guile-lzlib (https://notabug.org/guile-lzlib/guile-lzlib);

• Guile-Avahi (https://www.nongnu.org/guile-avahi/);

• Guile-Git (https://gitlab.com/guile-git/guile-git), version 0.5.0 or later;

• Git (https://git-scm.com) (yes, both!);

• Guile-JSON (https://savannah.nongnu.org/projects/guile-json/) 4.3.0 or later;

• GNU Make (https://www.gnu.org/software/make/).

The following dependencies are optional:

• Support for build offloading (see Section 2.2.2 [Daemon Offload Setup], page 7) and
guix copy (see Section 9.13 [Invoking guix copy], page 222) depends on Guile-SSH
(https://github.com/artyom-poptsov/guile-ssh), version 0.13.0 or later.

• Guile-zstd (https://notabug.org/guile-zstd/guile-zstd), for zstd compression
and decompression in guix publish and for substitutes (see Section 9.11 [Invoking
guix publish], page 216).

1 The Guile bindings to GnuTLS (https://gnutls.org/) were distributed as part of GnuTLS until version
3.7.8 included.

mailto:guix-devel@gnu.org
https://contributor-covenant.org/
https://www.gnu.org/software/guix/
https://www.gnu.org/software/guix/
https://gnu.org/software/guile/
https://notabug.org/cwebber/guile-gcrypt
https://gitlab.com/gnutls/guile/
https://notabug.org/guile-sqlite3/guile-sqlite3
https://notabug.org/guile-zlib/guile-zlib
https://notabug.org/guile-lzlib/guile-lzlib
https://www.nongnu.org/guile-avahi/
https://gitlab.com/guile-git/guile-git
https://git-scm.com
https://savannah.nongnu.org/projects/guile-json/
https://www.gnu.org/software/make/
https://github.com/artyom-poptsov/guile-ssh
https://github.com/artyom-poptsov/guile-ssh
https://notabug.org/guile-zstd/guile-zstd
https://gnutls.org/

Chapter 22: Contributing 699

• Guile-Semver (https://ngyro.com/software/guile-semver.html) for the crate im-
porter (see Section 9.5 [Invoking guix import], page 189).

• Guile-Lib (https://www.nongnu.org/guile-lib/doc/ref/htmlprag/) for the go im-
porter (see Section 9.5 [Invoking guix import], page 189) and for some of the “updaters”
(see Section 9.6 [Invoking guix refresh], page 197).

• When libbz2 (http://www.bzip.org) is available, guix-daemon can use it to compress
build logs.

Unless --disable-daemon was passed to configure, the following packages are also
needed:

• GNU libgcrypt (https://gnupg.org/);

• SQLite 3 (https://sqlite.org);

• GCC’s g++ (https://gcc.gnu.org), with support for the C++11 standard.

When configuring Guix on a system that already has a Guix installation, be sure to
specify the same state directory as the existing installation using the --localstatedir op-
tion of the configure script (see Section “Directory Variables” in GNU Coding Standards).
Usually, this localstatedir option is set to the value /var. The configure script protects
against unintended misconfiguration of localstatedir so you do not inadvertently corrupt
your store (see Section 8.9 [The Store], page 150). The configuration directory should also
be configured by setting the --sysconfdir option to the /etc value, which is the location
used by Guix to store for example the access control list of authorized machines and the
definition of offload machines.

22.2 Building from Git

If you want to hack Guix itself, it is recommended to use the latest version from the Git
repository:

git clone https://git.savannah.gnu.org/git/guix.git

How do you ensure that you obtained a genuine copy of the repository? To do that, run
guix git authenticate, passing it the commit and OpenPGP fingerprint of the channel
introduction (see Section 7.5 [Invoking guix git authenticate], page 95):

git fetch origin keyring:keyring

guix git authenticate 9edb3f66fd807b096b48283debdcddccfea34bad \

"BBB0 2DDF 2CEA F6A8 0D1D E643 A2A0 6DF2 A33A 54FA"

This command completes with exit code zero on success; it prints an error message and
exits with a non-zero code otherwise.

As you can see, there is a chicken-and-egg problem: you first need to have Guix installed.
Typically you would install Guix System (see Chapter 3 [System Installation], page 20) or
Guix on top of another distro (see Section 2.1 [Binary Installation], page 4); in either case,
you would verify the OpenPGP signature on the installation medium. This “bootstraps”
the trust chain.

The easiest way to set up a development environment for Guix is, of course, by using
Guix! The following command starts a new shell where all the dependencies and appropriate
environment variables are set up to hack on Guix:

guix shell -D guix -CPW

https://ngyro.com/software/guile-semver.html
https://www.nongnu.org/guile-lib/doc/ref/htmlprag/
http://www.bzip.org
https://gnupg.org/
https://sqlite.org
https://gcc.gnu.org

Chapter 22: Contributing 700

or even, from within a Git worktree for Guix:

guix shell -CPW

If -C (short for --container) is not supported on your system, try --pure instead of
-CPW. See Section 7.1 [Invoking guix shell], page 76, for more information on that command.

If you are unable to use Guix when building Guix from a checkout, the following are
the required packages in addition to those mentioned in the installation instructions (see
Section 22.1 [Requirements], page 698).

• GNU Autoconf (https://gnu.org/software/autoconf/);

• GNU Automake (https://gnu.org/software/automake/);

• GNU Gettext (https://gnu.org/software/gettext/);

• GNU Texinfo (https://gnu.org/software/texinfo/);

• Graphviz (https://www.graphviz.org/);

• GNU Help2man (optional) (https://www.gnu.org/software/help2man/).

On Guix, extra dependencies can be added by instead running guix shell:

guix shell -D guix help2man git strace --pure

From there you can generate the build system infrastructure using Autoconf and Au-
tomake:

./bootstrap

If you get an error like this one:

configure.ac:46: error: possibly undefined macro: PKG_CHECK_MODULES

it probably means that Autoconf couldn’t find pkg.m4, which is provided by pkg-config.
Make sure that pkg.m4 is available. The same holds for the guile.m4 set of macros provided
by Guile. For instance, if you installed Automake in /usr/local, it wouldn’t look for .m4
files in /usr/share. In that case, you have to invoke the following command:

export ACLOCAL_PATH=/usr/share/aclocal

See Section “Macro Search Path” in The GNU Automake Manual, for more information.

Then, run:

./configure --localstatedir=/var --sysconfdir=/etc

... where /var is the normal localstatedir value (see Section 8.9 [The Store], page 150,
for information about this) and /etc is the normal sysconfdir value. Note that you will
probably not run make install at the end (you don’t have to) but it’s still important to
pass the right localstatedir and sysconfdir values, which get recorded in the (guix

config) Guile module.

Finally, you can build Guix and, if you feel so inclined, run the tests (see Section 22.3
[Running the Test Suite], page 701):

make

make check

If anything fails, take a look at installation instructions (see Chapter 2 [Installation], page 4)
or send a message to the mailing list.

From there on, you can authenticate all the commits included in your checkout by
running:

make authenticate

https://gnu.org/software/autoconf/
https://gnu.org/software/automake/
https://gnu.org/software/gettext/
https://gnu.org/software/texinfo/
https://www.graphviz.org/
https://www.gnu.org/software/help2man/
mailto:guix-devel@gnu.org

Chapter 22: Contributing 701

The first run takes a couple of minutes, but subsequent runs are faster.

Or, when your configuration for your local Git repository doesn’t match the default
one, you can provide the reference for the keyring branch through the variable GUIX_GIT_
KEYRING. The following example assumes that you have a Git remote called ‘myremote’
pointing to the official repository:

make authenticate GUIX_GIT_KEYRING=myremote/keyring

Note: You are advised to run make authenticate after every git pull invo-
cation. This ensures you keep receiving valid changes to the repository.

After updating the repository, make might fail with an error similar to the following
example:

error: failed to load 'gnu/packages/linux.scm':

ice-9/eval.scm:293:34: In procedure abi-check: #<record-type <origin>>: record ABI mismatch; recompilation needed

This means that one of the record types that Guix defines (in this example, the origin
record) has changed, and all of guix needs to be recompiled to take that change into account.
To do so, run make clean-go followed by make.

Should make fail with an Automake error message after updating, you need to repeat
the steps outlined in this section, commencing with ./bootstrap.

22.3 Running the Test Suite

After a successful configure and make run, it is a good idea to run the test suite. It can
help catch issues with the setup or environment, or bugs in Guix itself—and really, reporting
test failures is a good way to help improve the software. To run the test suite, type:

make check

Test cases can run in parallel: you can use the -j option of GNU make to speed things
up. The first run may take a few minutes on a recent machine; subsequent runs will be
faster because the store that is created for test purposes will already have various things in
cache.

It is also possible to run a subset of the tests by defining the TESTS makefile variable as
in this example:

make check TESTS="tests/store.scm tests/cpio.scm"

By default, tests results are displayed at a file level. In order to see the details of every
individual test cases, it is possible to define the SCM_LOG_DRIVER_FLAGS makefile variable
as in this example:

make check TESTS="tests/base64.scm" SCM_LOG_DRIVER_FLAGS="--brief=no"

The underlying SRFI 64 custom Automake test driver used for the ’check’ test suite
(located at build-aux/test-driver.scm) also allows selecting which test cases to run at a
finer level, via its --select and --exclude options. Here’s an example, to run all the test
cases from the tests/packages.scm test file whose names start with “transaction-upgrade-
entry”:

export SCM_LOG_DRIVER_FLAGS="--select=^transaction-upgrade-entry"

make check TESTS="tests/packages.scm"

Chapter 22: Contributing 702

Those wishing to inspect the results of failed tests directly from the command line can
add the --errors-only=yes option to the SCM_LOG_DRIVER_FLAGS makefile variable and
set the VERBOSE Automake makefile variable, as in:

make check SCM_LOG_DRIVER_FLAGS="--brief=no --errors-only=yes" VERBOSE=1

The --show-duration=yes option can be used to print the duration of the individual
test cases, when used in combination with --brief=no:

make check SCM_LOG_DRIVER_FLAGS="--brief=no --show-duration=yes"

See Section “Parallel Test Harness” in GNU Automake for more information about the
Automake Parallel Test Harness.

Upon failure, please email bug-guix@gnu.org and attach the test-suite.log file.
Please specify the Guix version being used as well as version numbers of the dependen-
cies (see Section 22.1 [Requirements], page 698) in your message.

Guix also comes with a whole-system test suite that tests complete Guix System in-
stances. It can only run on systems where Guix is already installed, using:

make check-system

or, again, by defining TESTS to select a subset of tests to run:

make check-system TESTS="basic mcron"

These system tests are defined in the (gnu tests ...) modules. They work by running
the operating systems under test with lightweight instrumentation in a virtual machine
(VM). They can be computationally intensive or rather cheap, depending on whether sub-
stitutes are available for their dependencies (see Section 5.3 [Substitutes], page 44). Some
of them require a lot of storage space to hold VM images.

Again in case of test failures, please send bug-guix@gnu.org all the details.

22.4 Running Guix Before It Is Installed

In order to keep a sane working environment, you will find it useful to test the changes
made in your local source tree checkout without actually installing them. So that you can
distinguish between your “end-user” hat and your “motley” costume.

To that end, all the command-line tools can be used even if you have not run make

install. To do that, you first need to have an environment with all the dependencies
available (see Section 22.2 [Building from Git], page 699), and then simply prefix each
command with ./pre-inst-env (the pre-inst-env script lives in the top build tree of
Guix; see Section 22.2 [Building from Git], page 699, to generate it). As an example, here
is how you would build the hello package as defined in your working tree (this assumes
guix-daemon is already running on your system; it’s OK if it’s a different version):

$./pre-inst-env guix build hello

Similarly, an example for a Guile session using the Guix modules:

$./pre-inst-env guile -c '(use-modules (guix utils)) (pk (%current-system))'

;;; ("x86_64-linux")

. . . and for a REPL (see Section 8.14 [Using Guix Interactively], page 170):

$./pre-inst-env guile

mailto:bug-guix@gnu.org
mailto:bug-guix@gnu.org

Chapter 22: Contributing 703

scheme@(guile-user)> ,use(guix)

scheme@(guile-user)> ,use(gnu)

scheme@(guile-user)> (define snakes

(fold-packages

(lambda (package lst)

(if (string-prefix? "python"

(package-name package))

(cons package lst)

lst))

'()))

scheme@(guile-user)> (length snakes)

$1 = 361

If you are hacking on the daemon and its supporting code or if guix-daemon is not
already running on your system, you can launch it straight from the build tree2:

$ sudo -E ./pre-inst-env guix-daemon --build-users-group=guixbuild

The pre-inst-env script sets up all the environment variables necessary to support this,
including PATH and GUILE_LOAD_PATH.

Note that ./pre-inst-env guix pull does not upgrade the local source tree; it sim-
ply updates the ~/.config/guix/current symlink (see Section 5.7 [Invoking guix pull],
page 54). Run git pull instead if you want to upgrade your local source tree.

Sometimes, especially if you have recently updated your repository, running ./pre-

inst-env will print a message similar to the following example:

;;; note: source file /home/user/projects/guix/guix/progress.scm

;;; newer than compiled /home/user/projects/guix/guix/progress.go

This is only a note and you can safely ignore it. You can get rid of the message by
running make -j4. Until you do, Guile will run slightly slower because it will interpret the
code instead of using prepared Guile object (.go) files.

You can run make automatically as you work using watchexec from the watchexec

package. For example, to build again each time you update a package file, run ‘watchexec
-w gnu/packages -- make -j4’.

22.5 The Perfect Setup

The Perfect Setup to hack on Guix is basically the perfect setup used for Guile hacking (see
Section “Using Guile in Emacs” in Guile Reference Manual). First, you need more than
an editor, you need Emacs (https://www.gnu.org/software/emacs), empowered by the
wonderful Geiser (https://nongnu.org/geiser/). To set that up, run:

guix install emacs guile emacs-geiser emacs-geiser-guile

Geiser allows for interactive and incremental development from within Emacs: code com-
pilation and evaluation from within buffers, access to on-line documentation (docstrings),
context-sensitive completion, M-. to jump to an object definition, a REPL to try out your
code, and more (see Section “Introduction” in Geiser User Manual). If you allow Emacs

2 The -E flag to sudo guarantees that GUILE_LOAD_PATH is correctly set such that guix-daemon and the
tools it uses can find the Guile modules they need.

https://www.gnu.org/software/emacs
https://nongnu.org/geiser/

Chapter 22: Contributing 704

to load the .dir-locals.el file at the root of the project checkout, it will cause Geiser to
automatically add the local Guix sources to the Guile load path.

To actually edit the code, Emacs already has a neat Scheme mode. But in addition
to that, you must not miss Paredit (https://www.emacswiki.org/emacs/ParEdit). It
provides facilities to directly operate on the syntax tree, such as raising an s-expression or
wrapping it, swallowing or rejecting the following s-expression, etc.

We also provide templates for common git commit messages and package definitions
in the etc/snippets directory. These templates can be used to expand short trigger
strings to interactive text snippets. If you use YASnippet (https://joaotavora.github.
io/yasnippet/), you may want to add the etc/snippets/yas snippets directory to the
yas-snippet-dirs variable. If you use Tempel (https://github.com/minad/tempel/), you
may want to add the etc/snippets/tempel/* path to the tempel-path variable in Emacs.

;; Assuming the Guix checkout is in ~/src/guix.
;; Yasnippet configuration
(with-eval-after-load 'yasnippet

(add-to-list 'yas-snippet-dirs "~/src/guix/etc/snippets/yas"))

;; Tempel configuration
(with-eval-after-load 'tempel

;; Ensure tempel-path is a list -- it may also be a string.

(unless (listp 'tempel-path)

(setq tempel-path (list tempel-path)))

(add-to-list 'tempel-path "~/src/guix/etc/snippets/tempel/*"))

The commit message snippets depend on Magit (https://magit.vc/) to display staged
files. When editing a commit message type add followed by TAB to insert a commit mes-
sage template for adding a package; type update followed by TAB to insert a template for
updating a package; type https followed by TAB to insert a template for changing the home
page URI of a package to HTTPS.

The main snippet for scheme-mode is triggered by typing package... followed by TAB.
This snippet also inserts the trigger string origin..., which can be expanded further. The
origin snippet in turn may insert other trigger strings ending on ..., which also can be
expanded further.

We additionally provide insertion and automatic update of a copyright in
etc/copyright.el. You may want to set your full name, mail, and load a file.

(setq user-full-name "Alice Doe")

(setq user-mail-address "alice@mail.org")

;; Assuming the Guix checkout is in ~/src/guix.
(load-file "~/src/guix/etc/copyright.el")

To insert a copyright at the current line invoke M-x guix-copyright.

To update a copyright you need to specify a copyright-names-regexp.

(setq copyright-names-regexp

(format "%s <%s>" user-full-name user-mail-address))

You can check if your copyright is up to date by evaluating M-x copyright-update. If
you want to do it automatically after each buffer save then add (add-hook 'after-save-

hook 'copyright-update) in Emacs.

https://www.emacswiki.org/emacs/ParEdit
https://joaotavora.github.io/yasnippet/
https://joaotavora.github.io/yasnippet/
https://github.com/minad/tempel/
https://magit.vc/

Chapter 22: Contributing 705

22.5.1 Viewing Bugs within Emacs

Emacs has a nice minor mode called bug-reference, which, when combined
with ‘emacs-debbugs’ (the Emacs package), can be used to open links such as
‘<https://bugs.gnu.org/58697>’ or ‘<https://issues.guix.gnu.org/58697>’ as bug
report buffers. From there you can easily consult the email thread via the Gnus interface,
reply or modify the bug status, all without leaving the comfort of Emacs! Below is a
sample configuration to add to your ~/.emacs configuration file:

;;; Bug references.

