
GNU Guix Cookbook
Tutorials and examples for using the GNU Guix Functional Package Manager

The GNU Guix Developers



Copyright c© 2019, 2022 Ricardo Wurmus
Copyright c© 2019 Efraim Flashner
Copyright c© 2019 Pierre Neidhardt
Copyright c© 2020 Oleg Pykhalov
Copyright c© 2020 Matthew Brooks
Copyright c© 2020 Marcin Karpezo
Copyright c© 2020 Brice Waegeneire
Copyright c© 2020 André Batista
Copyright c© 2020 Christine Lemmer-Webber
Copyright c© 2021 Joshua Branson
Copyright c© 2022, 2023 Maxim Cournoyer
Copyright c© 2023-2024 Ludovic Courtès
Copyright c© 2023 Thomas Ieong

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.



i

Table of Contents

1 Scheme tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Scheme Crash Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Packaging Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 A “Hello World” package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2.1 Local file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2.3 Direct checkout hacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Extended example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3.1 git-fetch method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3.2 Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3.3 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3.4 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3.5 Build system arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3.6 Code staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3.7 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3.8 Module prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Other build systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Programmable and automated package definition . . . . . . . . . . 18

2.1.5.1 Recursive importers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5.2 Automatic update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5.3 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.6 Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Auto-Login to a Specific TTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Customizing the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Guix System Image API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Using security keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Configuration for use as a two-factor authenticator (2FA) . . 30
3.4.2 Disabling OTP code generation for a Yubikey . . . . . . . . . . . . . 30
3.4.3 Requiring a Yubikey to open a KeePassXC database . . . . . . 31

3.5 Dynamic DNS mcron job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Connecting to Wireguard VPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.1 Using Wireguard tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Using NetworkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Customizing a Window Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7.1 StumpWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



ii

3.7.2 Session lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.2.1 Xorg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Running Guix on a Linode Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Running Guix on a Kimsufi Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 Setting up a bind mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.11 Getting substitutes from Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.12 Setting up NGINX with Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.13 Music Server with Bluetooth Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Guix Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Guix System Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 A Database Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Container Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1 Network bridge for QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Creating a network bridge interface . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Configuring the QEMU bridge helper script . . . . . . . . . . . . . . . 56
5.1.3 Invoking QEMU with the right command line options . . . . . 57
5.1.4 Networking issues caused by Docker . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Routed network for libvirt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Creating a virtual network bridge . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Configuring the static routes for your virtual bridge . . . . . . . 58

6 Advanced package management . . . . . . . . . . . . . . . 60
6.1 Guix Profiles in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Basic setup with manifests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.2 Required packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3 Default profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.4 The benefits of manifests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.5 Reproducible profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Level 1: Building with Guix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Level 2: The Repository as a Channel . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4 Bonus: Package Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.5 Level 3: Setting Up Continuous Integration . . . . . . . . . . . . . . . . . . . . 72
7.6 Bonus: Build manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.7 Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Environment management . . . . . . . . . . . . . . . . . . . . . 77
8.1 Guix environment via direnv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



iii

9 Installing Guix on a Cluster . . . . . . . . . . . . . . . . . . . 80
9.1 Setting Up a Head Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.2 Setting Up Compute Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.3 Network Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.4 Disk Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.5 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix A GNU Free Documentation License . . 86

Concept Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



1

1 Scheme tutorials

GNU Guix is written in the general purpose programming language Scheme, and many of
its features can be accessed and manipulated programmatically. You can use Scheme to
generate package definitions, to modify them, to build them, to deploy whole operating
systems, etc.

Knowing the basics of how to program in Scheme will unlock many of the advanced
features Guix provides — and you don’t even need to be an experienced programmer to use
them!

Let’s get started!

1.1 A Scheme Crash Course

Guix uses the Guile implementation of Scheme. To start playing with the language, install
it with guix install guile and start a REPL—short for read-eval-print loop (https://
en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop)—by running guile

from the command line.

Alternatively you can also run guix shell guile -- guile if you’d rather not have
Guile installed in your user profile.

In the following examples, lines show what you would type at the REPL; lines starting
with “⇒” show evaluation results, while lines starting with “ a ” show things that get
printed. See Section “Using Guile Interactively” in GNU Guile Reference Manual, for more
details on the REPL.

• Scheme syntax boils down to a tree of expressions (or s-expression in Lisp lingo). An
expression can be a literal such as numbers and strings, or a compound which is a
parenthesized list of compounds and literals. #true and #false (abbreviated #t and
#f) stand for the Booleans “true” and “false”, respectively.

Examples of valid expressions:

"Hello World!"

⇒ "Hello World!"

17

⇒ 17

(display (string-append "Hello " "Guix" "\n"))

a Hello Guix!

⇒ #<unspecified>

• This last example is a function call nested in another function call. When a paren-
thesized expression is evaluated, the first term is the function and the rest are the
arguments passed to the function. Every function returns the last evaluated expression
as its return value.

• Anonymous functions—procedures in Scheme parlance—are declared with the lambda
term:

(lambda (x) (* x x))

⇒ #<procedure 120e348 at <unknown port>:24:0 (x)>

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop


Chapter 1: Scheme tutorials 2

The above procedure returns the square of its argument. Since everything is an ex-
pression, the lambda expression returns an anonymous procedure, which can in turn
be applied to an argument:

((lambda (x) (* x x)) 3)

⇒ 9

Procedures are regular values just like numbers, strings, Booleans, and so on.