(require 'bug-reference)

(add-hook 'prog-mode-hook #'bug-reference-prog-mode)

(add-hook 'gnus-mode-hook #'bug-reference-mode)

(add-hook 'erc-mode-hook #'bug-reference-mode)

(add-hook 'gnus-summary-mode-hook #'bug-reference-mode)

(add-hook 'gnus-article-mode-hook #'bug-reference-mode)

;;; This extends the default expression (the top-most, first expression

;;; provided to 'or') to also match URLs such as

;;; <https://issues.guix.gnu.org/58697> or <https://bugs.gnu.org/58697>.

;;; It is also extended to detect "Fixes: #NNNNN" git trailers.

(setq bug-reference-bug-regexp

(rx (group (or (seq word-boundary

(or (seq (char "Bb") "ug"

(zero-or-one " ")

(zero-or-one "#"))

(seq (char "Pp") "atch"

(zero-or-one " ")

"#")

(seq (char "Ff") "ixes"

(zero-or-one ":")

(zero-or-one " ") "#")

(seq "RFE"

(zero-or-one " ") "#")

(seq "PR "

(one-or-more (char "a-z+-")) "/"))

(group (one-or-more (char "0-9"))

(zero-or-one

(seq "#" (one-or-more

(char "0-9"))))))

(seq (? "<") "https://bugs.gnu.org/"

(group-n 2 (one-or-more (char "0-9")))

(? ">"))

(seq (? "<") "https://issues.guix.gnu.org/"

(? "issue/")

(group-n 2 (one-or-more (char "0-9")))

(? ">"))))))

(setq bug-reference-url-format "https://issues.guix.gnu.org/%s")

Chapter 22: Contributing 706

(require 'debbugs)

(require 'debbugs-browse)

(add-hook 'bug-reference-mode-hook #'debbugs-browse-mode)

(add-hook 'bug-reference-prog-mode-hook #'debbugs-browse-mode)

;; The following allows Emacs Debbugs user to open the issue directly within

;; Emacs.

(setq debbugs-browse-url-regexp

(rx line-start

"http" (zero-or-one "s") "://"

(or "debbugs" "issues.guix" "bugs")

".gnu.org" (one-or-more "/")

(group (zero-or-one "cgi/bugreport.cgi?bug="))

(group-n 3 (one-or-more digit))

line-end))

;; Change the default when run as 'M-x debbugs-gnu'.

(setq debbugs-gnu-default-packages '("guix" "guix-patches"))

;; Show feature requests.

(setq debbugs-gnu-default-severities

'("serious" "important" "normal" "minor" "wishlist"))

For more information, refer to Section “Bug Reference” in The GNU Emacs Manual and
Section “Minor Mode” in The Debbugs User Guide.

22.6 Alternative Setups

Alternative setups than Emacs may let you work on Guix with a similar development
experience and they might work better with the tools you currently use or help you make
the transition to Emacs.

The options listed below only provide the alternatives to the Emacs based setup, which
is the most widely used in the Guix community. If you want to really understand how is
the perfect setup for Guix development supposed to work, we encourage you to read the
section before this regardless the editor you choose to use.

22.6.1 Guile Studio

Guile Studio is a pre-configured Emacs with mostly everything you need to start hacking
in Guile. If you are not familiar with Emacs it makes the transition easier for you.

guix install guile-studio

Guile Studio comes with Geiser preinstalled and prepared for action.

22.6.2 Vim and NeoVim

Vim (and NeoVim) are also packaged in Guix, just in case you decided to go for the evil
path.

guix install vim

Chapter 22: Contributing 707

If you want to enjoy a similar development experience to that in the perfect setup,
you should install several plugins to configure the editor. Vim (and NeoVim) have the
equivalent to Paredit, paredit.vim (https://www.vim.org/scripts/script.php?
script_id=3998), that will help you with the structural editing of Scheme files (the support
for very large files is not great, though).

guix install vim-paredit

We also recommend that you run :set autoindent so that your code is automatically
indented as you type.

For the interaction with Git, fugitive.vim (https://www.vim.org/scripts/script.
php?script_id=2975) is the most commonly used plugin:

guix install vim-fugitive

And of course if you want to interact with Guix directly from inside of vim, using the
built-in terminal emulator, we have our very own guix.vim package!

guix install vim-guix-vim

In NeoVim you can even make a similar setup to Geiser using Conjure (https://
conjure.fun/) that lets you connect to a running Guile process and inject your code there
live (sadly it’s not packaged in Guix yet).

22.7 Source Tree Structure

If you’re willing to contribute to Guix beyond packages, or if you’d like to learn how it all
fits together, this section provides a guided tour in the code base that you may find useful.

Overall, the Guix source tree contains almost exclusively Guile modules, each of which
can be seen as an independent library (see Section “Modules” in GNU Guile Reference
Manual).

The following table gives an overview of the main directories and what they contain.
Remember that in Guile, each module name is derived from its file name—e.g., the module
in file guix/packages.scm is called (guix packages).

guix This is the location of core Guix mechanisms. To illustrate what is meant by
“core”, here are a few examples, starting from low-level tools and going towards
higher-level tools:

(guix store)

Connecting to and interacting with the build daemon (see Sec-
tion 8.9 [The Store], page 150).

(guix derivations)

Creating derivations (see Section 8.10 [Derivations], page 152).

(guix gexps)

Writing G-expressions (see Section 8.12 [G-Expressions], page 159).

(guix packages)

Defining packages and origins (see Section 8.2.1 [package Refer-
ence], page 101).

https://www.vim.org/scripts/script.php?script_id=3998
https://www.vim.org/scripts/script.php?script_id=3998
https://www.vim.org/scripts/script.php?script_id=2975
https://www.vim.org/scripts/script.php?script_id=2975
https://conjure.fun/
https://conjure.fun/

Chapter 22: Contributing 708

(guix download)

(guix git-download)

The url-fetch and git-fetch origin download methods (see Sec-
tion 8.2.2 [origin Reference], page 105).

(guix swh)

Fetching source code from the Software Heritage archive (https://
archive.softwareheritage.org).

(guix search-paths)

Implementing search paths (see Section 8.8 [Search Paths],
page 147).

(guix build-system)

The build system interface (see Section 8.5 [Build Systems],
page 117).

(guix profiles)

Implementing profiles.

guix/build-system

This directory contains specific build system implementations (see Section 8.5
[Build Systems], page 117), such as:

(guix build-system gnu)

the GNU build system;

(guix build-system cmake)

the CMake build system;

(guix build-system pyproject)

The Python “pyproject” build system.

guix/build

This contains code generally used on the “build side” (see Section 8.12 [G-
Expressions], page 159). This includes code used to build packages or other
operating system components, as well as utilities:

(guix build utils)

Utilities for package definitions and more (see Section 8.7 [Build
Utilities], page 140).

(guix build gnu-build-system)

(guix build cmake-build-system)

(guix build pyproject-build-system)

Implementation of build systems, and in particular definition of
their build phases (see Section 8.6 [Build Phases], page 137).

(guix build syscalls)

Interface to the C library and to Linux system calls.

guix/scripts

This contains modules corresponding to guix sub-commands. For example,
the (guix scripts shell) module exports the guix-shell procedure, which

https://archive.softwareheritage.org
https://archive.softwareheritage.org

Chapter 22: Contributing 709

directly corresponds to the guix shell command (see Section 7.1 [Invoking
guix shell], page 76).

guix/import

This contains supporting code for the importers and updaters (see Section 9.5
[Invoking guix import], page 189, and see Section 9.6 [Invoking guix refresh],
page 197). For example, (guix import pypi) defines the interface to PyPI,
which is used by the guix import pypi command.

The directories we have seen so far all live under guix/. The other important place is the
gnu/ directory, which contains primarily package definitions as well as libraries and tools
for Guix System (see Chapter 11 [System Configuration], page 231) and Guix Home (see
Chapter 13 [Home Configuration], page 636), all of which build upon functionality provided
by (guix ...) modules3.

gnu/packages

This is by far the most crowded directory of the source tree: it contains package
modules that export package definitions (see Section 8.1 [Package Modules],
page 97). A few examples:

(gnu packages base)

Module providing “base” packages: glibc, coreutils, grep, etc.

(gnu packages guile)

Guile and core Guile packages.

(gnu packages linux)

The Linux-libre kernel and related packages.

(gnu packages python)

Python and core Python packages.

(gnu packages python-xyz)

Miscellaneous Python packages (we were not very creative).

In any case, you can jump to a package definition using guix edit (see Sec-
tion 9.2 [Invoking guix edit], page 187) and view its location with guix show

(see Section 5.2 [Invoking guix package], page 35).

gnu/packages/patches

This directory contains patches applied against packages and obtained using
the search-patches procedure.

gnu/services

This contains service definitions, primarily for Guix System (see Section 11.10
[Services], page 263) but some of them are adapted and reused for Guix Home
as we will see below. Examples:

3 For this reason, (guix ...) modules must generally not depend on (gnu ...) modules, with notable
exceptions: (guix build-system ...) modules may look up packages at run time—e.g., (guix build-

system cmake) needs to access the cmake variable at run time—, (guix scripts ...) often rely on (gnu

...) modules, and the same goes for some of the (guix import ...) modules.

Chapter 22: Contributing 710

(gnu services)

The service framework itself, which defines the service and ser-
vice type data types (see Section 11.19.1 [Service Composition],
page 615).

(gnu services base)

“Base” services (see Section 11.10.1 [Base Services], page 263).

(gnu services desktop)

“Desktop” services (see Section 11.10.9 [Desktop Services],
page 347).

(gnu services shepherd)

Support for Shepherd services (see Section 11.19.4 [Shepherd Ser-
vices], page 623).

You can jump to a service definition using guix system edit and view its
location with guix system search (see Section 11.16 [Invoking guix system],
page 601).

gnu/system

These are core Guix System modules, such as:

(gnu system)

Defines operating-system (see Section 11.3 [operating-system
Reference], page 242).

(gnu system file-systems)

Defines file-system (see Section 11.4 [File Systems], page 246).

(gnu system mapped-devices)

Defines mapped-device (see Section 11.5 [Mapped Devices],
page 251).

gnu/build

These are modules that are either used on the “build side” when building op-
erating systems or packages, or at run time by operating systems.

(gnu build accounts)

Creating /etc/passwd, /etc/shadow, etc. (see Section 11.7 [User
Accounts], page 256).

(gnu build activation)

Activating an operating system at boot time or reconfiguration
time.

(gnu build file-systems)

Searching, checking, and mounting file systems.

(gnu build linux-boot)

(gnu build hurd-boot)

Booting GNU/Linux and GNU/Hurd operating systems.

(gnu build linux-initrd)

Creating a Linux initial RAM disk (see Section 11.14 [Initial RAM
Disk], page 591).

Chapter 22: Contributing 711

gnu/home This contains all things Guix Home (see Chapter 13 [Home Configuration],
page 636); examples:

(gnu home services)

Core services such as home-files-service-type.

(gnu home services ssh)

SSH-related services (see Section 13.3.6 [Secure Shell], page 651).

gnu/installer

This contains the text-mode graphical system installer (see Section 3.5 [Guided
Graphical Installation], page 22).

gnu/machine

These are the machine abstractions used by guix deploy (see Section 11.17
[Invoking guix deploy], page 609).

gnu/tests

This contains system tests—tests that spawn virtual machines to check that
system services work as expected (see Section 22.3 [Running the Test Suite],
page 701).

Last, there’s also a few directories that contain files that are not Guile modules:

nix This is the C++ implementation of guix-daemon, inherited from Nix (see Sec-
tion 2.3 [Invoking guix-daemon], page 11).

tests These are unit tests, each file corresponding more or less to one module, in
particular (guix ...) modules (see Section 22.3 [Running the Test Suite],
page 701).

doc This is the documentation in the form of Texinfo files: this manual and the
Cookbook. See Section “Writing a Texinfo File” in GNU Texinfo, for informa-
tion on Texinfo markup language.

po This is the location of translations of Guix itself, of package synopses and
descriptions, of the manual, and of the cookbook. Note that .po files that live
here are pulled directly from Weblate (see Section 22.16 [Translating Guix],
page 737).

etc Miscellaneous files: shell completions, support for systemd and other init sys-
tems, Git hooks, etc.

With all this, a fair chunk of your operating system is at your fingertips! Beyond grep

and git grep, see Section 22.5 [The Perfect Setup], page 703, on how to navigate code from
your editor, and see Section 8.14 [Using Guix Interactively], page 170, for information on
how to use Scheme modules interactively. Enjoy!

22.8 Packaging Guidelines

The GNU distribution is nascent and may well lack some of your favorite packages. This
section describes how you can help make the distribution grow.

Free software packages are usually distributed in the form of source code tarballs—
typically tar.gz files that contain all the source files. Adding a package to the distribution

Chapter 22: Contributing 712

means essentially two things: adding a recipe that describes how to build the package,
including a list of other packages required to build it, and adding package metadata along
with that recipe, such as a description and licensing information.

In Guix all this information is embodied in package definitions. Package definitions
provide a high-level view of the package. They are written using the syntax of the Scheme
programming language; in fact, for each package we define a variable bound to the package
definition, and export that variable from a module (see Section 8.1 [Package Modules],
page 97). However, in-depth Scheme knowledge is not a prerequisite for creating packages.
For more information on package definitions, see Section 8.2 [Defining Packages], page 98.

Once a package definition is in place, stored in a file in the Guix source tree, it can be
tested using the guix build command (see Section 9.1 [Invoking guix build], page 173).
For example, assuming the new package is called gnew, you may run this command from
the Guix build tree (see Section 22.4 [Running Guix Before It Is Installed], page 702):

./pre-inst-env guix build gnew --keep-failed

Using --keep-failed makes it easier to debug build failures since it provides access to
the failed build tree. Another useful command-line option when debugging is --log-file,
to access the build log.

If the package is unknown to the guix command, it may be that the source file contains
a syntax error, or lacks a define-public clause to export the package variable. To figure it
out, you may load the module from Guile to get more information about the actual error:

./pre-inst-env guile -c '(use-modules (gnu packages gnew))'

Once your package builds correctly, please send us a patch (see Section 22.10 [Sub-
mitting Patches], page 722). Well, if you need help, we will be happy to help you too.
Once the patch is committed in the Guix repository, the new package automatically gets
built on the supported platforms by our continuous integration system (https://
bordeaux.guix.gnu.org).

Users can obtain the new package definition simply by running guix pull (see Sec-
tion 5.7 [Invoking guix pull], page 54). When bordeaux.guix.gnu.org is done building the
package, installing the package automatically downloads binaries from there (see Section 5.3
[Substitutes], page 44). The only place where human intervention is needed is to review
and apply the patch.

22.8.1 Software Freedom

The GNU operating system has been developed so that users can have freedom in their
computing. GNU is free software, meaning that users have the four essential freedoms
(https://www.gnu.org/philosophy/free-sw.html): to run the program, to study and
change the program in source code form, to redistribute exact copies, and to distribute
modified versions. Packages found in the GNU distribution provide only software that
conveys these four freedoms.

In addition, the GNU distribution follow the free software distribution guidelines
(https://www.gnu.org/distros/free-system-distribution-guidelines.html).
Among other things, these guidelines reject non-free firmware, recommendations of
non-free software, and discuss ways to deal with trademarks and patents.

Some otherwise free upstream package sources contain a small and optional subset that
violates the above guidelines, for instance because this subset is itself non-free code. When

https://bordeaux.guix.gnu.org
https://bordeaux.guix.gnu.org
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html

Chapter 22: Contributing 713

that happens, the offending items are removed with appropriate patches or code snippets
in the origin form of the package (see Section 8.2 [Defining Packages], page 98). This
way, guix build --source returns the “freed” source rather than the unmodified upstream
source.

22.8.2 Package Naming

A package actually has two names associated with it. First, there is the name of the Scheme
variable, the one following define-public. By this name, the package can be made known
in the Scheme code, for instance as input to another package. Second, there is the string in
the name field of a package definition. This name is used by package management commands
such as guix package and guix build.

Both are usually the same and correspond to the lowercase conversion of the project
name chosen upstream, with underscores replaced with hyphens. For instance, GNUnet is
available as gnunet, and SDL net as sdl-net.

A noteworthy exception to this rule is when the project name is only a single character,
or if an older maintained project with the same name already exists—regardless of whether
it has already been packaged for Guix. Use common sense to make such names unambiguous
and meaningful. For example, Guix’s package for the shell called “s” upstream is s-shell
and not s. Feel free to ask your fellow hackers for inspiration.

We do not add lib prefixes for library packages, unless these are already part of the
official project name. But see Section 22.8.8 [Python Modules], page 717, and Section 22.8.9
[Perl Modules], page 718, for special rules concerning modules for the Python and Perl
languages.

Font package names are handled differently, see Section 22.8.13 [Fonts], page 721.

22.8.3 Version Numbers

We usually package only the latest version of a given free software project. But sometimes,
for instance for incompatible library versions, two (or more) versions of the same package
are needed. These require different Scheme variable names. We use the name as defined in
Section 22.8.2 [Package Naming], page 713, for the most recent version; previous versions
use the same name, suffixed by - and the smallest prefix of the version number that may
distinguish the two versions.

The name inside the package definition is the same for all versions of a package and does
not contain any version number.

For instance, the versions 2.24.20 and 3.9.12 of GTK+ may be packaged as follows:

(define-public gtk+

(package

(name "gtk+")

(version "3.9.12")

...))

(define-public gtk+-2

(package

(name "gtk+")

(version "2.24.20")

...))

Chapter 22: Contributing 714

If we also wanted GTK+ 3.8.2, this would be packaged as

(define-public gtk+-3.8

(package

(name "gtk+")

(version "3.8.2")

...))

Occasionally, we package snapshots of upstream’s version control system (VCS) instead
of formal releases. This should remain exceptional, because it is up to upstream developers
to clarify what the stable release is. Yet, it is sometimes necessary. So, what should we put
in the version field?

Clearly, we need to make the commit identifier of the VCS snapshot visible in the version
string, but we also need to make sure that the version string is monotonically increasing
so that guix package --upgrade can determine which version is newer. Since commit
identifiers, notably with Git, are not monotonically increasing, we add a revision number
that we increase each time we upgrade to a newer snapshot. The resulting version string
looks like this:

2.0.11-3.cabba9e

^ ^ ^

| | `-- upstream commit ID

| |

| `--- Guix package revision

|

latest upstream version

It is a good idea to strip commit identifiers in the version field to, say, 7 digits. It avoids
an aesthetic annoyance (assuming aesthetics have a role to play here) as well as problems
related to OS limits such as the maximum shebang length (127 bytes for the Linux kernel).
There are helper functions for doing this for packages using git-fetch or hg-fetch (see
below). It is best to use the full commit identifiers in origins, though, to avoid ambiguities.
A typical package definition may look like this:

(define my-package

(let ((commit "c3f29bc928d5900971f65965feaae59e1272a3f7")

(revision "1")) ;Guix package revision

(package

(version (git-version "0.9" revision commit))

(source (origin

(method git-fetch)

(uri (git-reference

(url "git://example.org/my-package.git")

(commit commit)))

(sha256 (base32 "1mbikn..."))

(file-name (git-file-name name version))))

;; ...

)))

[Procedure]git-version VERSION REVISION COMMIT
Return the version string for packages using git-fetch.

Chapter 22: Contributing 715

(git-version "0.2.3" "0" "93818c936ee7e2f1ba1b315578bde363a7d43d05")

⇒ "0.2.3-0.93818c9"

[Procedure]hg-version VERSION REVISION CHANGESET
Return the version string for packages using hg-fetch. It works in the same way as
git-version.

22.8.4 Synopses and Descriptions

As we have seen before, each package in GNU Guix includes a synopsis and a description
(see Section 8.2 [Defining Packages], page 98). Synopses and descriptions are important:
They are what guix package --search searches, and a crucial piece of information to help
users determine whether a given package suits their needs. Consequently, packagers should
pay attention to what goes into them.

Synopses must start with a capital letter and must not end with a period. They must not
start with “a” or “the”, which usually does not bring anything; for instance, prefer “File-
frobbing tool” over “A tool that frobs files”. The synopsis should say what the package
is—e.g., “Core GNU utilities (file, text, shell)”—or what it is used for—e.g., the synopsis
for GNU grep is “Print lines matching a pattern”.

Keep in mind that the synopsis must be meaningful for a very wide audience. For exam-
ple, “Manipulate alignments in the SAM format” might make sense for a seasoned bioin-
formatics researcher, but might be fairly unhelpful or even misleading to a non-specialized
audience. It is a good idea to come up with a synopsis that gives an idea of the application
domain of the package. In this example, this might give something like “Manipulate nu-
cleotide sequence alignments”, which hopefully gives the user a better idea of whether this
is what they are looking for.

Descriptions should take between five and ten lines. Use full sentences, and avoid
using acronyms without first introducing them. Please avoid marketing phrases such as
“world-leading”, “industrial-strength”, and “next-generation”, and avoid superlatives like
“the most advanced”—they are not helpful to users looking for a package and may even
sound suspicious. Instead, try to be factual, mentioning use cases and features.

Descriptions can include Texinfo markup, which is useful to introduce ornaments such
as @code or @dfn, bullet lists, or hyperlinks (see Section “Overview” in GNU Texinfo).
However you should be careful when using some characters for example ‘@’ and curly braces
which are the basic special characters in Texinfo (see Section “Special Characters” in GNU
Texinfo). User interfaces such as guix show take care of rendering it appropriately.

Synopses and descriptions are translated by volunteers at Weblate (https://translate.
fedoraproject.org/projects/guix/packages) so that as many users as possible can read
them in their native language. User interfaces search them and display them in the language
specified by the current locale.

To allow xgettext to extract them as translatable strings, synopses and descriptions
must be literal strings. This means that you cannot use string-append or format to
construct these strings:

(package

;; ...

(synopsis "This is translatable")

https://translate.fedoraproject.org/projects/guix/packages
https://translate.fedoraproject.org/projects/guix/packages

Chapter 22: Contributing 716

(description (string-append "This is " "*not*" " translatable.")))

Translation is a lot of work so, as a packager, please pay even more attention to your
synopses and descriptions as every change may entail additional work for translators. In
order to help them, it is possible to make recommendations or instructions visible to them
by inserting special comments like this (see Section “xgettext Invocation” in GNU Gettext):

;; TRANSLATORS: "X11 resize-and-rotate" should not be translated.

(description "ARandR is designed to provide a simple visual front end

for the X11 resize-and-rotate (RandR) extension. ...")

22.8.5 Snippets versus Phases

The boundary between using an origin snippet versus a build phase to modify the sources of
a package can be elusive. Origin snippets are typically used to remove unwanted files such
as bundled libraries, nonfree sources, or to apply simple substitutions. The source derived
from an origin should produce a source that can be used to build the package on any system
that the upstream package supports (i.e., act as the corresponding source). In particular,
origin snippets must not embed store items in the sources; such patching should rather be
done using build phases. Refer to the origin record documentation for more information
(see Section 8.2.2 [origin Reference], page 105).

22.8.6 Cyclic Module Dependencies

While there cannot be circular dependencies between packages, Guile’s lax module loading
mechanism allows circular dependencies between Guile modules, which doesn’t cause prob-
lems as long as the following conditions are followed for two modules part of a dependency
cycle:

1. Macros are not shared between the co-dependent modules

2. Top-level variables are only referenced in delayed (thunked) package fields: arguments,
native-inputs, inputs, propagated-inputs or replacement

3. Procedures referencing top-level variables from another module are not called at the
top level of a module themselves.

Straying away from the above rules may work while there are no dependency cycles
between modules, but given such cycles are confusing and difficult to troubleshoot, it is
best to follow the rules to avoid introducing problems down the line.

Here is a common trap to avoid:

(define-public avr-binutils

(package

(inherit (cross-binutils "avr"))

(name "avr-binutils")))

In the above example, the avr-binutils package was defined in the module (gnu

packages avr), and the cross-binutils procedure in (gnu packages cross-base). Be-
cause the inherit field is not delayed (thunked), it is evaluated at the top level at load
time, which is problematic in the presence of module dependency cycles. This could be
resolved by turning the package into a procedure instead, like:

(define (make-avr-binutils)

(package

Chapter 22: Contributing 717

(inherit (cross-binutils "avr"))

(name "avr-binutils")))

Care would need to be taken to ensure the above procedure is only ever used in a package
delayed fields or within another procedure also not called at the top level.

22.8.7 Emacs Packages

Emacs packages should preferably use the Emacs build system (see [emacs-build-system],
page 135), for uniformity and the benefits provided by its build phases, such as the auto-
generation of the autoloads file and the byte compilation of the sources. Because there is
no standardized way to run a test suite for Emacs packages, tests are disabled by default.
When a test suite is available, it should be enabled by setting the #:tests? argument to
#true. By default, the command to run the test is make check, but any command can be
specified via the #:test-command argument. The #:test-command argument expects a list
containing a command and its arguments, to be invoked during the check phase.

The Elisp dependencies of Emacs packages are typically provided as propagated-inputs
when required at run time. As for other packages, build or test dependencies should be
specified as native-inputs.

Emacs packages sometimes depend on resources directories that should be installed along
the Elisp files. The #:include argument can be used for that purpose, by specifying a list
of regexps to match. The best practice when using the #:include argument is to extend
rather than override its default value (accessible via the %default-include variable). As
an example, a yasnippet extension package typically include a snippets directory, which
could be copied to the installation directory using:

#:include (cons "^snippets/" %default-include)

When encountering problems, it is wise to check for the presence of the Package-

Requires extension header in the package main source file, and whether any dependencies
and their versions listed therein are satisfied.

22.8.8 Python Modules

We currently package Python 2 and Python 3, under the Scheme variable names python-2
and python as explained in Section 22.8.3 [Version Numbers], page 713. To avoid confusion
and naming clashes with other programming languages, it seems desirable that the name
of a package for a Python module contains the word python.

Some modules are compatible with only one version of Python, others with both. If
the package Foo is compiled with Python 3, we name it python-foo. If it is compiled
with Python 2, we name it python2-foo. Python 2 packages are being removed from the
distribution; please do no not submit any new Python 2 packages.

If a project already contains the word python, we drop this; for instance, the module
python-dateutil is packaged under the names python-dateutil and python2-dateutil. If
the project name starts with py (e.g. pytz), we keep it and prefix it as described above.

Note: Currently there are two different build systems for Python packages in
Guix: python-build-system and pyproject-build-system. For the longest time,
Python packages were built from an informally specified setup.py file. That
worked amazingly well, considering Python’s success, but was difficult to build
tooling around. As a result, a host of alternative build systems emerged and the

Chapter 22: Contributing 718

community eventually settled on a formal standard (https://peps.python.
org/pep-0517/) for specifying build requirements. pyproject-build-system is
Guix’s implementation of this standard. It is considered “experimental” in
that it does not yet support all the various PEP-517 build backends, but you
are encouraged to try it for new Python packages and report any problems. It
will eventually be deprecated and merged into python-build-system.

22.8.8.1 Specifying Dependencies

Dependency information for Python packages is usually available in the package source
tree, with varying degrees of accuracy: in the pyproject.toml file, the setup.py file, in
requirements.txt, or in tox.ini (the latter mostly for test dependencies).

Your mission, when writing a recipe for a Python package, is to map these dependencies
to the appropriate type of “input” (see Section 8.2.1 [package Reference], page 101). Al-
though the pypi importer normally does a good job (see Section 9.5 [Invoking guix import],
page 189), you may want to check the following check list to determine which dependency
goes where.

• We currently package Python with setuptools and pip installed per default. This is
about to change, and users are encouraged to use python-toolchain if they want a
build environment for Python.

guix lint will warn if setuptools or pip are added as native-inputs because they are
generally not necessary.

• Python dependencies required at run time go into propagated-inputs. They
are typically defined with the install_requires keyword in setup.py, or in the
requirements.txt file.

• Python packages required only at build time—e.g., those listed under build-

system.requires in pyproject.toml or with the setup_requires keyword in
setup.py—or dependencies only for testing—e.g., those in tests_require or
tox.ini—go into native-inputs. The rationale is that (1) they do not need to be
propagated because they are not needed at run time, and (2) in a cross-compilation
context, it’s the “native” input that we’d want.

Examples are the pytest, mock, and nose test frameworks. Of course if any of these
packages is also required at run-time, it needs to go to propagated-inputs.

• Anything that does not fall in the previous categories goes to inputs, for example
programs or C libraries required for building Python packages containing C extensions.

• If a Python package has optional dependencies (extras_require), it is up to you
to decide whether to add them or not, based on their usefulness/overhead ratio (see
Section 22.10 [Submitting Patches], page 722).

22.8.9 Perl Modules

Perl programs standing for themselves are named as any other package, using the lowercase
upstream name. For Perl packages containing a single class, we use the lowercase class
name, replace all occurrences of :: by dashes and prepend the prefix perl-. So the class
XML::Parser becomes perl-xml-parser. Modules containing several classes keep their
lowercase upstream name and are also prepended by perl-. Such modules tend to have

https://peps.python.org/pep-0517/
https://peps.python.org/pep-0517/

Chapter 22: Contributing 719

the word perl somewhere in their name, which gets dropped in favor of the prefix. For
instance, libwww-perl becomes perl-libwww.

22.8.10 Java Packages

Java programs standing for themselves are named as any other package, using the lowercase
upstream name.

To avoid confusion and naming clashes with other programming languages, it is desirable
that the name of a package for a Java package is prefixed with java-. If a project already
contains the word java, we drop this; for instance, the package ngsjava is packaged under
the name java-ngs.

For Java packages containing a single class or a small class hierarchy, we use the lowercase
class name, replace all occurrences of . by dashes and prepend the prefix java-. So the
class apache.commons.cli becomes package java-apache-commons-cli.

22.8.11 Rust Crates

Rust programs standing for themselves are named as any other package, using the lowercase
upstream name.

To prevent namespace collisions we prefix all other Rust packages with the rust- prefix.
The name should be changed to lowercase as appropriate and dashes should remain in place.

In the rust ecosystem it is common for multiple incompatible versions of a package to
be used at any given time, so all package definitions should have a versioned suffix. The
versioned suffix is the left-most non-zero digit (and any leading zeros, of course). This follows
the “caret” version scheme intended by Cargo. Examples rust-clap-2, rust-rand-0.6.

Because of the difficulty in reusing rust packages as pre-compiled inputs for other pack-
ages the Cargo build system (see Section 8.5 [Build Systems], page 117) presents the
#:cargo-inputs and cargo-development-inputs keywords as build system arguments.
It would be helpful to think of these as similar to propagated-inputs and native-inputs.
Rust dependencies and build-dependencies should go in #:cargo-inputs, and dev-

dependencies should go in #:cargo-development-inputs. If a Rust package links to
other libraries then the standard placement in inputs and the like should be used.

Care should be taken to ensure the correct version of dependencies are used; to this end
we try to refrain from skipping the tests or using #:skip-build? when possible. Of course
this is not always possible, as the package may be developed for a different Operating
System, depend on features from the Nightly Rust compiler, or the test suite may have
atrophied since it was released.

22.8.12 Elm Packages

Elm applications can be named like other software: their names need not mention Elm.

Packages in the Elm sense (see elm-build-system under Section 8.5 [Build Systems],
page 117) are required use names of the format author/project, where both the author and
the project may contain hyphens internally, and the author sometimes contains uppercase
letters.

To form the Guix package name from the upstream name, we follow a convention similar
to Python packages (see Section 22.8.8 [Python Modules], page 717), adding an elm- prefix
unless the name would already begin with elm-.

Chapter 22: Contributing 720

In many cases we can reconstruct an Elm package’s upstream name heuristically, but,
since conversion to a Guix-style name involves a loss of information, this is not always
possible. Care should be taken to add the 'upstream-name property when necessary so that
‘guix import elm’ will work correctly (see Section 9.5 [Invoking guix import], page 189).
The most notable scenarios when explicitly specifying the upstream name is necessary are:

1. When the author is elm and the project contains one or more hyphens, as with
elm/virtual-dom; and

2. When the author contains hyphens or uppercase letters, as with Elm-Canvas/raster-

shapes—unless the author is elm-explorations, which is handled as a special case,
so packages like elm-explorations/markdown do not need to use the 'upstream-name
property.

The module (guix build-system elm) provides the following utilities for working with
names and related conventions:

[Procedure]elm-package-origin elm-name version hash
Returns a Git origin using the repository naming and tagging regime required for a
published Elm package with the upstream name elm-name at version version with
sha256 checksum hash.

For example:

(package

(name "elm-html")

(version "1.0.0")

(source

(elm-package-origin

"elm/html"

version

(base32 "15k1679ja57vvlpinpv06znmrxy09lbhzfkzdc89i01qa8c4gb4a")))

...)

[Procedure]elm->package-name elm-name
Returns the Guix-style package name for an Elm package with upstream name elm-
name.

Note that there is more than one possible elm-name for which elm->package-name

will produce a given result.

[Procedure]guix-package->elm-name package
Given an Elm package, returns the possibly-inferred upstream name, or #f the up-
stream name is not specified via the 'upstream-name property and can not be inferred
by infer-elm-package-name.

[Procedure]infer-elm-package-name guix-name
Given the guix-name of an Elm package, returns the inferred upstream name, or
#f if the upstream name can’t be inferred. If the result is not #f, supplying it to
elm->package-name would produce guix-name.

Chapter 22: Contributing 721

22.8.13 Fonts

For fonts that are in general not installed by a user for typesetting purposes, or that are
distributed as part of a larger software package, we rely on the general packaging rules for
software; for instance, this applies to the fonts delivered as part of the X.Org system or
fonts that are part of TeX Live.

To make it easier for a user to search for fonts, names for other packages containing only
fonts are constructed as follows, independently of the upstream package name.

The name of a package containing only one font family starts with font-; it is followed
by the foundry name and a dash - if the foundry is known, and the font family name, in
which spaces are replaced by dashes (and as usual, all upper case letters are transformed
to lower case). For example, the Gentium font family by SIL is packaged under the name
font-sil-gentium.

For a package containing several font families, the name of the collection is used in the
place of the font family name. For instance, the Liberation fonts consist of three families,
Liberation Sans, Liberation Serif and Liberation Mono. These could be packaged separately
under the names font-liberation-sans and so on; but as they are distributed together
under a common name, we prefer to package them together as font-liberation.

In the case where several formats of the same font family or font collection are packaged
separately, a short form of the format, prepended by a dash, is added to the package name.
We use -ttf for TrueType fonts, -otf for OpenType fonts and -type1 for PostScript Type
1 fonts.

22.9 Coding Style

In general our code follows the GNU Coding Standards (see GNU Coding Standards).
However, they do not say much about Scheme, so here are some additional rules.

22.9.1 Programming Paradigm

Scheme code in Guix is written in a purely functional style. One exception is code that in-
volves input/output, and procedures that implement low-level concepts, such as the memoize
procedure.