• Anything can be assigned a global name with define:

(define a 3)

(define square (lambda (x) (* x x)))

(square a)

⇒ 9

• Procedures can be defined more concisely with the following syntax:

(define (square x) (* x x))

• A list structure can be created with the list procedure:

(list 2 a 5 7)

⇒ (2 3 5 7)

• Standard procedures are provided by the (srfi srfi-1) module to create and process
lists (see Section “SRFI-1” in GNU Guile Reference Manual). Here are some of the
most useful ones in action:

(use-modules (srfi srfi-1)) ;import list processing procedures

(append (list 1 2) (list 3 4))

⇒ (1 2 3 4)

(map (lambda (x) (* x x)) (list 1 2 3 4))

⇒ (1 4 9 16)

(delete 3 (list 1 2 3 4)) ⇒ (1 2 4)

(filter odd? (list 1 2 3 4)) ⇒ (1 3)

(remove even? (list 1 2 3 4)) ⇒ (1 3)

(find number? (list "a" 42 "b")) ⇒ 42

Notice how the first argument to map, filter, remove, and find is a procedure!

• The quote disables evaluation of a parenthesized expression, also called an S-expression
or “s-exp”: the first term is not called over the other terms (see Section “Expression
Syntax” in GNU Guile Reference Manual). Thus it effectively returns a list of terms.

'(display (string-append "Hello " "Guix" "\n"))

⇒ (display (string-append "Hello " "Guix" "\n"))

'(2 a 5 7)

⇒ (2 a 5 7)

• The quasiquote (`, a backquote) disables evaluation of a parenthesized expression
until unquote (,, a comma) re-enables it. Thus it provides us with fine-grained control
over what is evaluated and what is not.

`(2 a 5 7 (2 ,a 5 ,(+ a 4)))



Chapter 1: Scheme tutorials 3

⇒ (2 a 5 7 (2 3 5 7))

Note that the above result is a list of mixed elements: numbers, symbols (here a) and
the last element is a list itself.

• Guix defines a variant of S-expressions on steroids called G-expressions or “gexps”,
which come with a variant of quasiquote and unquote: #~ (or gexp) and #$ (or
ungexp). They let you stage code for later execution.

For example, you’ll encounter gexps in some package definitions where they provide
code to be executed during the package build process. They look like this:

(use-modules (guix gexp) ;so we can write gexps

(gnu packages base)) ;for 'coreutils'

;; Below is a G-expression representing staged code.

#~(begin

;; Invoke 'ls' from the package defined by the 'coreutils'

;; variable.

(system* #$(file-append coreutils "/bin/ls") "-l")

;; Create this package's output directory.

(mkdir #$output))

See Section “G-Expressions” in GNU Guix Reference Manual, for more on gexps.

• Multiple variables can be named locally with let (see Section “Local Bindings” in
GNU Guile Reference Manual):

(define x 10)

(let ((x 2)

(y 3))

(list x y))

⇒ (2 3)

x

⇒ 10

y

error In procedure module-lookup: Unbound variable: y

Use let* to allow later variable declarations to refer to earlier definitions.

(let* ((x 2)

(y (* x 3)))

(list x y))

⇒ (2 6)

• Keywords are typically used to identify the named parameters of a procedure. They
are prefixed by #: (hash, colon) followed by alphanumeric characters: #:like-this.
See Section “Keywords” in GNU Guile Reference Manual.

• The percentage % is typically used for read-only global variables in the build stage.
Note that it is merely a convention, like _ in C. Scheme treats % exactly the same as
any other letter.



Chapter 1: Scheme tutorials 4

• Modules are created with define-module (see Section “Creating Guile Modules” in
GNU Guile Reference Manual). For instance

(define-module (guix build-system ruby)

#:use-module (guix store)

#:export (ruby-build

ruby-build-system))

defines the module guix build-system ruby which must be located in guix/build-

system/ruby.scm somewhere in the Guile load path. It depends on the (guix store)

module and it exports two variables, ruby-build and ruby-build-system.

See Section “Package Modules” in GNU Guix Reference Manual, for info on modules
that define packages.

Going further: Scheme is a language that has been widely used to teach pro-
gramming and you’ll find plenty of material using it as a vehicle. Here’s a
selection of documents to learn more about Scheme:

• A Scheme Primer (https://spritely.institute/static/papers/
scheme-primer.html), by Christine Lemmer-Webber and the Spritely In-
stitute.

• Scheme at a Glance (http://www.troubleshooters.com/codecorn/
scheme_guile/hello.htm), by Steve Litt.

• Structure and Interpretation of Computer Programs (https://
sarabander.github.io/sicp/), by Harold Abelson and Gerald Jay
Sussman, with Julie Sussman. Colloquially known as “SICP”, this book
is a reference.

You can also install it and read it from your computer:

guix install sicp info-reader

info sicp

You’ll find more books, tutorials and other resources at https://schemers.

org/.

https://spritely.institute/static/papers/scheme-primer.html
https://spritely.institute/static/papers/scheme-primer.html
http://www.troubleshooters.com/codecorn/scheme_guile/hello.htm
http://www.troubleshooters.com/codecorn/scheme_guile/hello.htm
https://sarabander.github.io/sicp/
https://sarabander.github.io/sicp/
https://schemers.org/
https://schemers.org/


5

2 Packaging

This chapter is dedicated to teaching you how to add packages to the collection of packages
that come with GNU Guix. This involves writing package definitions in Guile Scheme,
organizing them in package modules, and building them.

2.1 Packaging Tutorial

GNU Guix stands out as the hackable package manager, mostly because it uses
GNU Guile (https://www.gnu.org/software/guile/), a powerful high-level
programming language, one of the Scheme (https://en.wikipedia.org/wiki/
Scheme_%28programming_language%29) dialects from the Lisp family (https://en.
wikipedia.org/wiki/Lisp_%28programming_language%29).

Package definitions are also written in Scheme, which empowers Guix in some very unique
ways, unlike most other package managers that use shell scripts or simple languages.

• Use functions, structures, macros and all of Scheme expressiveness for your package
definitions.

• Inheritance makes it easy to customize a package by inheriting from it and modifying
only what is needed.

• Batch processing: the whole package collection can be parsed, filtered and processed.
Building a headless server with all graphical interfaces stripped out? It’s possible. Want
to rebuild everything from source using specific compiler optimization flags? Pass the
#:make-flags "..." argument to the list of packages. It wouldn’t be a stretch to
think Gentoo USE flags (https://wiki.gentoo.org/wiki/USE_flag) here, but this
goes even further: the changes don’t have to be thought out beforehand by the pack-
ager, they can be programmed by the user!