22.9.2 Modules

Guile modules that are meant to be used on the builder side must live in the (guix build

...) name space. They must not refer to other Guix or GNU modules. However, it is OK
for a “host-side” module to use a build-side module. As an example, the (guix search-

paths)module should not be imported and used by a package since it isn’t meant to be used
as a “build-side” module. It would also couple the module with the package’s dependency
graph, which is undesirable.

Modules that deal with the broader GNU system should be in the (gnu ...) name space
rather than (guix ...).

22.9.3 Data Types and Pattern Matching

The tendency in classical Lisp is to use lists to represent everything, and then to browse
them “by hand” using car, cdr, cadr, and co. There are several problems with that style,

Chapter 22: Contributing 722

notably the fact that it is hard to read, error-prone, and a hindrance to proper type error
reports.

Guix code should define appropriate data types (for instance, using define-record-

type*) rather than abuse lists. In addition, it should use pattern matching, via Guile’s
(ice-9 match) module, especially when matching lists (see Section “Pattern Matching” in
GNU Guile Reference Manual); pattern matching for records is better done using match-

record from (guix records), which, unlike match, verifies field names at macro-expansion
time.

When defining a new record type, keep the record type descriptor (RTD) private (see
Section “Records” in GNU Guile Reference Manual, for more on records and RTDs). As an
example, the (guix packages) module defines <package> as the RTD for package records
but it does not export it; instead, it exports a type predicate, a constructor, and field
accessors. Exporting RTDs would make it harder to change the application binary interface
(because code in other modules might be matching fields by position) and would make it
trivial for users to forge records of that type, bypassing any checks we may have in the
official constructor (such as “field sanitizers”).

22.9.4 Formatting Code

When writing Scheme code, we follow common wisdom among Scheme programmers. In
general, we follow the Riastradh’s Lisp Style Rules (https://mumble.net/~campbell/
scheme/style.txt). This document happens to describe the conventions mostly used in
Guile’s code too. It is very thoughtful and well written, so please do read it.

Some special forms introduced in Guix, such as the substitute* macro, have special
indentation rules. These are defined in the .dir-locals.el file, which Emacs automati-
cally uses. Also note that Emacs-Guix provides guix-devel-mode mode that indents and
highlights Guix code properly (see Section “Development” in The Emacs-Guix Reference
Manual).

If you do not use Emacs, please make sure to let your editor knows these rules. To
automatically indent a package definition, you can also run:

./pre-inst-env guix style package

See Section 9.7 [Invoking guix style], page 204, for more information.

We require all top-level procedures to carry a docstring. This requirement can be relaxed
for simple private procedures in the (guix build ...) name space, though.

Procedures should not have more than four positional parameters. Use keyword param-
eters for procedures that take more than four parameters.

22.10 Submitting Patches

Development is done using the Git distributed version control system. Thus, access to
the repository is not strictly necessary. We welcome contributions in the form of patches as
produced by git format-patch sent to the guix-patches@gnu.orgmailing list (see Section
“Submitting patches to a project” in Git User Manual). Contributors are encouraged to
take a moment to set some Git repository options (see Section 22.10.1 [Configuring Git],
page 725) first, which can improve the readability of patches. Seasoned Guix developers
may also want to look at the section on commit access (see Section 22.12 [Commit Access],
page 731).

https://mumble.net/~campbell/scheme/style.txt
https://mumble.net/~campbell/scheme/style.txt
mailto:guix-patches@gnu.org

Chapter 22: Contributing 723

This mailing list is backed by a Debbugs instance, which allows us to keep track of
submissions (see Section 22.11 [Tracking Bugs and Changes], page 727). Each message sent
to that mailing list gets a new tracking number assigned; people can then follow up on the
submission by sending email to ISSUE_NUMBER@debbugs.gnu.org, where ISSUE NUMBER
is the tracking number (see Section 22.10.2 [Sending a Patch Series], page 725).

Please write commit logs in the ChangeLog format (see Section “Change Logs” in GNU
Coding Standards); you can check the commit history for examples.

You can help make the review process more efficient, and increase the chance that your
patch will be reviewed quickly, by describing the context of your patch and the impact you
expect it to have. For example, if your patch is fixing something that is broken, describe
the problem and how your patch fixes it. Tell us how you have tested your patch. Will
users of the code changed by your patch have to adjust their workflow at all? If so, tell
us how. In general, try to imagine what questions a reviewer will ask, and answer those
questions in advance.

Before submitting a patch that adds or modifies a package definition, please run through
this check list:

1. If the authors of the packaged software provide a cryptographic signature for the release
tarball, make an effort to verify the authenticity of the archive. For a detached GPG
signature file this would be done with the gpg --verify command.

2. Take some time to provide an adequate synopsis and description for the package. See
Section 22.8.4 [Synopses and Descriptions], page 715, for some guidelines.

3. Run guix lint package, where package is the name of the new or modified package,
and fix any errors it reports (see Section 9.8 [Invoking guix lint], page 206).

4. Run guix style package to format the new package definition according to the
project’s conventions (see Section 9.7 [Invoking guix style], page 204).

5. Make sure the package builds on your platform, using guix build package.

6. We recommend you also try building the package on other supported platforms. As
you may not have access to actual hardware platforms, we recommend using the qemu-
binfmt-service-type to emulate them. In order to enable it, add the virtualization
service module and the following service to the list of services in your operating-

system configuration:

(service qemu-binfmt-service-type

(qemu-binfmt-configuration

(platforms (lookup-qemu-platforms "arm" "aarch64"))))

Then reconfigure your system.

You can then build packages for different platforms by specifying the --system option.
For example, to build the "hello" package for the armhf or aarch64 architectures, you
would run the following commands, respectively:

guix build --system=armhf-linux --rounds=2 hello

guix build --system=aarch64-linux --rounds=2 hello

7. Make sure the package does not use bundled copies of software already available as
separate packages.

Sometimes, packages include copies of the source code of their dependencies as a conve-
nience for users. However, as a distribution, we want to make sure that such packages

Chapter 22: Contributing 724

end up using the copy we already have in the distribution, if there is one. This im-
proves resource usage (the dependency is built and stored only once), and allows the
distribution to make transverse changes such as applying security updates for a given
software package in a single place and have them affect the whole system—something
that bundled copies prevent.

8. Take a look at the profile reported by guix size (see Section 9.9 [Invoking guix size],
page 209). This will allow you to notice references to other packages unwillingly re-
tained. It may also help determine whether to split the package (see Section 5.4 [Pack-
ages with Multiple Outputs], page 49), and which optional dependencies should be
used. In particular, avoid adding texlive as a dependency: because of its extreme
size, use texlive-updmap.cfg procedure instead.

9. Check that dependent packages (if applicable) are not affected by the change; guix
refresh --list-dependent package will help you do that (see Section 9.6 [Invoking
guix refresh], page 197).

10. Check whether the package’s build process is deterministic. This typically means check-
ing whether an independent build of the package yields the exact same result that you
obtained, bit for bit.

A simple way to do that is by building the same package several times in a row on your
machine (see Section 9.1 [Invoking guix build], page 173):

guix build --rounds=2 my-package

This is enough to catch a class of common non-determinism issues, such as timestamps
or randomly-generated output in the build result.

Another option is to use guix challenge (see Section 9.12 [Invoking guix challenge],
page 220). You may run it once the package has been committed and built by
bordeaux.guix.gnu.org to check whether it obtains the same result as you did. Bet-
ter yet: Find another machine that can build it and run guix publish. Since the
remote build machine is likely different from yours, this can catch non-determinism
issues related to the hardware—e.g., use of different instruction set extensions—or to
the operating system kernel—e.g., reliance on uname or /proc files.

11. When writing documentation, please use gender-neutral wording when referring to
people, such as singular “they”, “their”, “them” (https://en.wikipedia.org/wiki/
Singular_they), and so forth.

12. Verify that your patch contains only one set of related changes. Bundling unrelated
changes together makes reviewing harder and slower.

Examples of unrelated changes include the addition of several packages, or a package
update along with fixes to that package.

13. Please follow our code formatting rules, possibly running guix style script to do that
automatically for you (see Section 22.9.4 [Formatting Code], page 722).

14. When possible, use mirrors in the source URL (see Section 9.3 [Invoking guix download],
page 187). Use reliable URLs, not generated ones. For instance, GitHub archives are
not necessarily identical from one generation to the next, so in this case it’s often better
to clone the repository. Don’t use the name field in the URL: it is not very useful and
if the name changes, the URL will probably be wrong.

15. Check if Guix builds (see Section 22.2 [Building from Git], page 699) and address the
warnings, especially those about use of undefined symbols.

https://en.wikipedia.org/wiki/Singular_they
https://en.wikipedia.org/wiki/Singular_they

Chapter 22: Contributing 725

16. Make sure your changes do not break Guix and simulate a guix pull with:

guix pull --url=/path/to/your/checkout --profile=/tmp/guix.master

When posting a patch to the mailing list, use ‘[PATCH] ...’ as a subject, if your patch
is to be applied on a branch other than master, say core-updates, specify it in the subject
like ‘[PATCH core-updates] ...’.

You may use your email client or the git send-email command (see Section 22.10.2
[Sending a Patch Series], page 725). We prefer to get patches in plain text messages, either
inline or as MIME attachments. You are advised to pay attention if your email client
changes anything like line breaks or indentation which could potentially break the patches.

Expect some delay when you submit your very first patch to guix-patches@gnu.org.
You have to wait until you get an acknowledgement with the assigned tracking number.
Future acknowledgements should not be delayed.

When a bug is resolved, please close the thread by sending an email to ISSUE_NUMBER-

done@debbugs.gnu.org.

22.10.1 Configuring Git

If you have not done so already, you may wish to set a name and email that will be associated
with your commits (see Section “Telling Git your name” in Git User Manual). If you wish
to use a different name or email just for commits in this repository, you can use git config

--local, or edit .git/config in the repository instead of ~/.gitconfig.

Other important Git configuration will automatically be configured when building the
project (see Section 22.2 [Building from Git], page 699). A .git/hooks/commit-msg hook
will be installed that embeds ‘Change-Id’ Git trailers in your commit messages for trace-
ability purposes. It is important to preserve these when editing your commit messages,
particularly if a first version of your proposed changes was already submitted for review. If
you have a commit-msg hook of your own you would like to use with Guix, you can place
it under the .git/hooks/commit-msg.d/ directory.

22.10.2 Sending a Patch Series

Single Patches

The git send-email command is the best way to send both single patches and patch
series (see [Multiple Patches], page 726) to the Guix mailing list. Sending patches as email
attachments may make them difficult to review in some mail clients, and git diff does not
store commit metadata.

Note: The git send-email command is provided by the send-email output
of the git package, i.e. git:send-email.

The following command will create a patch email from the latest commit, open it in
your EDITOR or VISUAL for editing, and send it to the Guix mailing list to be reviewed
and merged. Assuming you have already configured Git according to See Section 22.10.1
[Configuring Git], page 725, you can simply use:

$ git send-email --annotate -1

Tip: To add a prefix to the subject of your patch, you may use the --subject-
prefix option. The Guix project uses this to specify that the patch is intended

mailto:guix-patches@gnu.org
mailto:ISSUE_NUMBER-done@debbugs.gnu.org
mailto:ISSUE_NUMBER-done@debbugs.gnu.org

Chapter 22: Contributing 726

for a branch or repository other than the master branch of https://git.

savannah.gnu.org/cgit/guix.git.

git send-email --annotate --subject-prefix='PATCH core-updates' -1

The patch email contains a three-dash separator line after the commit message. You
may “annotate” the patch with explanatory text by adding it under this line. If you do not
wish to annotate the email, you may drop the --annotate option.

If you need to send a revised patch, don’t resend it like this or send a “fix” patch to be
applied on top of the last one; instead, use git commit --amend or git rebase (https://
git-rebase.io) to modify the commit, and use the ISSUE_NUMBER@debbugs.gnu.org ad-
dress and the -v flag with git send-email.

$ git commit --amend

$ git send-email --annotate -vREVISION \

--to=ISSUE_NUMBER@debbugs.gnu.org -1

Note: Due to an apparent bug in git send-email, -v REVISION (with the
space) will not work; you must use -vREVISION.

You can find out ISSUE NUMBER either by searching on the mumi interface at
https://issues.guix.gnu.org for the name of your patch or reading the acknowledge-
ment email sent automatically by Debbugs in reply to incoming bugs and patches, which
contains the bug number.

Notifying Teams

If your git checkout has been correctly configured (see Section 22.10.1 [Configuring Git],
page 725), the git send-email command will automatically notify the appropriate team
members, based on the scope of your changes. This relies on the etc/teams.scm script,
which can also be invoked manually if you do not use the preferred git send-email com-
mand to submit patches. To list the available actions of the script, you can invoke it via the
etc/teams.scm help command. For more information regarding teams, see Section 22.10.3
[Teams], page 727.

Note: On foreign distros, you might have to use ./pre-inst-env git send-

email for etc/teams.scm to work.

Multiple Patches

While git send-email alone will suffice for a single patch, an unfortunate flaw in Debbugs
means you need to be more careful when sending multiple patches: if you send them all to
the guix-patches@gnu.org address, a new issue will be created for each patch!

When sending a series of patches, it’s best to send a Git “cover letter” first, to give
reviewers an overview of the patch series. We can create a directory called outgoing

containing both our patch series and a cover letter called 0000-cover-letter.patch with
git format-patch.

$ git format-patch -NUMBER_COMMITS -o outgoing \

--cover-letter --base=auto

We can now send just the cover letter to the guix-patches@gnu.org address, which will
create an issue that we can send the rest of the patches to.

$ git send-email outgoing/0000-cover-letter.patch --annotate

https://git.savannah.gnu.org/cgit/guix.git
https://git.savannah.gnu.org/cgit/guix.git
https://git-rebase.io
https://git-rebase.io
mailto:ISSUE_NUMBER@debbugs.gnu.org
https://issues.guix.gnu.org
mailto:guix-patches@gnu.org
mailto:guix-patches@gnu.org

Chapter 22: Contributing 727

$ rm outgoing/0000-cover-letter.patch # we don't want to resend it!

Ensure you edit the email to add an appropriate subject line and blurb before sending
it. Note the automatically generated shortlog and diffstat below the blurb.

Once the Debbugs mailer has replied to your cover letter email, you can send the actual
patches to the newly-created issue address.

$ git send-email outgoing/*.patch --to=ISSUE_NUMBER@debbugs.gnu.org

$ rm -rf outgoing # we don't need these anymore

Thankfully, this git format-patch dance is not necessary to send an amended patch
series, since an issue already exists for the patchset.

$ git send-email -NUMBER_COMMITS -vREVISION \

--to=ISSUE_NUMBER@debbugs.gnu.org

If need be, you may use --cover-letter --annotate to send another cover letter, e.g.
for explaining what’s changed since the last revision, and these changes are necessary.

22.10.3 Teams

There are several teams mentoring different parts of the Guix source code. To list all those
teams, you can run from a Guix checkout:

$./etc/teams.scm list-teams

id: mentors

name: Mentors

description: A group of mentors who chaperone contributions by newcomers.

members:

+ Christopher Baines <mail@cbaines.net>

+ Ricardo Wurmus <rekado@elephly.net>

+ Mathieu Othacehe <othacehe@gnu.org>

+ jgart <jgart@dismail.de>

+ Ludovic Courtès <ludo@gnu.org>

...

You can run the following command to have the Mentors team put in CC of a patch
series:

$ git send-email --to=ISSUE_NUMBER@debbugs.gnu.org \

--header-cmd='etc/teams.scm cc-mentors-header-cmd' *.patch

The appropriate team or teams can also be inferred from the modified files. For instance,
if you want to send the two latest commits of the current Git repository to review, you can
run:

$ guix shell -D guix

[env]$ git send-email --to=ISSUE_NUMBER@debbugs.gnu.org -2

22.11 Tracking Bugs and Changes

This section describes how the Guix project tracks its bug reports, patch submissions and
topic branches.

Chapter 22: Contributing 728

22.11.1 The Issue Tracker

Bug reports and patch submissions are currently tracked using the Debbugs instance at
https://bugs.gnu.org. Bug reports are filed against the guix “package” (in Debbugs
parlance), by sending email to bug-guix@gnu.org, while patch submissions are filed against
the guix-patches package by sending email to guix-patches@gnu.org (see Section 22.10
[Submitting Patches], page 722).

22.11.2 Managing Patches and Branches

Changes should be posted to guix-patches@gnu.org. This mailing list fills the patch-
tracking database (see Section 22.11.1 [The Issue Tracker], page 728). It also allows patches
to be picked up and tested by the quality assurance tooling; the result of that testing even-
tually shows up on the dashboard at ‘https://qa.guix.gnu.org/issue/ISSUE_NUMBER’,
where ISSUE NUMBER is the number assigned by the issue tracker. Leave time for a
review, without committing anything.

As an exception, some changes considered “trivial” or “obvious” may be pushed directly
to the master branch. This includes changes to fix typos and reverting commits that caused
immediate problems. This is subject to being adjusted, allowing individuals to commit
directly on non-controversial changes on parts they’re familiar with.

Changes which affect more than 300 dependent packages (see Section 9.6 [In-
voking guix refresh], page 197) should first be pushed to a topic branch other than
master; the set of changes should be consistent—e.g., “GNOME update”, “NumPy
update”, etc. This allows for testing: the branch will automatically show up at
‘https://qa.guix.gnu.org/branch/branch’, with an indication of its build status on
various platforms.