The following tutorial covers all the basics around package creation with Guix. It does
not assume much knowledge of the Guix system nor of the Lisp language. The reader is
only expected to be familiar with the command line and to have some basic programming
knowledge.

2.1.1 A “Hello World” package

The “Defining Packages” section of the manual introduces the basics of Guix packaging (see
Section “Defining Packages” in GNU Guix Reference Manual). In the following section, we
will partly go over those basics again.

GNU Hello is a dummy project that serves as an idiomatic example for packaging. It uses
the GNU build system (./configure && make && make install). Guix already provides a
package definition which is a perfect example to start with. You can look up its declaration
with guix edit hello from the command line. Let’s see how it looks:

(define-public hello

(package

(name "hello")

(version "2.10")

(source (origin

(method url-fetch)

https://www.gnu.org/software/guile/
https://en.wikipedia.org/wiki/Scheme_%28programming_language%29
https://en.wikipedia.org/wiki/Scheme_%28programming_language%29
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29
https://wiki.gentoo.org/wiki/USE_flag


Chapter 2: Packaging 6

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"))))

(build-system gnu-build-system)

(synopsis "Hello, GNU world: An example GNU package")

(description

"GNU Hello prints the message \"Hello, world!\" and then exits. It

serves as an example of standard GNU coding practices. As such, it supports

command-line arguments, multiple languages, and so on.")

(home-page "https://www.gnu.org/software/hello/")

(license gpl3+)))

As you can see, most of it is rather straightforward. But let’s review the fields together:

‘name’ The project name. Using Scheme conventions, we prefer to keep it lower case,
without underscore and using dash-separated words.

‘source’ This field contains a description of the source code origin. The origin record
contains these fields:

1. The method, here url-fetch to download via HTTP/FTP, but other
methods exist, such as git-fetch for Git repositories.

2. The URI, which is typically some https:// location for url-fetch. Here
the special ‘mirror://gnu‘ refers to a set of well known locations, all of
which can be used by Guix to fetch the source, should some of them fail.

3. The sha256 checksum of the requested file. This is essential to ensure the
source is not corrupted. Note that Guix works with base32 strings, hence
the call to the base32 function.

‘build-system’
This is where the power of abstraction provided by the Scheme language re-
ally shines: in this case, the gnu-build-system abstracts away the famous
./configure && make && make install shell invocations. Other build systems
include the trivial-build-system which does not do anything and requires
from the packager to program all the build steps, the python-build-system,
the emacs-build-system, and many more (see Section “Build Systems” in
GNU Guix Reference Manual).

‘synopsis’
It should be a concise summary of what the package does. For many packages
a tagline from the project’s home page can be used as the synopsis.

‘description’
Same as for the synopsis, it’s fine to re-use the project description from the
homepage. Note that Guix uses Texinfo syntax.

‘home-page’
Use HTTPS if available.

‘license’ See guix/licenses.scm in the project source for a full list of available licenses.



Chapter 2: Packaging 7

Time to build our first package! Nothing fancy here for now: we will stick to a dummy
my-hello, a copy of the above declaration.

As with the ritualistic “Hello World” taught with most programming languages, this
will possibly be the most “manual” approach. We will work out an ideal setup later; for
now we will go the simplest route.

Save the following to a file my-hello.scm.

(use-modules (guix packages)

(guix download)

(guix build-system gnu)

(guix licenses))

(package

(name "my-hello")

(version "2.10")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"))))

(build-system gnu-build-system)

(synopsis "Hello, Guix world: An example custom Guix package")

(description

"GNU Hello prints the message \"Hello, world!\" and then exits. It

serves as an example of standard GNU coding practices. As such, it supports

command-line arguments, multiple languages, and so on.")

(home-page "https://www.gnu.org/software/hello/")

(license gpl3+))

We will explain the extra code in a moment.

Feel free to play with the different values of the various fields. If you change the source,
you’ll need to update the checksum. Indeed, Guix refuses to build anything if the given
checksum does not match the computed checksum of the source code. To obtain the correct
checksum of the package declaration, we need to download the source, compute the sha256
checksum and convert it to base32.

Thankfully, Guix can automate this task for us; all we need is to provide the URI:

$ guix download mirror://gnu/hello/hello-2.10.tar.gz

Starting download of /tmp/guix-file.JLYgL7

From https://ftpmirror.gnu.org/gnu/hello/hello-2.10.tar.gz...

following redirection to `https://mirror.ibcp.fr/pub/gnu/hello/hello-2.10.tar.gz'...

...10.tar.gz 709KiB 2.5MiB/s 00:00 [##################] 100.0%

/gnu/store/hbdalsf5lpf01x4dcknwx6xbn6n5km6k-hello-2.10.tar.gz

0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i



Chapter 2: Packaging 8

In this specific case the output tells us which mirror was chosen. If the result of the
above command is not the same as in the above snippet, update your my-hello declaration
accordingly.

Note that GNU package tarballs come with an OpenPGP signature, so you should defi-
nitely check the signature of this tarball with ‘gpg‘ to authenticate it before going further:

$ guix download mirror://gnu/hello/hello-2.10.tar.gz.sig

Starting download of /tmp/guix-file.03tFfb

From https://ftpmirror.gnu.org/gnu/hello/hello-2.10.tar.gz.sig...

following redirection to `https://ftp.igh.cnrs.fr/pub/gnu/hello/hello-2.10.tar.gz.sig'...