To help coordinate the merging of branches, you must create a new guix-patches issue
each time you wish to merge a branch (see Section 22.11.1 [The Issue Tracker], page 728).
The title of the issue requesting to merge a branch should have the following format:

Request for merging "name" branch

The QA infrastructure (https://qa.guix.gnu.org/) recognizes such issues and lists
the merge requests on its main page. Normally branches will be merged in a “first come,
first merged” manner, tracked through the guix-patches issues.

If you agree on a different order with those involved, you can track this by updating
which issues block4 which other issues. Therefore, to know which branch is at the front
of the queue, look for the oldest issue, or the issue that isn’t blocked by any other branch
merges. An ordered list of branches with the open issues is available at https://qa.guix.
gnu.org.

Once a branch is at the front of the queue, wait until sufficient time has passed for
the build farms to have processed the changes, and for the necessary testing to have hap-
pened. For example, you can check ‘https://qa.guix.gnu.org/branch/branch’ to see
information on some builds and substitute availability.

22.11.3 Debbugs User Interfaces

4 You can mark an issue as blocked by another by emailing control@debbugs.gnu.org with the following
line in the body of the email: block XXXXX by YYYYY. Where XXXXX is the number for the blocked issue,
and YYYYY is the number for the issue blocking it.

https://bugs.gnu.org
mailto:bug-guix@gnu.org
mailto:guix-patches@gnu.org
mailto:guix-patches@gnu.org
https://qa.guix.gnu.org/
https://qa.guix.gnu.org
https://qa.guix.gnu.org
mailto:control@debbugs.gnu.org

Chapter 22: Contributing 729

22.11.3.1 Web interface

A web interface (actually two web interfaces!) are available to browse issues:

• https://issues.guix.gnu.org provides a pleasant interface5 to browse bug reports
and patches, and to participate in discussions;

• https://bugs.gnu.org/guix lists bug reports;

• https://bugs.gnu.org/guix-patches lists patch submissions.

To view discussions related to issue number n, go to ‘https://issues.guix.gnu.org/n’
or ‘https://bugs.gnu.org/n’.

22.11.3.2 Command-line interface

Mumi also comes with a command-line interface that can be used to search existing issues,
open new issues and send patches. You do not need to use Emacs to use the mumi command-
line client. You interact with it only on the command-line.

To use the mumi command-line interface, navigate to a local clone of the Guix git
repository, and drop into a shell with mumi, git and git:send-email installed.

$ cd guix

~/guix$ guix shell mumi git git:send-email

To search for issues, say all open issues about "zig", run

~/guix [env]$ mumi search zig is:open

#60889 Add zig-build-system

opened on 17 Jan 17:37 Z by Ekaitz Zarraga

#61036 [PATCH 0/3] Update zig to 0.10.1

opened on 24 Jan 09:42 Z by Efraim Flashner

#39136 [PATCH] gnu: services: Add endlessh.

opened on 14 Jan 2020 21:21 by Nicol? Balzarotti

#60424 [PATCH] gnu: Add python-online-judge-tools

opened on 30 Dec 2022 07:03 by gemmaro

#45601 [PATCH 0/6] vlang 0.2 update

opened on 1 Jan 2021 19:23 by Ryan Prior

Pick an issue and make it the "current" issue.

~/guix [env]$ mumi current 61036

#61036 [PATCH 0/3] Update zig to 0.10.1

opened on 24 Jan 09:42 Z by Efraim Flashner

Once an issue is the current issue, you can easily create and send patches to it using

~/guix [env]$ git format-patch origin/master

~/guix [env]$ mumi send-email foo.patch bar.patch

Note that you do not have to pass in ‘--to’ or ‘--cc’ arguments to git format-patch.
mumi send-email will put them in correctly when sending the patches.

5 The web interface at https://issues.guix.gnu.org is powered by Mumi, a nice piece of software written
in Guile, and you can help! See https://git.savannah.gnu.org/cgit/guix/mumi.git.

https://issues.guix.gnu.org
https://bugs.gnu.org/guix
https://bugs.gnu.org/guix-patches
https://issues.guix.gnu.org
https://git.savannah.gnu.org/cgit/guix/mumi.git

Chapter 22: Contributing 730

To open a new issue, run

~/guix [env]$ mumi new

and send patches

~/guix [env]$ mumi send-email foo.patch bar.patch

mumi send-email is really a wrapper around git send-email that automates away all
the nitty-gritty of sending patches. It uses the current issue state to automatically figure
out the correct ‘To’ address to send to, other participants to ‘Cc’, headers to add, etc.

Also note that, unlike git send-email, mumi send-email works perfectly well with sin-
gle and multiple patches alike. It automates away the debbugs dance of sending the first
patch, waiting for a response from debbugs and sending the remaining patches. It does so
by sending the first patch, polling the server for a response, and then sending the remaining
patches. This polling can unfortunately take a few minutes. So, please be patient.

22.11.3.3 Emacs interface

If you use Emacs, you may find it more convenient to interact with issues using debbugs.el,
which you can install with:

guix install emacs-debbugs

For example, to list all open issues on guix-patches, hit:

C-u M-x debbugs-gnu RET RET guix-patches RET n y

For a more convenient (shorter) way to access both the bugs and patches submissions, you
may want to configure the debbugs-gnu-default-packages and debbugs-gnu-default-

severities Emacs variables (see Section 22.5.1 [Viewing Bugs within Emacs], page 705).

To search for bugs, ‘M-x debbugs-gnu-guix-search’ can be used.

See Debbugs User Guide, for more information on this nifty tool!

22.11.4 Debbugs Usertags

Debbugs provides a feature called usertags that allows any user to tag any bug with an
arbitrary label. Bugs can be searched by usertag, so this is a handy way to organize
bugs6. If you use Emacs Debbugs, the entry-point to consult existing usertags is the ‘C-u
M-x debbugs-gnu-usertags’ procedure. To set a usertag, press ‘C’ while consulting a bug
within the *Guix-Patches* buffer opened with ‘C-u M-x debbugs-gnu-bugs’ buffer, then
select usertag and follow the instructions.

For example, to view all the bug reports (or patches, in the case of guix-patches)
tagged with the usertag powerpc64le-linux for the user guix, open a URL like the
following in a web browser: https://debbugs.gnu.org/cgi-bin/pkgreport.cgi?

tag=powerpc64le-linux;users=guix.

For more information on how to use usertags, please refer to the documentation for
Debbugs or the documentation for whatever tool you use to interact with Debbugs.

In Guix, we are experimenting with usertags to keep track of architecture-specific issues,
as well as reviewed ones. To facilitate collaboration, all our usertags are associated with
the single user guix. The following usertags currently exist for that user:

6 The list of usertags is public information, and anyone can modify any user’s list of usertags, so keep that
in mind if you choose to use this feature.

https://debbugs.gnu.org/cgi-bin/pkgreport.cgi?tag=powerpc64le-linux;users=guix
https://debbugs.gnu.org/cgi-bin/pkgreport.cgi?tag=powerpc64le-linux;users=guix

Chapter 22: Contributing 731

powerpc64le-linux

The purpose of this usertag is to make it easy to find the issues that matter
most for the powerpc64le-linux system type. Please assign this usertag to
bugs or patches that affect powerpc64le-linux but not other system types. In
addition, you may use it to identify issues that for some reason are particularly
important for the powerpc64le-linux system type, even if the issue affects
other system types, too.

reproducibility

For issues related to reproducibility. For example, it would be appropriate to
assign this usertag to a bug report for a package that fails to build reproducibly.

reviewed-looks-good

You have reviewed the series and it looks good to you (LGTM).

If you’re a committer and you want to add a usertag, just start using it with the guix

user. If the usertag proves useful to you, consider updating this section of the manual so
that others will know what your usertag means.

22.11.5 Cuirass Build Notifications

Cuirass includes RSS (Really Simple Syndication) feeds as one of its features (see Section
“Notifications” in cuirass). Since Berlin (https://ci.guix.gnu.org/) runs an instance
of Cuirass, this feature can be used to keep track of recently broken or fixed packages caused
by changes pushed to the Guix git repository. Any RSS client can be used. A good one,
included with Emacs, is See Section “Gnus” in gnus. To register the feed, copy its URL,
then from the main Gnus buffer, ‘*Group*’, do the following:

G R https://ci.guix.gnu.org/events/rss/?specification=master RET

Guix CI - master RET Build events for specification master. RET

Then, back at the ‘*Group*’ buffer, press s to save the newly added RSS group. As for
any other Gnus group, you can update its content by pressing the g key. You should now
receive notifications that read like:

. [?: Cuirass] Build tree-sitter-meson.aarch64-linux on master is fixed.

. [?: Cuirass] Build rust-pbkdf2.aarch64-linux on master is fixed.

. [?: Cuirass] Build rust-pbkdf2.x86_64-linux on master is fixed.

where each RSS entry contains a link to the Cuirass build details page of the associated
build.

22.12 Commit Access

Everyone can contribute to Guix without having commit access (see Section 22.10 [Sub-
mitting Patches], page 722). However, for frequent contributors, having write access to
the repository can be convenient. As a rule of thumb, a contributor should have accu-
mulated fifty (50) reviewed commits to be considered as a committer and have sustained
their activity in the project for at least 6 months. This ensures enough interactions with
the contributor, which is essential for mentoring and assessing whether they are ready to
become a committer. Commit access should not be thought of as a “badge of honor” but
rather as a responsibility a contributor is willing to take to help the project. It is expected
from all contributors, and even more so from committers, to help build consensus and make

https://ci.guix.gnu.org/

Chapter 22: Contributing 732

decisions based on consensus. By using consensus, we are committed to finding solutions
that everyone can live with. It implies that no decision is made against significant concerns
and these concerns are actively resolved with proposals that work for everyone. A contribu-
tor (which may or may not have commit access) wishing to block a proposal bears a special
responsibility for finding alternatives, proposing ideas/code or explain the rationale for the
status quo to resolve the deadlock. To learn what consensus decision making means and
understand its finer details, you are encouraged to read https://www.seedsforchange.

org.uk/consensus.

The following sections explain how to get commit access, how to be ready to push
commits, and the policies and community expectations for commits pushed upstream.

22.12.1 Applying for Commit Access

When you deem it necessary, consider applying for commit access by following these steps:

1. Find three committers who would vouch for you. You can view the list of commit-
ters at https://savannah.gnu.org/project/memberlist.php?group=guix. Each of
them should email a statement to guix-maintainers@gnu.org (a private alias for the
collective of maintainers), signed with their OpenPGP key.

Committers are expected to have had some interactions with you as a contributor and
to be able to judge whether you are sufficiently familiar with the project’s practices. It
is not a judgment on the value of your work, so a refusal should rather be interpreted
as “let’s try again later”.

2. Send guix-maintainers@gnu.org a message stating your intent, listing the three com-
mitters who support your application, signed with the OpenPGP key you will use to
sign commits, and giving its fingerprint (see below). See https://emailselfdefense.
fsf.org/en/, for an introduction to public-key cryptography with GnuPG.

Set up GnuPG such that it never uses the SHA1 hash algorithm for digital signatures,
which is known to be unsafe since 2019, for instance by adding the following line to
~/.gnupg/gpg.conf (see Section “GPG Esoteric Options” in The GNU Privacy Guard
Manual):

digest-algo sha512

3. Maintainers ultimately decide whether to grant you commit access, usually following
your referrals’ recommendation.

4. If and once you’ve been given access, please send a message to guix-devel@gnu.org

to say so, again signed with the OpenPGP key you will use to sign commits (do that
before pushing your first commit). That way, everyone can notice and ensure you
control that OpenPGP key.

Important: Before you can push for the first time, maintainers must:

1. add your OpenPGP key to the keyring branch;

2. add your OpenPGP fingerprint to the .guix-authorizations file of
the branch(es) you will commit to.

5. Make sure to read the rest of this section and... profit!

Note: Maintainers are happy to give commit access to people who have been
contributing for some time and have a track record—don’t be shy and don’t
underestimate your work!

https://www.seedsforchange.org.uk/consensus
https://www.seedsforchange.org.uk/consensus
https://savannah.gnu.org/project/memberlist.php?group=guix
mailto:guix-maintainers@gnu.org
mailto:guix-maintainers@gnu.org
https://emailselfdefense.fsf.org/en/
https://emailselfdefense.fsf.org/en/
mailto:guix-devel@gnu.org

Chapter 22: Contributing 733

However, note that the project is working towards a more automated patch
review and merging system, which, as a consequence, may lead us to have fewer
people with commit access to the main repository. Stay tuned!

All commits that are pushed to the central repository on Savannah must be signed with
an OpenPGP key, and the public key should be uploaded to your user account on Savannah
and to public key servers, such as keys.openpgp.org. To configure Git to automatically
sign commits, run:

git config commit.gpgsign true

Substitute the fingerprint of your public PGP key.

git config user.signingkey CABBA6EA1DC0FF33

To check that commits are signed with correct key, use:

make authenticate

To avoid accidentally pushing unsigned or signed with the wrong key commits to Sa-
vannah, make sure to configure Git according to See Section 22.10.1 [Configuring Git],
page 725.

22.12.2 Commit Policy

If you get commit access, please make sure to follow the policy below (discussions of the
policy can take place on guix-devel@gnu.org).

Ensure you’re aware of how the changes should be handled (see Section 22.11.2 [Managing
Patches and Branches], page 728) prior to being pushed to the repository, especially for the
master branch.

If you’re committing and pushing your own changes, try and wait at least one week (two
weeks for more significant changes) after you send them for review. After this, if no one else
is available to review them and if you’re confident about the changes, it’s OK to commit.

When pushing a commit on behalf of somebody else, please add a Signed-off-by line at
the end of the commit log message—e.g., with git am --signoff. This improves tracking
of who did what.

When adding channel news entries (see Chapter 6 [Channels], page 66), make sure they
are well-formed by running the following command right before pushing:

make check-channel-news

22.12.3 Addressing Issues

Peer review (see Section 22.10 [Submitting Patches], page 722) and tools such as guix lint

(see Section 9.8 [Invoking guix lint], page 206) and the test suite (see Section 22.3 [Running
the Test Suite], page 701) should catch issues before they are pushed. Yet, commits that
“break” functionality might occasionally go through. When that happens, there are two
priorities: mitigating the impact, and understanding what happened to reduce the chance
of similar incidents in the future. The responsibility for both these things primarily lies
with those involved, but like everything this is a group effort.

Some issues can directly affect all users—for instance because they make guix pull fail
or break core functionality, because they break major packages (at build time or run time),
or because they introduce known security vulnerabilities.

mailto:guix-devel@gnu.org

Chapter 22: Contributing 734

The people involved in authoring, reviewing, and pushing such commit(s) should be at
the forefront to mitigate their impact in a timely fashion: by pushing a followup commit
to fix it (if possible), or by reverting it to leave time to come up with a proper fix, and by
communicating with other developers about the problem.

If these persons are unavailable to address the issue in time, other committers are entitled
to revert the commit(s), explaining in the commit log and on the mailing list what the
problem was, with the goal of leaving time to the original committer, reviewer(s), and
author(s) to propose a way forward.

Once the problem has been dealt with, it is the responsibility of those involved to make
sure the situation is understood. If you are working to understand what happened, focus
on gathering information and avoid assigning any blame. Do ask those involved to describe
what happened, do not ask them to explain the situation—this would implicitly blame them,
which is unhelpful. Accountability comes from a consensus about the problem, learning from
it and improving processes so that it’s less likely to reoccur.

22.12.4 Commit Revocation

In order to reduce the possibility of mistakes, committers will have their Savannah
account removed from the Guix Savannah project and their key removed from
.guix-authorizations after 12 months of inactivity; they can ask to regain commit
access by emailing the maintainers, without going through the vouching process.

Maintainers7 may also revoke an individual’s commit rights, as a last resort, if coopera-
tion with the rest of the community has caused too much friction—even within the bounds
of the project’s code of conduct (see Chapter 22 [Contributing], page 698). They would only
do so after public or private discussion with the individual and a clear notice. Examples of
behavior that hinders cooperation and could lead to such a decision include:

• repeated violation of the commit policy stated above;

• repeated failure to take peer criticism into account;

• breaching trust through a series of grave incidents.

When maintainers resort to such a decision, they notify developers on guix-

devel@gnu.org; inquiries may be sent to guix-maintainers@gnu.org. Depending on the
situation, the individual may still be welcome to contribute.

22.12.5 Helping Out

One last thing: the project keeps moving forward because committers not only push their
own awesome changes, but also offer some of their time reviewing and pushing other people’s
changes. As a committer, you’re welcome to use your expertise and commit rights to help
other contributors, too!

22.13 Reviewing the Work of Others

Perhaps the biggest action you can do to help GNU Guix grow as a project is to review the
work contributed by others. You do not need to be a committer to do so; applying, reading
the source, building, linting and running other people’s series and sharing your comments

7 See https://guix.gnu.org/en/about for the current list of maintainers. You can email them privately
at guix-maintainers@gnu.org.

mailto:guix-devel@gnu.org
mailto:guix-devel@gnu.org
mailto:guix-maintainers@gnu.org
https://guix.gnu.org/en/about
mailto:guix-maintainers@gnu.org

Chapter 22: Contributing 735

about your experience will give some confidence to committers. Basically, you must ensure
the check list found in the Section 22.10 [Submitting Patches], page 722, section has been
correctly followed. A reviewed patch series should give the best chances for the proposed
change to be merged faster, so if a change you would like to see merged hasn’t yet been
reviewed, this is the most appropriate thing to do!