....tar.gz.sig 819B 1.2MiB/s 00:00 [##################] 100.0%

/gnu/store/rzs8wba9ka7grrmgcpfyxvs58mly0sx6-hello-2.10.tar.gz.sig

0q0v86n3y38z17rl146gdakw9xc4mcscpk8dscs412j22glrv9jf

$ gpg --verify /gnu/store/rzs8wba9ka7grrmgcpfyxvs58mly0sx6-hello-2.10.tar.gz.sig /gnu/store/hbdalsf5lpf01x4dcknwx6xbn6n5km6k-hello-2.10.tar.gz

gpg: Signature made Sun 16 Nov 2014 01:08:37 PM CET

gpg: using RSA key A9553245FDE9B739

gpg: Good signature from "Sami Kerola <kerolasa@iki.fi>" [unknown]

gpg: aka "Sami Kerola (http://www.iki.fi/kerolasa/) <kerolasa@iki.fi>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 8ED3 96E3 7E38 D471 A005 30D3 A955 3245 FDE9 B739

You can then happily run

$ guix package --install-from-file=my-hello.scm

You should now have my-hello in your profile!

$ guix package --list-installed=my-hello

my-hello 2.10 out

/gnu/store/f1db2mfm8syb8qvc357c53slbvf1g9m9-my-hello-2.10

We’ve gone as far as we could without any knowledge of Scheme. Before moving on to
more complex packages, now is the right time to brush up on your Scheme knowledge. see
Section 1.1 [A Scheme Crash Course], page 1, to get up to speed.

2.1.2 Setup

In the rest of this chapter we will rely on some basic Scheme programming knowledge. Now
let’s detail the different possible setups for working on Guix packages.

There are several ways to set up a Guix packaging environment.

We recommend you work directly on the Guix source checkout since it makes it easier
for everyone to contribute to the project.

But first, let’s look at other possibilities.

2.1.2.1 Local file

This is what we previously did with ‘my-hello’. With the Scheme basics we’ve covered, we
are now able to explain the leading chunks. As stated in guix package --help:

-f, --install-from-file=FILE

install the package that the code within FILE



Chapter 2: Packaging 9

evaluates to

Thus the last expression must return a package, which is the case in our earlier example.

The use-modules expression tells which of the modules we need in the file. Modules are
a collection of values and procedures. They are commonly called “libraries” or “packages”
in other programming languages.

2.1.2.2 Channels

Guix and its package collection can be extended through channels. A channel is a Git
repository, public or not, containing .scm files that provide packages (see Section “Defining
Packages” in GNU Guix Reference Manual) or services (see Section “Defining Services” in
GNU Guix Reference Manual).

How would you go about creating a channel? First, create a directory that will contain
your .scm files, say ~/my-channel:

mkdir ~/my-channel

Suppose you want to add the ‘my-hello’ package we saw previously; it first needs some
adjustments:

(define-module (my-hello)

#:use-module (guix licenses)

#:use-module (guix packages)

#:use-module (guix build-system gnu)

#:use-module (guix download))

(define-public my-hello

(package

(name "my-hello")

(version "2.10")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnu/hello/hello-" version

".tar.gz"))

(sha256

(base32

"0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"))))

(build-system gnu-build-system)

(synopsis "Hello, Guix world: An example custom Guix package")

(description

"GNU Hello prints the message \"Hello, world!\" and then exits. It

serves as an example of standard GNU coding practices. As such, it supports

command-line arguments, multiple languages, and so on.")

(home-page "https://www.gnu.org/software/hello/")

(license gpl3+)))

Note that we have assigned the package value to an exported variable name with define-

public. This is effectively assigning the package to the my-hello variable so that it can be
referenced, among other as dependency of other packages.



Chapter 2: Packaging 10

If you use guix package --install-from-file=my-hello.scm on the above file, it will
fail because the last expression, define-public, does not return a package. If you want to
use define-public in this use-case nonetheless, make sure the file ends with an evaluation
of my-hello:

;; ...

(define-public my-hello

;; ...

)

my-hello

This last example is not very typical.

Now how do you make that package visible to guix commands so you can test your
packages? You need to add the directory to the search path using the -L command-line
option, as in these examples:

guix show -L ~/my-channel my-hello

guix build -L ~/my-channel my-hello

The final step is to turn ~/my-channel into an actual channel, making your package
collection seamlessly available via any guix command. To do that, you first need to make
it a Git repository:

cd ~/my-channel

git init

git add my-hello.scm

git commit -m "First commit of my channel."

And that’s it, you have a channel! From there on, you can add this channel to your
channel configuration in ~/.config/guix/channels.scm (see Section “Specifying Addi-
tional Channels” in GNU Guix Reference Manual); assuming you keep your channel local
for now, the channels.scm would look something like this:

(append (list (channel

(name 'my-channel)

(url (string-append "file://" (getenv "HOME")

"/my-channel"))))

%default-channels)

Next time you run guix pull, your channel will be picked up and the packages it defines
will be readily available to all the guix commands, even if you do not pass -L. The guix

describe command will show that Guix is, indeed, using both the my-channel and the
guix channels.

See Section “Creating a Channel” in GNU Guix Reference Manual, for details.

2.1.2.3 Direct checkout hacking

Working directly on the Guix project is recommended: it reduces the friction when the time
comes to submit your changes upstream to let the community benefit from your hard work!

Unlike most software distributions, the Guix repository holds in one place both the
tooling (including the package manager) and the package definitions. This choice was made
so that it would give developers the flexibility to modify the API without breakage by
updating all packages at the same time. This reduces development inertia.



Chapter 2: Packaging 11

Check out the official Git (https://git-scm.com/) repository:

$ git clone https://git.savannah.gnu.org/git/guix.git

In the rest of this article, we use ‘$GUIX_CHECKOUT’ to refer to the location of the check-
out.

Follow the instructions in the manual (see Section “Contributing” in GNU Guix Refer-
ence Manual) to set up the repository environment.

Once ready, you should be able to use the package definitions from the repository envi-
ronment.

Feel free to edit package definitions found in ‘$GUIX_CHECKOUT/gnu/packages’.

The ‘$GUIX_CHECKOUT/pre-inst-env’ script lets you use ‘guix’ over the package col-
lection of the repository (see Section “Running Guix Before It Is Installed” in GNU Guix
Reference Manual).

• Search packages, such as Ruby:

$ cd $GUIX_CHECKOUT

$ ./pre-inst-env guix package --list-available=ruby

ruby 1.8.7-p374 out gnu/packages/ruby.scm:119:2

ruby 2.1.6 out gnu/packages/ruby.scm:91:2

ruby 2.2.2 out gnu/packages/ruby.scm:39:2

• Build a package, here Ruby version 2.1:

$ ./pre-inst-env guix build --keep-failed ruby@2.1

/gnu/store/c13v73jxmj2nir2xjqaz5259zywsa9zi-ruby-2.1.6

• Install it to your user profile:

$ ./pre-inst-env guix package --install ruby@2.1

• Check for common mistakes:

$ ./pre-inst-env guix lint ruby@2.1

Guix strives at maintaining a high packaging standard; when contributing to the Guix
project, remember to

• follow the coding style (see Section “Coding Style” in GNU Guix Reference Manual),

• and review the check list from the manual (see Section “Submitting Patches” in GNU
Guix Reference Manual).

Once you are happy with the result, you are welcome to send your contribution to make
it part of Guix. This process is also detailed in the manual. (see Section “Contributing” in
GNU Guix Reference Manual)

It’s a community effort so the more join in, the better Guix becomes!

2.1.3 Extended example

The above “Hello World” example is as simple as it goes. Packages can be more complex
than that and Guix can handle more advanced scenarios. Let’s look at another, more
sophisticated package (slightly modified from the source):

(define-module (gnu packages version-control)

#:use-module ((guix licenses) #:prefix license:)

#:use-module (guix utils)

https://git-scm.com/


Chapter 2: Packaging 12

#:use-module (guix packages)

#:use-module (guix git-download)

#:use-module (guix build-system cmake)

#:use-module (gnu packages compression)

#:use-module (gnu packages pkg-config)

#:use-module (gnu packages python)

#:use-module (gnu packages ssh)

#:use-module (gnu packages tls)

#:use-module (gnu packages web))

(define-public my-libgit2

(let ((commit "e98d0a37c93574d2c6107bf7f31140b548c6a7bf")

(revision "1"))

(package

(name "my-libgit2")

(version (git-version "0.26.6" revision commit))

(source (origin

(method git-fetch)

(uri (git-reference

(url "https://github.com/libgit2/libgit2/")

(commit commit)))

(file-name (git-file-name name version))

(sha256

(base32

"17pjvprmdrx4h6bb1hhc98w9qi6ki7yl57f090n9kbhswxqfs7s3"))

(patches (search-patches "libgit2-mtime-0.patch"))

(modules '((guix build utils)))

;; Remove bundled software.

(snippet '(delete-file-recursively "deps"))))

(build-system cmake-build-system)

(outputs '("out" "debug"))

(arguments

`(#:tests? #true ; Run the test suite (this is the default)

#:configure-flags '("-DUSE_SHA1DC=ON") ; SHA-1 collision detection

#:phases

(modify-phases %standard-phases

(add-after 'unpack 'fix-hardcoded-paths

(lambda _

(substitute* "tests/repo/init.c"

(("#!/bin/sh") (string-append "#!" (which "sh"))))

(substitute* "tests/clar/fs.h"

(("/bin/cp") (which "cp"))

(("/bin/rm") (which "rm")))))

;; Run checks more verbosely.

(replace 'check

(lambda* (#:key tests? #:allow-other-keys)

(when tests?



Chapter 2: Packaging 13

(invoke "./libgit2_clar" "-v" "-Q"))))

(add-after 'unpack 'make-files-writable-for-tests

(lambda _ (for-each make-file-writable (find-files ".")))))))

(inputs

(list libssh2 http-parser python-wrapper))

(native-inputs

(list pkg-config))

(propagated-inputs

;; These two libraries are in 'Requires.private' in libgit2.pc.

(list openssl zlib))

(home-page "https://libgit2.github.com/")

(synopsis "Library providing Git core methods")

(description

"Libgit2 is a portable, pure C implementation of the Git core methods

provided as a re-entrant linkable library with a solid API, allowing you to

write native speed custom Git applications in any language with bindings.")

;; GPLv2 with linking exception

(license license:gpl2))))

(In those cases were you only want to tweak a few fields from a package definition, you
should rely on inheritance instead of copy-pasting everything. See below.)

Let’s discuss those fields in depth.

2.1.3.1 git-fetch method

Unlike the url-fetch method, git-fetch expects a git-reference which takes a Git
repository and a commit. The commit can be any Git reference such as tags, so if the
version is tagged, then it can be used directly. Sometimes the tag is prefixed with a v, in
which case you’d use (commit (string-append "v" version)).

To ensure that the source code from the Git repository is stored in a directory with a
descriptive name, we use (file-name (git-file-name name version)).

The git-version procedure can be used to derive the version when packaging pro-
grams for a specific commit, following the Guix contributor guidelines (see Section “Version
Numbers” in GNU Guix Reference Manual).

How does one obtain the sha256 hash that’s in there, you ask? By invoking guix hash

on a checkout of the desired commit, along these lines:

git clone https://github.com/libgit2/libgit2/

cd libgit2

git checkout v0.26.6

guix hash -rx .

guix hash -rx computes a SHA256 hash over the whole directory, excluding the .git

sub-directory (see Section “Invoking guix hash” in GNU Guix Reference Manual).

In the future, guix download will hopefully be able to do these steps for you, just like
it does for regular downloads.



Chapter 2: Packaging 14

2.1.3.2 Snippets

Snippets are quoted (i.e. non-evaluated) Scheme code that are a means of patching the
source. They are a Guix-y alternative to the traditional .patch files. Because of the quote,
the code in only evaluated when passed to the Guix daemon for building. There can be as
many snippets as needed.

Snippets might need additional Guile modules which can be imported from the modules
field.