Review comments should be unambiguous; be as clear and explicit as you can about
what you think should be changed, ensuring the author can take action on it. Please try to
keep the following guidelines in mind during review:

1. Be clear and explicit about changes you are suggesting, ensuring the author can take
action on it. In particular, it is a good idea to explicitly ask for new revisions when
you want it.

2. Remain focused: do not change the scope of the work being reviewed. For example,
if the contribution touches code that follows a pattern deemed unwieldy, it would be
unfair to ask the submitter to fix all occurrences of that pattern in the code; to put it
simply, if a problem unrelated to the patch at hand was already there, do not ask the
submitter to fix it.

3. Ensure progress. As they respond to review, submitters may submit new revisions of
their changes; avoid requesting changes that you did not request in the previous round
of comments. Overall, the submitter should get a clear sense of progress; the number
of items open for discussion should clearly decrease over time.

4. Aim for finalization. Reviewing code is time-consuming. Your goal as a reviewer is to
put the process on a clear path towards integration, possibly with agreed-upon changes,
or rejection, with a clear and mutually-understood reasoning. Avoid leaving the review
process in a lingering state with no clear way out.

5. Review is a discussion. The submitter’s and reviewer’s views on how to achieve a
particular change may not always be aligned. To lead the discussion, remain focused,
ensure progress and aim for finalization, spending time proportional to the stakes8. As a
reviewer, try hard to explain the rationale for suggestions you make, and to understand
and take into account the submitter’s motivation for doing things in a certain way.

When you deem the proposed change adequate and ready for inclusion within Guix, the
following well understood/codified ‘Reviewed-by: Your Name<your-email@example.com>’9

line should be used to sign off as a reviewer, meaning you have reviewed the change and
that it looks good to you:

• If the whole series (containing multiple commits) looks good to you, reply with
‘Reviewed-by: Your Name<your-email@example.com>’ to the cover page if it has
one, or to the last patch of the series otherwise, adding another ‘(for the whole

series)’ comment on the line below to explicit this fact.

8 The tendency to discuss minute details at length is often referred to as “bikeshedding”, where much time
is spent discussing each one’s preference for the color of the shed at the expense of progress made on the
project to keep bikes dry.

9 The ‘Reviewed-by’ Git trailer is used by other projects such as Linux, and is understood by third-party
tools such as the ‘b4 am’ sub-command, which is able to retrieve the complete submission email thread
from a public-inbox instance and add the Git trailers found in replies to the commit patches.

Chapter 22: Contributing 736

• If you instead want to mark a single commit as reviewed (but not the whole series), sim-
ply reply with ‘Reviewed-by: Your Name<your-email@example.com>’ to that commit
message.

If you are not a committer, you can help others find a series you have reviewed more
easily by adding a reviewed-looks-good usertag for the guix user (see Section 22.11.4
[Debbugs Usertags], page 730).

22.14 Updating the Guix Package

It is sometimes desirable to update the guix package itself (the package defined in (gnu

packages package-management)), for example to make new daemon features available for
use by the guix-service-type service type. In order to simplify this task, the following
command can be used:

make update-guix-package

The update-guix-package make target will use the last known commit corresponding
to HEAD in your Guix checkout, compute the hash of the Guix sources corresponding to that
commit and update the commit, revision and hash of the guix package definition.

To validate that the updated guix package hashes are correct and that it can be built
successfully, the following command can be run from the directory of your Guix checkout:

./pre-inst-env guix build guix

To guard against accidentally updating the guix package to a commit that others can’t
refer to, a check is made that the commit used has already been pushed to the Savannah-
hosted Guix git repository.

This check can be disabled, at your own peril, by setting the GUIX_ALLOW_ME_TO_USE_

PRIVATE_COMMIT environment variable. When this variable is set, the updated package
source is also added to the store. This is used as part of the release process of Guix.

22.15 Writing Documentation

Guix is documented using the Texinfo system. If you are not yet familiar with it, we accept
contributions for documentation in most formats. That includes plain text, Markdown,
Org, etc.

Documentation contributions can be sent to guix-patches@gnu.org. Prepend
‘[DOCUMENTATION]’ to the subject.

When you need to make more than a simple addition to the documentation, we prefer
that you send a proper patch as opposed to sending an email as described above. See
Section 22.10 [Submitting Patches], page 722, for more information on how to send your
patches.

To modify the documentation, you need to edit doc/guix.texi and
doc/contributing.texi (which contains this documentation section), or doc/guix-

cookbook.texi for the cookbook. If you compiled the Guix repository before, you will
have many more .texi files that are translations of these documents. Do not modify them,
the translation is managed through Weblate (https://translate.fedoraproject.org/
projects/guix). See Section 22.16 [Translating Guix], page 737, for more information.

mailto:guix-patches@gnu.org
https://translate.fedoraproject.org/projects/guix
https://translate.fedoraproject.org/projects/guix

Chapter 22: Contributing 737

To render documentation, you must first make sure that you ran ./configure in your
source tree (see Section 22.4 [Running Guix Before It Is Installed], page 702). After that
you can run one of the following commands:

• ‘make doc/guix.info’ to compile the Info manual. You can check it with info

doc/guix.info.

• ‘make doc/guix.html’ to compile the HTML version. You can point your browser to
the relevant file in the doc/guix.html directory.

• ‘make doc/guix-cookbook.info’ for the cookbook Info manual.

• ‘make doc/guix-cookbook.html’ for the cookbook HTML version.

22.16 Translating Guix

Writing code and packages is not the only way to provide a meaningful contribution to
Guix. Translating to a language you speak is another example of a valuable contribution
you can make. This section is designed to describe the translation process. It gives you
advice on how you can get involved, what can be translated, what mistakes you should
avoid and what we can do to help you!

Guix is a big project that has multiple components that can be translated. We coor-
dinate the translation effort on a Weblate instance (https://translate.fedoraproject.
org/projects/guix/) hosted by our friends at Fedora. You will need an account to submit
translations.

Some of the software packaged in Guix also contain translations. We do not host a trans-
lation platform for them. If you want to translate a package provided by Guix, you should
contact their developers or find the information on their website. As an example, you can
find the homepage of the hello package by typing guix show hello. On the “homepage”
line, you will see https://www.gnu.org/software/hello/ as the homepage.

Many GNU and non-GNU packages can be translated on the Translation Project
(https://translationproject.org). Some projects with multiple components have their
own platform. For instance, GNOME has its own platform, Damned Lies (https://l10n.
gnome.org/).

Guix has five components hosted on Weblate.

• guix contains all the strings from the Guix software (the guided system installer, the
package manager, etc), excluding packages.

• packages contains the synopsis (single-sentence description of a package) and descrip-
tion (longer description) of packages in Guix.

• website contains the official Guix website, except for blog posts and multimedia con-
tent.

• documentation-manual corresponds to this manual.

• documentation-cookbook is the component for the cookbook.

General Directions

Once you get an account, you should be able to select a component from the guix project
(https://translate.fedoraproject.org/projects/guix/), and select a language. If
your language does not appear in the list, go to the bottom and click on the “Start new

https://translate.fedoraproject.org/projects/guix/
https://translate.fedoraproject.org/projects/guix/
https://www.gnu.org/software/hello/
https://translationproject.org
https://translationproject.org
https://l10n.gnome.org/
https://l10n.gnome.org/
https://translate.fedoraproject.org/projects/guix/
https://translate.fedoraproject.org/projects/guix/

Chapter 22: Contributing 738

translation” button. Select the language you want to translate to from the list, to start
your new translation.

Like lots of other free software packages, Guix uses GNU Gettext (https://www.gnu.
org/software/gettext) for its translations, with which translatable strings are extracted
from the source code to so-called PO files.

Even though PO files are text files, changes should not be made with a text editor
but with PO editing software. Weblate integrates PO editing functionality. Alternatively,
translators can use any of various free-software tools for filling in translations, of which
Poedit (https://poedit.net/) is one example, and (after logging in) upload (https://
docs.weblate.org/en/latest/user/files.html) the changed file. There is also a special
PO editing mode (https://www.emacswiki.org/emacs/PoMode) for users of GNU Emacs.
Over time translators find out what software they are happy with and what features they
need.

On Weblate, you will find various links to the editor, that will show various subsets (or
all) of the strings. Have a look around and at the documentation (https://docs.weblate.
org/en/latest/) to familiarize yourself with the platform.

Translation Components

In this section, we provide more detailed guidance on the translation process, as well as
details on what you should or should not do. When in doubt, please contact us, we will be
happy to help!

guix Guix is written in the Guile programming language, and some strings con-
tain special formatting that is interpreted by Guile. These special formatting
should be highlighted by Weblate. They start with ~ followed by one or more
characters.

When printing the string, Guile replaces the special formatting symbols with
actual values. For instance, the string ‘ambiguous package specification

`~a'’ would be substituted to contain said package specification instead of
~a. To properly translate this string, you must keep the formatting code in
your translation, although you can place it where it makes sense in your lan-
guage. For instance, the French translation says ‘spécification du paquet

� ~a � ambiguë’ because the adjective needs to be placed in the end of the
sentence.

If there are multiple formatting symbols, make sure to respect the order. Guile
does not know in which order you intended the string to be read, so it will
substitute the symbols in the same order as the English sentence.

As an example, you cannot translate ‘package '~a' has been superseded

by '~a'’ by ‘'~a' superseeds package '~a'’, because the meaning would
be reversed. If foo is superseded by bar, the translation would read ‘'foo'
superseeds package 'bar'’. To work around this problem, it is possible
to use more advanced formatting to select a given piece of data, instead of
following the default English order. See Section “Formatted Output” in GNU
Guile Reference Manual, for more information on formatting in Guile.

packages

https://www.gnu.org/software/gettext
https://www.gnu.org/software/gettext
https://poedit.net/
https://docs.weblate.org/en/latest/user/files.html
https://docs.weblate.org/en/latest/user/files.html
https://www.emacswiki.org/emacs/PoMode
https://docs.weblate.org/en/latest/
https://docs.weblate.org/en/latest/

Chapter 22: Contributing 739

Package descriptions occasionally contain Texinfo markup (see Section 22.8.4
[Synopses and Descriptions], page 715). Texinfo markup looks like ‘@code{rm
-rf}’, ‘@emph{important}’, etc. When translating, please leave markup as is.

The characters after “@” form the name of the markup, and the text between
“{” and “}” is its content. In general, you should not translate the content
of markup like @code, as it contains literal code that do not change with lan-
guage. You can translate the content of formatting markup such as @emph, @i,
@itemize, @item. However, do not translate the name of the markup, or it will
not be recognized. Do not translate the word after @end, it is the name of the
markup that is closed at this position (e.g. @itemize ... @end itemize).

documentation-manual and documentation-cookbook
The first step to ensure a successful translation of the manual is to find and
translate the following strings first :

• version.texi: Translate this string as version-xx.texi, where xx is your
language code (the one shown in the URL on weblate).

• contributing.texi: Translate this string as contributing.xx.texi,
where xx is the same language code.

• Top: Do not translate this string, it is important for Texinfo. If you trans-
late it, the document will be empty (missing a Top node). Please look for
it, and register Top as its translation.

Translating these strings first ensure we can include your translation in the guix
repository without breaking the make process or the guix pull machinery.

The manual and the cookbook both use Texinfo. As for packages, please keep
Texinfo markup as is. There are more possible markup types in the manual
than in the package descriptions. In general, do not translate the content of
@code, @file, @var, @value, etc. You should translate the content of format-
ting markup such as @emph, @i, etc.

The manual contains sections that can be referred to by name by @ref, @xref
and @pxref. We have a mechanism in place so you do not have to translate
their content. If you keep the English title, we will automatically replace it
with your translation of that title. This ensures that Texinfo will always be
able to find the node. If you decide to change the translation of the title, the
references will automatically be updated and you will not have to update them
all yourself.

When translating references from the cookbook to the manual, you need to
replace the name of the manual and the name of the section. For instance,
to translate @pxref{Defining Packages,,, guix, GNU Guix Reference

Manual}, you would replace Defining Packages with the title of that section
in the translated manual only if that title is translated. If the title is not
translated in your language yet, do not translate it here, or the link will be
broken. Replace guix with guix.xx where xx is your language code. GNU Guix

Reference Manual is the text of the link. You can translate it however you
wish.

website

Chapter 22: Contributing 740

The website pages are written using SXML, an s-expression version of HTML,
the basic language of the web. We have a process to extract translatable strings
from the source, and replace complex s-expressions with a more familiar XML
markup, where each markup is numbered. Translators can arbitrarily change
the ordering, as in the following example.

#. TRANSLATORS: Defining Packages is a section name

#. in the English (en) manual.

#: apps/base/templates/about.scm:64

msgid "Packages are <1>defined<1.1>en</1.1><1.2>Defining-Packages.html</1.2></1> as native <2>Guile</2> modules."

msgstr "Pakete werden als reine <2>Guile</2>-Module <1>definiert<1.1>de</1.1><1.2>Pakete-definieren.html</1.2></1>."

Note that you need to include the same markups. You cannot skip any.

In case you make a mistake, the component might fail to build properly with your
language, or even make guix pull fail. To prevent that, we have a process in place to check
the content of the files before pushing to our repository. We will not be able to update the
translation for your language in Guix, so we will notify you (through weblate and/or by
email) so you get a chance to fix the issue.

Outside of Weblate

Currently, some parts of Guix cannot be translated on Weblate, help wanted!

• guix pull news can be translated in news.scm, but is not available from Weblate.
If you want to provide a translation, you can prepare a patch as described above, or
simply send us your translation with the name of the news entry you translated and
your language. See Section 6.12 [Writing Channel News], page 74, for more information
about channel news.

• Guix blog posts cannot currently be translated.

• The installer script (for foreign distributions) is entirely in English.

• Some of the libraries Guix uses cannot be translated or are translated outside of the
Guix project. Guile itself is not internationalized.

• Other manuals linked from this manual or the cookbook might not be translated.

Conditions for Inclusion

There are no conditions for adding new translations of the guix and guix-packages com-
ponents, other than they need at least one translated string. New languages will be added
to Guix as soon as possible. The files may be removed if they fall out of sync and have no
more translated strings.

Given that the web site is dedicated to new users, we want its translation to be as
complete as possible before we include it in the language menu. For a new language to be
included, it needs to reach at least 80% completion. When a language is included, it may
be removed in the future if it stays out of sync and falls below 60% completion.

The manual and cookbook are automatically added in the default compilation target.
Every time we synchronize translations, developers need to recompile all the translated
manuals and cookbooks. This is useless for what is essentially the English manual or
cookbook. Therefore, we will only include a new language when it reaches 10% completion
in the component. When a language is included, it may be removed in the future if it stays
out of sync and falls below 5% completion.

Chapter 22: Contributing 741

Translation Infrastructure

Weblate is backed by a git repository from which it discovers new strings to translate and
pushes new and updated translations. Normally, it would be enough to give it commit access
to our repositories. However, we decided to use a separate repository for two reasons. First,
we would have to give Weblate commit access and authorize its signing key, but we do not
trust it in the same way we trust guix developers, especially since we do not manage the
instance ourselves. Second, if translators mess something up, it can break the generation of
the website and/or guix pull for all our users, independently of their language.

For these reasons, we use a dedicated repository to host translations, and we synchronize
it with our guix and artworks repositories after checking no issue was introduced in the
translation.

Developers can download the latest PO files from weblate in the Guix repository by
running the make download-po command. It will automatically download the latest files
from weblate, reformat them to a canonical form, and check they do not contain issues.
The manual needs to be built again to check for additional issues that might crash Texinfo.

Before pushing new translation files, developers should add them to the make machinery
so the translations are actually available. The process differs for the various components.

• New po files for the guix and packages components must be registered by adding the
new language to po/guix/LINGUAS or po/packages/LINGUAS.

• New po files for the documentation-manual component must be registered by adding
the file name to DOC_PO_FILES in po/doc/local.mk, the generated %D%/guix.xx.texi

manual to info_TEXINFOS in doc/local.mk and the generated %D%/guix.xx.texi and
%D%/contributing.xx.texi to TRANSLATED_INFO also in doc/local.mk.

• New po files for the documentation-cookbook component must be registered by
adding the file name to DOC_COOKBOOK_PO_FILES in po/doc/local.mk, the generated
%D%/guix-cookbook.xx.texi manual to info_TEXINFOS in doc/local.mk and the
generated %D%/guix-cookbook.xx.texi to TRANSLATED_INFO also in doc/local.mk.

• New po files for the website component must be added to the guix-artwork repos-
itory, in website/po/. website/po/LINGUAS and website/po/ietf-tags.scm must
be updated accordingly (see website/i18n-howto.txt for more information on the
process).

742

23 Acknowledgments

Guix is based on the Nix package manager (https://nixos.org/nix/), which was de-
signed and implemented by Eelco Dolstra, with contributions from other people (see the
nix/AUTHORS file in Guix). Nix pioneered functional package management, and promoted
unprecedented features, such as transactional package upgrades and rollbacks, per-user
profiles, and referentially transparent build processes. Without this work, Guix would not
exist.

The Nix-based software distributions, Nixpkgs and NixOS, have also been an inspiration
for Guix.

GNU Guix itself is a collective work with contributions from a number of people. See the
AUTHORS file in Guix for more information on these fine people. The THANKS file lists people
who have helped by reporting bugs, taking care of the infrastructure, providing artwork
and themes, making suggestions, and more—thank you!

https://nixos.org/nix/

743

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix A: GNU Free Documentation License 744

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 745

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 746

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 747

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 748

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 749

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 750

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

751

Concept Index

.