2.1.3.3 Inputs

There are 3 different input types. In short:

native-inputs
Required for building but not runtime – installing a package through a substi-
tute won’t install these inputs.

inputs Installed in the store but not in the profile, as well as being present at build
time.

propagated-inputs
Installed in the store and in the profile, as well as being present at build time.

See Section “package Reference” in GNU Guix Reference Manual for more details.

The distinction between the various inputs is important: if a dependency can be handled
as an input instead of a propagated input, it should be done so, or else it “pollutes” the user
profile for no good reason.

For instance, a user installing a graphical program that depends on a command line tool
might only be interested in the graphical part, so there is no need to force the command
line tool into the user profile. The dependency is a concern to the package, not to the
user. Inputs make it possible to handle dependencies without bugging the user by adding
undesired executable files (or libraries) to their profile.

Same goes for native-inputs: once the program is installed, build-time dependencies can
be safely garbage-collected. It also matters when a substitute is available, in which case
only the inputs and propagated inputs will be fetched: the native inputs are not required to
install a package from a substitute.

Note: You may see here and there snippets where package inputs are written
quite differently, like so:

;; The "old style" for inputs.

(inputs

`(("libssh2" ,libssh2)

("http-parser" ,http-parser)

("python" ,python-wrapper)))

This is the “old style”, where each input in the list is explicitly given a label (a
string). It is still supported but we recommend using the style above instead.
See Section “package Reference” in GNU Guix Reference Manual, for more info.



Chapter 2: Packaging 15

2.1.3.4 Outputs

Just like how a package can have multiple inputs, it can also produce multiple outputs.

Each output corresponds to a separate directory in the store.

The user can choose which output to install; this is useful to save space or to avoid
polluting the user profile with unwanted executables or libraries.

Output separation is optional. When the outputs field is left out, the default and only
output (the complete package) is referred to as "out".

Typical separate output names include debug and doc.

It’s advised to separate outputs only when you’ve shown it’s worth it: if the output size
is significant (compare with guix size) or in case the package is modular.

2.1.3.5 Build system arguments

The arguments is a keyword-value list used to configure the build process.

The simplest argument #:tests? can be used to disable the test suite when building
the package. This is mostly useful when the package does not feature any test suite. It’s
strongly recommended to keep the test suite on if there is one.

Another common argument is :make-flags, which specifies a list of flags to append
when running make, as you would from the command line. For instance, the following flags

#:make-flags (list (string-append "prefix=" (assoc-ref %outputs "out"))

"CC=gcc")

translate into

$ make CC=gcc prefix=/gnu/store/...-<out>

This sets the C compiler to gcc and the prefix variable (the installation directory in
Make parlance) to (assoc-ref %outputs "out"), which is a build-stage global variable
pointing to the destination directory in the store (something like /gnu/store/...-my-

libgit2-20180408).

Similarly, it’s possible to set the configure flags:

#:configure-flags '("-DUSE_SHA1DC=ON")

The %build-inputs variable is also generated in scope. It’s an association table that
maps the input names to their store directories.

The phases keyword lists the sequential steps of the build system. Typically
phases include unpack, configure, build, install and check. To know more
about those phases, you need to work out the appropriate build system definition in
‘$GUIX_CHECKOUT/guix/build/gnu-build-system.scm’:

(define %standard-phases

;; Standard build phases, as a list of symbol/procedure pairs.

(let-syntax ((phases (syntax-rules ()

((_ p ...) `((p . ,p) ...)))))

(phases set-SOURCE-DATE-EPOCH set-paths install-locale unpack

bootstrap

patch-usr-bin-file

patch-source-shebangs configure patch-generated-file-shebangs

build check install



Chapter 2: Packaging 16

patch-shebangs strip

validate-runpath

validate-documentation-location

delete-info-dir-file

patch-dot-desktop-files

install-license-files

reset-gzip-timestamps

compress-documentation)))

Or from the REPL:

(add-to-load-path "/path/to/guix/checkout")

,use (guix build gnu-build-system)

(map first %standard-phases)

⇒ (set-SOURCE-DATE-EPOCH set-paths install-locale unpack bootstrap patch-usr-bin-file patch-source-shebangs configure patch-generated-file-shebangs build check install patch-shebangs strip validate-runpath validate-documentation-location delete-info-dir-file patch-dot-desktop-files install-license-files reset-gzip-timestamps compress-documentation)

If you want to know more about what happens during those phases, consult the associ-
ated procedures.

For instance, as of this writing the definition of unpack for the GNU build system is:

(define* (unpack #:key source #:allow-other-keys)

"Unpack SOURCE in the working directory, and change directory within the

source. When SOURCE is a directory, copy it in a sub-directory of the current

working directory."

(if (file-is-directory? source)

(begin

(mkdir "source")

(chdir "source")

;; Preserve timestamps (set to the Epoch) on the copied tree so that

;; things work deterministically.

(copy-recursively source "."

#:keep-mtime? #true))

(begin

(if (string-suffix? ".zip" source)

(invoke "unzip" source)

(invoke "tar" "xvf" source))

(chdir (first-subdirectory "."))))

#true)

Note the chdir call: it changes the working directory to where the source was unpacked.
Thus every phase following the unpack will use the source as a working directory, which is
why we can directly work on the source files. That is to say, unless a later phase changes
the working directory to something else.

We modify the list of %standard-phases of the build system with the modify-phases

macro as per the list of specified modifications, which may have the following forms:

• (add-before phase new-phase procedure): Run procedure named new-phase before
phase.

• (add-after phase new-phase procedure): Same, but afterwards.

• (replace phase procedure).



Chapter 2: Packaging 17

• (delete phase).

The procedure supports the keyword arguments inputs and outputs. Each input
(whether native, propagated or not) and output directory is referenced by their name in
those variables. Thus (assoc-ref outputs "out") is the store directory of the main out-
put of the package. A phase procedure may look like this:

(lambda* (#:key inputs outputs #:allow-other-keys)

(let ((bash-directory (assoc-ref inputs "bash"))

(output-directory (assoc-ref outputs "out"))

(doc-directory (assoc-ref outputs "doc")))

;; ...

#true))

The procedure must return #true on success. It’s brittle to rely on the return value of
the last expression used to tweak the phase because there is no guarantee it would be a
#true. Hence the trailing #true to ensure the right value is returned on success.

2.1.3.6 Code staging

The astute reader may have noticed the quasi-quote and comma syntax in the argument
field. Indeed, the build code in the package declaration should not be evaluated on the client
side, but only when passed to the Guix daemon. This mechanism of passing code around
two running processes is called code staging (https://arxiv.org/abs/1709.00833).

2.1.3.7 Utility functions

When customizing phases, we often need to write code that mimics the equivalent system
invocations (make, mkdir, cp, etc.) commonly used during regular “Unix-style” installations.

Some like chmod are native to Guile. See Guile reference manual for a complete list.

Guix provides additional helper functions which prove especially handy in the context
of package management.

Some of those functions can be found in ‘$GUIX_CHECKOUT/guix/guix/build/utils.scm’.
Most of them mirror the behaviour of the traditional Unix system commands:

which Like the ‘which’ system command.

find-files

Akin to the ‘find’ system command.

mkdir-p Like ‘mkdir -p’, which creates all parents as needed.

install-file

Similar to ‘install’ when installing a file to a (possibly non-existing) directory.
Guile has copy-file which works like ‘cp’.

copy-recursively

Like ‘cp -r’.

delete-file-recursively

Like ‘rm -rf’.

invoke Run an executable. This should be used instead of system*.

https://arxiv.org/abs/1709.00833


Chapter 2: Packaging 18

with-directory-excursion

Run the body in a different working directory, then restore the previous working
directory.

substitute*

A “sed-like” function.

See Section “Build Utilities” in GNU Guix Reference Manual, for more information on
these utilities.

2.1.3.8 Module prefix

The license in our last example needs a prefix: this is because of how the license module
was imported in the package, as #:use-module ((guix licenses) #:prefix license:).
The Guile module import mechanism (see Section “Using Guile Modules” in Guile reference
manual) gives the user full control over namespacing: this is needed to avoid clashes between,
say, the ‘zlib’ variable from ‘licenses.scm’ (a license value) and the ‘zlib’ variable from
‘compression.scm’ (a package value).

2.1.4 Other build systems

What we’ve seen so far covers the majority of packages using a build system other than the
trivial-build-system. The latter does not automate anything and leaves you to build
everything manually. This can be more demanding and we won’t cover it here for now, but
thankfully it is rarely necessary to fall back on this system.

For the other build systems, such as ASDF, Emacs, Perl, Ruby and many more, the
process is very similar to the GNU build system except for a few specialized arguments.

See Section “Build Systems” in GNU Guix Reference Manual, for more information
on build systems, or check the source code in the ‘$GUIX_CHECKOUT/guix/build’ and
‘$GUIX_CHECKOUT/guix/build-system’ directories.

2.1.5 Programmable and automated package definition

We can’t repeat it enough: having a full-fledged programming language at hand empowers
us in ways that reach far beyond traditional package management.

Let’s illustrate this with some awesome features of Guix!

2.1.5.1 Recursive importers

You might find some build systems good enough that there is little to do at all to write a
package, to the point that it becomes repetitive and tedious after a while. A raison d’être of
computers is to replace human beings at those boring tasks. So let’s tell Guix to do this for
us and create the package definition of an R package from CRAN (the output is trimmed
for conciseness):

$ guix import cran --recursive walrus

(define-public r-mc2d

; ...

(license gpl2+)))



Chapter 2: Packaging 19

(define-public r-jmvcore

; ...

(license gpl2+)))

(define-public r-wrs2

; ...

(license gpl3)))

(define-public r-walrus

(package

(name "r-walrus")

(version "1.0.3")

(source

(origin

(method url-fetch)

(uri (cran-uri "walrus" version))

(sha256

(base32

"1nk2glcvy4hyksl5ipq2mz8jy4fss90hx6cq98m3w96kzjni6jjj"))))

(build-system r-build-system)

(propagated-inputs

(list r-ggplot2 r-jmvcore r-r6 r-wrs2))

(home-page "https://github.com/jamovi/walrus")

(synopsis "Robust Statistical Methods")

(description

"This package provides a toolbox of common robust statistical

tests, including robust descriptives, robust t-tests, and robust ANOVA.

It is also available as a module for 'jamovi' (see

<https://www.jamovi.org> for more information). Walrus is based on the

WRS2 package by Patrick Mair, which is in turn based on the scripts and

work of Rand Wilcox. These analyses are described in depth in the book

'Introduction to Robust Estimation & Hypothesis Testing'.")

(license gpl3)))

The recursive importer won’t import packages for which Guix already has package defi-
nitions, except for the very first.

Not all applications can be packaged this way, only those relying on a select number of
supported systems. Read about the full list of importers in the guix import section of the
manual (see Section “Invoking guix import” in GNU Guix Reference Manual).

2.1.5.2 Automatic update

Guix can be smart enough to check for updates on systems it knows. It can report outdated
package definitions with

$ guix refresh hello

In most cases, updating a package to a newer version requires little more than changing
the version number and the checksum. Guix can do that automatically as well:

$ guix refresh hello --update



Chapter 2: Packaging 20

2.1.5.3 Inheritance

If you’ve started browsing the existing package definitions, you might have noticed that a
significant number of them have a inherit field:

(define-public adwaita-icon-theme

(package (inherit gnome-icon-theme)

(name "adwaita-icon-theme")

(version "3.26.1")

(source (origin

(method url-fetch)

(uri (string-append "mirror://gnome/sources/" name "/"

(version-major+minor version) "/"

name "-" version ".tar.xz"))

(sha256

(base32

"17fpahgh5dyckgz7rwqvzgnhx53cx9kr2xw0szprc6bnqy977fi8"))))

(native-inputs (list `(,gtk+ "bin")))))

All unspecified fields are inherited from the parent package. This is very convenient
to create alternative packages, for instance with different source, version or compilation
options.