.local, host name lookup . 590

/
/bin/sh . 264
/etc/hosts default entries . 265
/usr/bin/env . 264

A
AArch64, bootloaders . 595
access control list (ACL), for substitutes 45
accounts . 256
ACL (access control list), for substitutes 45
actions, of Shepherd services 624
agate . 466
aliases, for email addresses . 398
aliases, for guix package . 35
ALSA . 364
Android distribution . 120
Android NDK build system 120
application bundle . 88
archival of source code, Software Heritage 207
archive . 63
ARM, bootloaders . 595
Audit . 581
authentication, of a Guix checkout 699
authentication, of channel code 57, 69
authenticity, of code obtained with guix pull . . 54
authorized keys, SSH . 315
authorizing, archives . 64
AutoSSH . 316
availability of substitutes . 224

B
backquote (quasiquote) . 99
backup service, Syncthing 311, 666
bag (low-level package representation) 118
bash . 644, 667
bill of materials (manifests) 113
binfmt_misc . 521
Bioconductor . 191
BIOS boot, on Intel machines 235
BIOS, bootloader . 595
black list, of kernel modules 593
boot loader . 594
boot menu . 599
bootloader . 594
bootstrap binaries . 690, 696
bootstrapping . 690
branching strategy . 728
bug reports, tracking . 728

build code quoting . 159
build daemon . 1
build environment . 5, 12
build event notifications, RSS feed 731
build failures, debugging . 186
build farm . 45
build hook . 7
build logs, access . 185
build logs, publication . 217
build logs, verbosity . 175
build phases . 118, 136, 145
build phases, customizing . 139
build phases, for packages . 137
build phases, modifying . 145
build system . 117
build system, directory structure 708
build users . 6
build VMs . 522
build-side modules . 721
build-time dependencies . 152
bundle . 88
bundling . 723

C
cache invalidation, nscd . 270
cachefilesd . 570
caching, in guix shell . 82
caching, of profiles . 82
CalDAV . 399
CardDAV . 399
Cargo (Rust build system) . 121
cat-avatar-generator . 464
CD image format . 607
certificates . 84
Cgit service . 541
challenge . 220
channel authorizations . 72
channel introduction . 73
channel news . 56
channels . 66
channels, for personal packages 70
channels, for the default Guix 68
channels.scm, configuration file 56, 66
childhurd . 524
childhurd, offloading . 527
chroot . 6, 12
chroot, guix system . 634
chrooting, guix system . 634
Clojure (programming language) 123
closure . 53, 209
clusters, daemon setup . 15, 151
code of conduct, of contributors 698
code snippets . 704

Concept Index 752

code staging . 140, 159
coding style . 722
colliding packages in profiles 41
collisions, in a profile . 41
comma (unquote) . 99
command modules . 708
command-line tools, as Guile modules 708
commit access, for developers 731
commit-msg hook . 725
complex configurations . 627
Composer . 196
composition of Guix revisions 59
Compressed RAM-based block devices 573
compressed swap . 573
configuration file for channels 56, 66
configuration file, of a shepherd service 263
configuration file, of Shepherd services 626
configuration file, of the system 231
configuration of guix pull . 66
configuration, action for shepherd services 263
configure flags, changing them 180
Connman . 295
container . 80, 84, 87, 223
container nesting, for guix shell 82
container, build environment 12
container, for guix home 637, 667
ContentDB . 191
continuous integration . 179, 494
continuous integration, statistics 224
contributor covenant . 698
copy, of store items, over SSH 222
corruption, recovering from 54, 185
cover letter . 726
CPAN . 191
CPU frequency scaling with thermald 505
CRAN . 191
crate . 195
Creating system images in various formats 605
creating virtual machine images 605
cron . 283, 649
cross compilation . 160
cross compilation, package dependencies 102
cross-compilation . 94, 100, 184
CTAN . 192
customization, of packages 1, 97
customization, of services . 236
customizing packages . 109
CVE, Common Vulnerabilities

and Exposures . 207

D
daemon . 5
daemon, cluster setup . 15, 151
daemon, remote access . 15, 151
daemons . 615
DAG . 211
darkstat . 428
database . 368
Debbugs usertags . 730
Debbugs, issue tracking system 728
Debbugs, Mumi Web interface 459
Debian, build a .deb package with guix pack 90
debugging files . 683
debugging info, rebuilding 178, 684
deduplication . 14, 54
deleting home generations . 669
deleting system generations 603
dependencies, build-time . 152
dependencies, channels . 72
dependencies, run-time . 152
dependency graph rewriting 112
dependency graph, of Shepherd services 241
derivation . 53, 97
derivation path . 152
derivations . 152
determinism, checking . 185
determinism, of build processes 724
development environments . 76
development inputs, of a package 104
device mapping . 251
DHCP . 25
DHCP, networking service . 293
dhtproxy, for use with jami 307
dictionary . 577
dictionary service, for Home 666
digital signatures . 47
directories related to foreign distro 4
disk encryption . 252
disk space . 51
display manager, lightdm . 330
DNS (domain name system) 470
Docker . 578
Docker, build an image with guix pack 89
docker-image, creating docker images 606
documentation . 49, 736
documentation, searching for 672
domain name system (DNS) 470
dot files in Guix Home . 641
downgrade attacks, protection against 57
downloading package sources 187
dual boot . 599
DVD image format . 607
Dynamic IP, with Wireguard 488
dyndns, usage with Wireguard 488

Concept Index 753

E
early out of memory daemon 568
earlyoom . 568
editing, service type definition 602, 668
EFI boot . 235
EFI, bootloader . 595
EFI, installation . 26
egg . 197
elisp, packaging . 717
elm . 195
Elm . 719
elpa . 194
emacs . 18
emacs, packaging . 717
email . 374, 399
email aliases . 398
emulation . 521, 522
encrypted disk . 27, 237
entry point arguments, for docker images 93
entry point, for Docker and

Singularity images . 92
env, in /usr/bin . 264
environment variables . 639
environment, package build environment 76
error strategy . 608
ESP, EFI system partition . 26
essential services . 245
exporting files from the store 63
exporting store items . 63
extending the package collection (channels) 66
extensibility of the distribution 1
extension graph, of services 241
extensions, for gexps . 161

F
Fail2Ban . 583
fastcgi . 460
fc-cache . 17
fcgiwrap . 460
feature branches, coordination 728
FHS (file system hierarchy standard) 81
file search . 50, 367
file system hierarchy standard (FHS) 81
file, searching . 143
file, searching in packages . 50
file-like objects . 164
fingerprint . 574
firmware . 243
fixed-output derivations . 152
fixed-output derivations, for download 106
font cache . 17
fonts . 17, 721
foreign architectures . 228
foreign distro . 4, 16
format conventions . 204
format, code style . 204
formatting code . 722

formatting, of code . 722
free software . 712
fscache, file system caching (Linux) 570
fstrim service . 569
functional package management 1

G
G-expression . 159
ganeti . 528
garbage collector . 51
garbage collector root, for environments 83, 85
garbage collector root, for packs 94
garbage collector roots . 14, 51
garbage collector roots, adding 185
GC roots . 14, 51
GC roots, adding . 185
GCC . 95
GDM . 325
gem . 190
generations . 40, 43, 57, 603
git configuration . 725
git format-patch . 725
git send-email . 725
Git, forge . 555
Git, hosting . 553
Git, using the latest commit 179
Git, web interface . 541
Gitile service . 555
Gitolite service . 553
global security system . 491
gmnisrv . 465
GNOME, login manager . 325
GNU Build System . 99
GNU Mailutils IMAP4 Daemon 399
GNU Privacy Guard, Home service 656
Gnus, configuration to read CI RSS feeds. 731
go . 196
gpg-agent, Home service . 656
GPG, Home service . 656
gpm . 277
grafts . 688
groups . 257, 258
GSS . 491
GSSD . 491
guix archive . 63
guix build . 173
guix challenge . 220
guix container . 223
guix copy . 222
guix deploy . 609
guix describe . 61
guix download . 187
guix edit . 187
guix environment . 76, 83
guix gc . 51
guix git authenticate . 95
guix graph . 211

Concept Index 754

guix hash . 188
guix home . 667
guix lint . 206
guix pack . 88
guix package . 35
guix processes . 226
guix publish . 216
guix pull . 54
guix pull for the root user, on a

foreign distro . 18
guix pull, configuration file . 66
guix refresh . 197
guix repl . 168
guix shell . 76
guix size . 209
guix style . 204
guix system . 601
Guix System . 1, 2, 4
Guix System Distribution, now Guix System 1
guix system troubleshooting 633
Guix System, installation . 20
guix time-machine . 58
guix weather . 224
guix-daemon . 11
guix-emacs-autoload-packages,

refreshing Emacs packages 18
GuixSD, now Guix System . 1

H
hackage . 193
hardware support on Guix System 20
HDPI . 600, 601
hexpm . 197
hibernation . 254
HiDPI . 600, 601
home configuration . 636
home generations . 669
home services . 639
host-side modules . 721
hostapd service, for Wi-Fi access points 301
hpcguix-web . 464
HTTP . 447
HTTP proxy, for guix-daemon 274
HTTP, HTTPS . 467
HTTPS, certificates . 589
hurd . 242, 524
Hurd, offloading . 527

I
i18n . 737
idmapd . 491
image, creating disk images 605
IMAP . 394
implicit inputs, of a package 104
imported modules, for gexps 160
importer modules . 709
importing files to the store . 63
importing packages . 189
incompatibility, of locale data 262
indentation, of code . 722
inetd . 305
inferior packages . 60, 61
inferiors . 59, 169
Info, documentation format 672
inherit, for package definitions 109
init system . 623
initial RAM disk . 243, 591, 593
initrd . 243, 591, 593
input rewriting . 112
inputattach . 576
inputrc . 647
inputs, for Python packages 718
inputs, of packages . 102
insert or update copyright . 704
inspecting system services . 241
installation image . 29
installer script . 4
installing Guix . 4
installing Guix from binaries . 4
installing Guix System . 20
installing over SSH . 26
installing packages . 35
integrity checking . 54
integrity, of the store . 54
interactive shell . 644
interactive use . 170
invalid store items . 151
Invoking guix import . 189
invoking programs, from Scheme 144
IPFS . 322
iptables . 302
IRC (Internet Relay Chat) . 407
IRC gateway . 407
ISO-9660 format . 607
isolation . 1
issue tracking . 728

J
jabber . 400
jackd . 279
java . 719
joycond . 557
JSON . 63
JSON, import . 192

Concept Index 755

K
keepalived . 322
Kerberos . 436
kernel module loader . 570
keyboard layout . 25, 259
keyboard layout, configuration 260
keyboard layout, definition . 259
keyboard layout, for the bootloader 597
keyboard layout, for Xorg . 333
keymap . 259
keymap, for Xorg . 333
kodi . 665

L
l10n . 737
latest commit, building . 179
LATEX packages . 686
ld-wrapper . 95
LDAP . 438
LDAP, server . 444
legacy boot, on Intel machines 235
Let’s Encrypt . 467
LGTM, Looks Good To Me 735
license, GNU Free Documentation License 743
license, of packages . 103
lightdm, graphical login manager 330
linker wrapper . 95
lint, code style . 204
LIRC . 575
locale . 261
locale definition . 261
locale name . 262
locales, when not on Guix System 16
localstatedir . 699
lock files . 67
log rotation . 286
logging . 271, 286
logging, anonymization . 288
login manager . 325, 328
login shell . 644
loopback device . 293
lowering, of high-level objects in gexps 160, 168
LUKS . 252
LVM, logical volume manager 252

M
M-x copyright-update . 704
M-x guix-copyright . 704
mail . 374
mail transfer agent (MTA) . 394
man pages . 672
mandatory access control, SELinux 10
manifest . 113
manifest, exporting . 44, 79
manual pages . 672
mapped devices . 251

maximum layers argument, for docker images . . . 93
mcron . 283, 649
merge requests, template . 728
message of the day . 265
messaging . 400
meta-data, channels . 72
minetest . 191
ModemManager . 300
Modeswitching . 300
modprobe . 570
module closure . 161
module, black-listing . 593
monad . 155
monadic functions . 155
monadic values . 155
mouse . 277
mpd . 506
MPD, web interface . 510
msmtp . 663
MTA (mail transfer agent) . 394
multiple-output packages . 49
Mumble . 411
Mumi, Debbugs Web interface 459
Murmur . 411
myMPD service . 510

N
name mapper . 491
name service switch . 589
name service switch, glibc . 17
nar bundle, archive format . 63
nar, archive format . 63
native language support . 737
nested containers, for guix shell 82
Network information service (NIS) 17
network interface controller (NIC) 290
networking, with QEMU . 293
NetworkManager . 294
news, for channels . 74
NFS . 489
NFS, server . 489
nftables . 303
NIC, networking interface controller 290
NIS (Network information service) 17
Nix . 582
nofile . 279
non-determinism, in package builds 221
normalized archive (nar) . 63
normalized codeset in locale names 262
notifications, build events . 731
nscd, cache invalidation . 270
nscd (name service cache daemon) 17, 270
nslcd, LDAP service . 438
nss-certs . 18, 589
nss-mdns . 590
NSS . 589
NSS (name service switch), glibc 17

Concept Index 756

nsswitch.conf . 17
NTP (Network Time Protocol), service 304
ntpd, service for the Network Time

Protocol daemon . 304

O
OCaml . 195
OCI-backed, Shepherd services 579
official website . 698
offload status . 10
offload test . 10
offloading . 7, 12
on-error . 608
on-error strategy . 608
one-shot services, for the Shepherd 624
onion service, tor . 309
onion services, for Tor . 308
oom . 568
OPAM . 195
open file descriptors . 279
opendht, distributed hash table

network service . 307
OpenNTPD . 304
OpenPGP, signed commits . 732
optimization, of package code 176
out of memory killer . 568
outputs . 49

P
pack . 88
package building . 173
package conversion . 189
package definition, editing . 187
package dependencies . 53, 211
package description . 715
package import . 189
package installation . 35
package module search path . 97
package modules . 709
package multi-versioning . 176
package name . 713
package outputs . 49
package removal . 35
package size . 209
package synopsis . 715
package transformations . 111
package transformations, upgrades 38
package variants . 175
package version . 713
package, checking for errors 206
packages . 34
packages, creating . 711
pam volume mounting . 559
pam-krb5 . 437
pam-mount . 557
PAM . 245

Parcimonie, Home service . 655
password, for user accounts 257
patch series . 725
patch submissions, tracking 728
patches . 99
Patchwork . 456
pattern matching . 722
pcscd . 575
performance, tuning code . 176
perl . 718
persistent environment . 83, 85
personal packages (channels) 70
php-fpm . 460
PHP . 196
PID 1 . 623
pinning, channel revisions of a profile 44
pinning, channels . 58, 67
pipefs . 490
PipeWire, home service . 662
Platform Reliability, Availability and

Serviceability daemon . 572
pluggable authentication modules 245
POP . 394
postgis . 369
postgresql extension-packages 369
power management . 650
power management with TLP 498
pre-built binaries . 44
primary URL, channels . 74
printer support with CUPS 335
priority . 279
profile . 31, 35, 36
profile collisions . 41
profile declaration . 39
profile manifest . 39
profile, choosing . 40
program invocation, from Scheme 144
program wrappers . 146
prometheus-node-exporter . 428
propagated inputs . 36
provenance tracking, of software artifacts 35
provenance tracking, of the

home environment . 668
provenance tracking, of the

operating system 602, 607, 622
provenance, of the system . 232
proxy, during system installation 26
proxy, for guix-daemon HTTP access 274
pull . 54
PulseAudio, home service . 661
PulseAudio, sound support . 364
purpose . 1
pypi . 190
python . 717

Concept Index 757

Q
QEMU . 613
QEMU, networking . 293
quote . 99
quoting . 99

R
rasdaemon . 572
read-eval-print loop . 702
readline . 647
real time clock . 304
realm, kerberos . 437
realtime . 279
rebuild scheduling strategy . 728
reconfiguring the system 232, 242
reducing boilerplate . 704
references . 152
relocatable binaries . 91
relocatable binaries, with guix pack 89
remote access to the daemon 15, 151
remote build . 496
removing packages . 35
repairing GRUB, via chroot 634
repairing store items . 185
repairing the store . 54
REPL . 702
REPL, read-eval-print loop 170
REPL, read-eval-print loop, script 168
replacements of packages, for grafts 688
replicating Guix . 58, 61, 67
replication, of software environments 35
reproducibility . 34, 61
reproducibility, checking . 185
reproducibility, of Guix . 58, 67
reproducible build environments 76
reproducible builds 12, 34, 48, 220
reproducible builds, checking 724
resolution . 600, 601
reverting commits . 733
review tags . 735
Reviewed-by, git trailer . 735
reviewing, guidelines . 735
roll back, for the system . 233
rolling back . 39, 57, 603, 669
rottlog . 286
rpc pipefs . 490
rpcbind . 490
RPM, build an RPM archive with guix pack 91
rshiny . 582
RSS feeds, Gnus configuration 731
RTP, for PulseAudio . 661
rules to cope with circular

module dependencies . 716
run-time dependencies . 152
RUNPATH, validation 119, 138
rust . 719
Rust programming language 121

RYF, Respects Your Freedom 20

S
Samba . 491
saving space . 603, 669
scanner access . 355
scheduling jobs . 283, 649
Scheme programming language,

getting started . 100
search path . 147
search paths . 36, 40
searching for a file . 367
searching for documentation 672
searching for packages . 41, 50
searching for packages, by file name 50
secrets, Knot service . 477
secure shell client, configuration 651
security . 45
security updates . 688
security vulnerabilities 207, 688
security, guix pull . 54
security, guix-daemon . 10
SELinux, daemon policy . 10
SELinux, limitations . 11
SELinux, policy installation . 10
service extension graph, of a

home environment . 670
service extensions . 615
service type . 620
service type definition, editing 602, 668
service types . 616
services . 236, 615
session limits . 279
session types . 325
setgid programs . 587
setuid programs . 587
sh, in /bin . 264
sharing store items across machines 222
shebang, for guix shell . 76
shell . 644, 667
shell-profile . 667
Shepherd dependency graph, for a

home environment . 670
shepherd services . 623
shepherd services, for users . 651
shortest path, between packages 214
signing, archives . 64
SIMD support . 176
simple Clojure build system 123
Singularity, build an image with guix pack 89
Singularity, container service 579
size . 209
SMB . 491
SMTP . 394
snippets, when to use . 716
socket activation, for guix publish 216
socket activation, for guix-daemon 11

Concept Index 758

software bundle . 88
software development . 76
Software Heritage, source code archive 207
solid state drives, periodic trim 569
solid state drives, trim . 569
sound support . 364
source, verification . 183
spam . 399
SPICE . 576
SQL . 368
SquashFS, build an image with guix pack 89
ssh-agent . 655
SSH . 312, 313, 614
SSH access to build daemons 151
SSH agent, with gpg-agent . 656
SSH authorized keys . 315
SSH client, configuration . 651
SSH server . 312, 313, 614
SSH, copy of store items . 222
stackage . 194
staging, of code . 140, 159
state directory . 699
state monad . 157
statistics, for substitutes . 224
store . 1, 150
store items . 150
store paths . 150
Stow-like dot file management 641
strata of code . 159
structure, of the source tree 707
styling rules . 204
subdirectory, channels . 71
substitute availability . 224
substitute servers, adding more 46
substituter . 712
substitutes . 12, 35, 44
substitutes, authorization thereof 5, 45, 272
substitutes, how to disable . 46
sudo vs. guix pull . 233
sudoers file . 245
suspend to disk . 254
swap devices . 244
swap encryption . 253
swap space . 253
symbolic links, guix shell . 81
syncthing . 311
Syncthing, file synchronization service 311, 666
sysconfdir . 699
sysctl . 574
syslog . 271
system configuration . 231
system configuration directory 699
system configuration file . 231
system images . 675
System images, creation in various formats 605
system instantiation . 232, 242
system service . 616
system services . 263

system services, inspecting . 241
system services, upgrading . 232
system-wide Guix, customization 68

T
tablet input, for Xorg . 576
teams . 726, 727
telephony, services . 408
templates . 704
test suite . 701
test suite, skipping . 181
TeX Live . 192
TEX packages . 686
Texinfo markup, in package descriptions 715
the Hurd . 524
thermald . 505
time traps . 522
tlp . 498
TLS . 589
TLS certificates . 467
tool chain, changing the build tool

chain of a package . 178
tool chain, choosing a package’s tool chain 105
toolchain, for C development 95
toolchain, for Fortran development 95
Tor . 308
touchscreen input, for Xorg 576
transactions . 34, 35
transactions, undoing . 39, 57
transferring store items across machines 222
translation . 737
troubleshooting, for system services 241
troubleshooting, Guix System 633
trust, of pre-built binaries . 48
tunable packages . 176
tuning, of package code . 176

U
UEFI boot . 235
UEFI, bootloader . 595
UEFI, installation . 26
ulimit . 279
unattended upgrades . 323
undoing transactions . 39, 57
uninstallation, of Guix . 5
uninstalling Guix . 5
update-guix-package, updating

the guix package . 736
updater-extra-inputs, package property 199
updater-ignored-inputs, package property . . . 199
updating Guix . 54
upgrade, of the system . 233
upgrades, unattended . 323
upgrading Guix . 54
upgrading Guix for the root user, on

a foreign distro . 18

Concept Index 759

Upgrading Guix, on a foreign distro 18

upgrading packages . 38

upgrading system services . 232

upgrading the Guix daemon, on

a foreign distro . 18

upstream, latest version . 180

USB ModeSwitch . 300

user accounts . 256

user interfaces . 1

users . 256

usertags, for debbugs . 730

V

vacuum the store database . 54

variant packages (channels) . 66

variants, of packages . 109

Varnish . 454

verbosity, of the command-line tools 175

verifiable builds . 220

version number, for VCS snapshots 714

virtual build machines . 522

virtual machine . 604, 613

virtual machine, Guix System installation 29

virtual private network (VPN) 483

virtual private server (VPS) . 29

VM . 604

VMs, for offloading . 522

VNC (virtual network computing) 481

vnstat . 429

VoIP server . 411

VPN (virtual private network) 483

VPS (virtual private server) . 29

W
weather, substitute availability 224
web . 447
Web . 467
WebSSH . 317
wesnothd . 557
Whoogle Search . 456
Wi-Fi access points, hostapd service 301
WiFi . 25
WiFi, hardware support . 20
window manager . 325
wireless . 25
WPA Supplicant . 299
wrapping programs . 146
wsdd, Web service discovery daemon 492
www . 447

X
X Window System . 325
X Window, for Guix Home services 657
X.509 certificates . 589
X11 . 325
X11 login . 328
X11, in Guix Home . 657
XDMCP (x display manager

control protocol) . 481
XKB, keyboard layouts . 259
xlsfonts . 18
XMPP . 400
Xorg, configuration . 333
xterm . 17

Z
zabbix zabbix-agent . 434
zabbix zabbix-front-end . 435
zabbix zabbix-server . 433
znc . 665
zram . 573
zsh . 644, 667

760

Programming Index

#
#~exp . 162

%
%store-directory . 141

’
' . 99

(
(gexp . 162

,
, . 99

>
>>= . 156

‘
` . 99

A
add-text-to-store . 152
ar-file? . 142

B
base-initrd . 594
binary-file . 158
build . 171
build-derivations . 152
build-expression->derivation 154
bzr-fetch . 109

C
cat-avatar-generator-service 464
close-connection . 151
computed-file . 165
concatenate-manifests . 116
configuration->documentation 631
configure-flags . 172
copy-recursively . 142
current-state . 158

D
debootstrap-os . 532
debootstrap-variant . 532
define-configuration . 627
define-maybe . 629
define-record-type* . 722
delete-file-recursively . 142
derivation . 153
directory-exists? . 141
directory-union . 166

E
elf-file? . 142
elm->package-name . 720
elm-package-origin . 720
enter-store-monad . 172
evaluate-search-paths . 150
executable-file? . 141
expression->initrd . 594
extra-special-file . 264

F
fail2ban-jail-service . 584
file->udev-hardware . 277
file->udev-rule . 276
file-append . 166
file-name-predicate . 143
file-system-label . 246, 248
file-union . 166
find-files . 143
fold-services . 621

G
generate-documentation . 630
geoclue-application . 356
gexp->approximate-sexp . 168
gexp->derivation . 163
gexp->file . 165
gexp->script . 165
gexp-input . 167
gexp? . 163
git-fetch . 108
git-fetch/lfs . 108
git-http-nginx-location-configuration 540
git-version . 714
grub-theme . 600
guix-for-channels . 69
guix-os . 532
guix-package->elm-name . 720
guix-variant . 532

Programming Index 761

gzip-file? . 142

H
hg-fetch . 108
hg-version . 715
home-environment . 637
host . 265

I
infer-elm-package-name . 720
inferior-for-channels . 60
inferior-package-description 61
inferior-package-home-page 61
inferior-package-inputs . 61
inferior-package-location 61
inferior-package-name . 61
inferior-package-native-inputs 61
inferior-package-native-search-paths 61
inferior-package-propagated-inputs 61
inferior-package-search-paths 61
inferior-package-synopsis 61
inferior-package-transitive-

native-search-paths . 61
inferior-package-transitive-

propagated-inputs . 61
inferior-package-version . 61
inferior-package? . 61
inferior-packages . 61
install-file . 142
interned-file . 158
invoke . 144
invoke-error-arguments . 144
invoke-error-exit-status 144
invoke-error-program . 144
invoke-error-stop-signal 144
invoke-error-term-signal 144
invoke-error? . 144
invoke/quiet . 145

K
keyboard-layout . 259

L
let-system . 167
literal-string . 639
local-file . 164
lookup-inferior-packages . 61
lookup-package-direct-input 104
lookup-package-input . 104
lookup-package-native-input 104
lookup-package-propagated-input 104
lookup-qemu-platforms . 521
lower . 171
lower-object . 168
luks-device-mapping-with-options 252

M
make-file-writable . 142
make-flags . 172
match-record . 722
maybe-value-set? . 630
mbegin . 157
mixed-text-file . 166
mkdir-p . 142
mlet . 157
mlet* . 157
modify-inputs . 110
modify-phases . 145
modify-services . 236, 619
munless . 157
mwhen . 157

N
nginx-php-location . 463

O
open-connection . 151
open-inferior . 61
operating-system . 233
operating-system-derivation 242
options->transformation . 111

P
package->cross-derivation 159
package->derivation . 159
package->development-manifest 117
package->manifest-entry . 116
package-cross-derivation 100
package-derivation . 100
package-development-inputs 104
package-file . 159
package-input-rewriting . 112
package-input-rewriting/spec 113
package-mapping . 113
package-name->name+version 141

Programming Index 762

package-with-c-toolchain 105
packages->manifest . 39, 117
phases . 172
plain-file . 165
program-file . 165

Q
qemu-platform-name . 521
qemu-platform? . 521
quasiquote . 99
quote . 99

R
raw-initrd . 593
report-invoke-error . 144
reset-gzip-timestamp . 142
return . 156
run-in-store . 172
run-with-state . 158
run-with-store . 158

S
scheme-file . 165
search-input-directory . 144
search-input-file . 144
search-patches . 709
serialize-configuration . 630
service . 618
service-extension . 620
service-extension? . 620
service-kind . 619
service-value . 619
service? . 619
set-current-state . 158
set-xorg-configuration 260, 334
shepherd-configuration-action 626
simple-service . 621
source-module-closure . 161
specification->package . 236
specification->package+output 236
specifications->manifest 117
state-pop . 158

state-push . 158
store-file-name? . 141
strip-store-file-name . 141
substitute* . 142
svn-fetch . 109
symbolic-link? . 141

T
text-file . 158
text-file* . 166
this-operating-system . 245
this-package . 104
transmission-password-hash 416
transmission-random-salt 416

U
udev-hardware . 276
udev-hardware-service . 276
udev-rule . 276
udev-rules-service . 276
unquote . 99
url-fetch . 107
uuid . 246, 249

V
valid-path? . 152
verbosity . 171

W
which . 144
with-directory-excursion 142
with-extensions . 161, 163
with-imported-modules 160, 163
with-monad . 156
with-parameters . 167
wrap-program . 147
wrap-script . 147

X
xorg-start-command . 334

	1 Introduction
	Managing Software the Guix Way
	GNU Distribution

	2 Installation
	Binary Installation
	Setting Up the Daemon
	Build Environment Setup
	Using the Offload Facility
	SELinux Support
	Installing the SELinux policy
	Limitations

	Invoking guix-daemon
	Application Setup
	Locales
	Name Service Switch
	X11 Fonts
	X.509 Certificates
	Emacs Packages

	Upgrading Guix

	3 System Installation
	Limitations
	Hardware Considerations
	USB Stick and DVD Installation
	Copying to a USB Stick
	Burning on a DVD
	Booting

	Preparing for Installation
	Guided Graphical Installation
	Manual Installation
	Keyboard Layout, Networking, and Partitioning
	Keyboard Layout
	Networking
	Disk Partitioning

	Proceeding with the Installation

	After System Installation
	Installing Guix in a Virtual Machine
	Building the Installation Image
	Building the Installation Image for ARM Boards

	4 Getting Started
	5 Package Management
	Features
	Invoking guix package
	Substitutes
	Official Substitute Servers
	Substitute Server Authorization
	Getting Substitutes from Other Servers
	Substitute Authentication
	Proxy Settings
	Substitution Failure
	On Trusting Binaries

	Packages with Multiple Outputs
	Invoking guix locate
	Invoking guix gc
	Invoking guix pull
	Invoking guix time-machine
	Inferiors
	Invoking guix describe
	Invoking guix archive

	6 Channels
	Specifying Additional Channels
	Using a Custom Guix Channel
	Replicating Guix
	Customizing the System-Wide Guix
	Channel Authentication
	Channels with Substitutes
	Creating a Channel
	Package Modules in a Sub-directory
	Declaring Channel Dependencies
	Specifying Channel Authorizations
	Primary URL
	Writing Channel News

	7 Development
	Invoking guix shell
	Invoking guix environment
	Invoking guix pack
	The GCC toolchain
	Invoking guix git authenticate

	8 Programming Interface
	Package Modules
	Defining Packages
	package Reference
	origin Reference

	Defining Package Variants
	Writing Manifests
	Build Systems
	Build Phases
	Build Utilities
	Dealing with Store File Names
	File Types
	File Manipulation
	File Search
	Program Invocation
	Build Phases
	Wrappers

	Search Paths
	The Store
	Derivations
	The Store Monad
	G-Expressions
	Invoking guix repl
	Using Guix Interactively

	9 Utilities
	Invoking guix build
	Common Build Options
	Package Transformation Options
	Additional Build Options
	Debugging Build Failures

	Invoking guix edit
	Invoking guix download
	Invoking guix hash
	Invoking guix import
	Invoking guix refresh
	Invoking guix style
	Invoking guix lint
	Invoking guix size
	Invoking guix graph
	Invoking guix publish
	Invoking guix challenge
	Invoking guix copy
	Invoking guix container
	Invoking guix weather
	Invoking guix processes

	10 Foreign Architectures
	Cross-Compilation
	Native Builds

	11 System Configuration
	Getting Started
	Using the Configuration System
	Bootloader
	Globally-Visible Packages
	System Services
	Inspecting Services
	Instantiating the System
	The Programming Interface

	operating-system Reference
	File Systems
	Btrfs file system

	Mapped Devices
	Swap Space
	User Accounts
	Keyboard Layout
	Locales
	Locale Data Compatibility Considerations

	Services
	Base Services
	Scheduled Job Execution
	Log Rotation
	Networking Setup
	Networking Services
	Unattended Upgrades
	X Window
	Printing Services
	Desktop Services
	Sound Services
	File Search Services
	Database Services
	Mail Services
	Messaging Services
	Telephony Services
	File-Sharing Services
	Monitoring Services
	Kerberos Services
	LDAP Services
	Web Services
	Certificate Services
	DNS Services
	VNC Services
	VPN Services
	Network File System
	Samba Services
	Continuous Integration
	Power Management Services
	Audio Services
	Virtualization Services
	Version Control Services
	Game Services
	PAM Mount Service
	Guix Services
	Linux Services
	Hurd Services
	Miscellaneous Services

	Setuid Programs
	X.509 Certificates
	Name Service Switch
	Initial RAM Disk
	Bootloader Configuration
	Invoking guix system
	Invoking guix deploy
	Running Guix in a Virtual Machine
	Connecting Through SSH
	Using virt-viewer with Spice

	Defining Services
	Service Composition
	Service Types and Services
	Service Reference
	Shepherd Services
	Complex Configurations

	12 System Troubleshooting Tips
	Chrooting into an existing system

	13 Home Configuration
	Declaring the Home Environment
	Configuring the Shell
	Home Services
	Essential Home Services
	Shells
	Scheduled User's Job Execution
	Power Management Home Services
	Managing User Daemons
	Secure Shell
	GNU Privacy Guard
	Desktop Home Services
	Guix Home Services
	Fonts Home Services
	Sound Home Services
	Mail Home Services
	Messaging Home Services
	Media Home Services
	Networking Home Services
	Miscellaneous Home Services

	Invoking guix home

	14 Documentation
	15 Platforms
	platform Reference
	Supported Platforms

	16 Creating System Images
	image Reference
	partition Reference

	Instantiate an Image
	image-type Reference
	Image Modules

	17 Installing Debugging Files
	Separate Debug Info
	Rebuilding Debug Info

	18 Using TeX and LaTeX
	19 Security Updates
	20 Bootstrapping
	The Full-Source Bootstrap
	Preparing to Use the Bootstrap Binaries
	Building the Build Tools
	Building the Bootstrap Binaries
	Reducing the Set of Bootstrap Binaries

	21 Porting to a New Platform
	22 Contributing
	Requirements
	Building from Git
	Running the Test Suite
	Running Guix Before It Is Installed
	The Perfect Setup
	Viewing Bugs within Emacs

	Alternative Setups
	Guile Studio
	Vim and NeoVim

	Source Tree Structure
	Packaging Guidelines
	Software Freedom
	Package Naming
	Version Numbers
	Synopses and Descriptions
	Snippets versus Phases
	Cyclic Module Dependencies
	Emacs Packages
	Python Modules
	Specifying Dependencies

	Perl Modules
	Java Packages
	Rust Crates
	Elm Packages
	Fonts

	Coding Style
	Programming Paradigm
	Modules
	Data Types and Pattern Matching
	Formatting Code

	Submitting Patches
	Configuring Git
	Sending a Patch Series
	Single Patches
	Notifying Teams
	Multiple Patches

	Teams

	Tracking Bugs and Changes
	The Issue Tracker
	Managing Patches and Branches
	Debbugs User Interfaces
	Web interface
	Command-line interface
	Emacs interface

	Debbugs Usertags
	Cuirass Build Notifications

	Commit Access
	Applying for Commit Access
	Commit Policy
	Addressing Issues
	Commit Revocation
	Helping Out

	Reviewing the Work of Others
	Updating the Guix Package
	Writing Documentation
	Translating Guix

	23 Acknowledgments
	A GNU Free Documentation License
	Concept Index
	Programming Index