2.1.6 Getting help

Sadly, some applications can be tough to package. Sometimes they need a patch to work
with the non-standard file system hierarchy enforced by the store. Sometimes the tests
won’t run properly. (They can be skipped but this is not recommended.) Other times the
resulting package won’t be reproducible.

Should you be stuck, unable to figure out how to fix any sort of packaging issue, don’t
hesitate to ask the community for help.

See the Guix homepage (https://www.gnu.org/software/guix/contact/) for infor-
mation on the mailing lists, IRC, etc.

2.1.7 Conclusion

This tutorial was a showcase of the sophisticated package management that Guix boasts.
At this point we have mostly restricted this introduction to the gnu-build-system which
is a core abstraction layer on which more advanced abstractions are based.

Where do we go from here? Next we ought to dissect the innards of the build system by
removing all abstractions, using the trivial-build-system: this should give us a thorough
understanding of the process before investigating some more advanced packaging techniques
and edge cases.

Other features worth exploring are the interactive editing and debugging capabilities of
Guix provided by the Guile REPL.

Those fancy features are completely optional and can wait; now is a good time to take
a well-deserved break. With what we’ve introduced here you should be well armed to
package lots of programs. You can get started right away and hopefully we will see your
contributions soon!

https://www.gnu.org/software/guix/contact/


Chapter 2: Packaging 21

2.1.8 References

• The package reference in the manual (https://www.gnu.org/software/guix/
manual/en/html_node/Defining-Packages.html)

• Pjotr’s hacking guide to GNU Guix (https://gitlab.com/pjotrp/guix-notes/
blob/master/HACKING.org)

• “GNU Guix: Package without a scheme!” (https://www.gnu.org/software/guix/
guix-ghm-andreas-20130823.pdf), by Andreas Enge

https://www.gnu.org/software/guix/manual/en/html_node/Defining-Packages.html
https://www.gnu.org/software/guix/manual/en/html_node/Defining-Packages.html
https://gitlab.com/pjotrp/guix-notes/blob/master/HACKING.org
https://gitlab.com/pjotrp/guix-notes/blob/master/HACKING.org
https://www.gnu.org/software/guix/guix-ghm-andreas-20130823.pdf
https://www.gnu.org/software/guix/guix-ghm-andreas-20130823.pdf


22

3 System Configuration

Guix offers a flexible language for declaratively configuring your Guix System. This flexi-
bility can at times be overwhelming. The purpose of this chapter is to demonstrate some
advanced configuration concepts.

see Section “System Configuration” in GNU Guix Reference Manual for a complete
reference.

3.1 Auto-Login to a Specific TTY

While the Guix manual explains auto-login one user to all TTYs ( see Section “auto-login
to TTY” in GNU Guix Reference Manual), some might prefer a situation, in which one user
is logged into one TTY with the other TTYs either configured to login different users or no
one at all. Note that one can auto-login one user to any TTY, but it is usually advisable
to avoid tty1, which, by default, is used to log warnings and errors.

Here is how one might set up auto login for one user to one tty:

(define (auto-login-to-tty config tty user)

(if (string=? tty (mingetty-configuration-tty config))

(mingetty-configuration

(inherit config)

(auto-login user))

config))

(define %my-services

(modify-services %base-services

;; ...

(mingetty-service-type config =>

(auto-login-to-tty

config "tty3" "alice"))))

(operating-system

;; ...

(services %my-services))

One could also compose (see Section “Higher-Order Functions” in The Guile Reference
Manual) auto-login-to-tty to login multiple users to multiple ttys.

Finally, here is a note of caution. Setting up auto login to a TTY, means that anyone
can turn on your computer and run commands as your regular user. However, if you have
an encrypted root partition, and thus already need to enter a passphrase when the system
boots, auto-login might be a convenient option.

3.2 Customizing the Kernel

Guix is, at its core, a source based distribution with substitutes (see Section “Substitutes”
in GNU Guix Reference Manual), and as such building packages from their source code is
an expected part of regular package installations and upgrades. Given this starting point, it
makes sense that efforts are made to reduce the amount of time spent compiling packages,



Chapter 3: System Configuration 23

and recent changes and upgrades to the building and distribution of substitutes continues
to be a topic of discussion within Guix.

The kernel, while not requiring an overabundance of RAM to build, does take a rather
long time on an average machine. The official kernel configuration, as is the case with many
GNU/Linux distributions, errs on the side of inclusiveness, and this is really what causes
the build to take such a long time when the kernel is built from source.

The Linux kernel, however, can also just be described as a regular old package, and as
such can be customized just like any other package. The procedure is a little bit different,
although this is primarily due to the nature of how the package definition is written.

The linux-libre kernel package definition is actually a procedure which creates a pack-
age.

(define* (make-linux-libre* version gnu-revision source supported-systems

#:key

(extra-version #f)

;; A function that takes an arch and a variant.

;; See kernel-config for an example.

(configuration-file #f)

(defconfig "defconfig")

(extra-options %default-extra-linux-options))

...)

The current linux-libre package is for the 5.15.x series, and is declared like this:

(define-public linux-libre-5.15

(make-linux-libre* linux-libre-5.15-version

linux-libre-5.15-gnu-revision

linux-libre-5.15-source

'("x86_64-linux" "i686-linux" "armhf-linux" "aarch64-linux" "riscv64-linux")

#:configuration-file kernel-config))

Any keys which are not assigned values inherit their default value from the make-linux-
libre definition. When comparing the two snippets above, notice the code comment that
refers to #:configuration-file. Because of this, it is not actually easy to include a custom
kernel configuration from the definition, but don’t worry, there are other ways to work with
what we do have.

There are two ways to create a kernel with a custom kernel configuration. The first is
to provide a standard .config file during the build process by including an actual .config
file as a native input to our custom kernel. The following is a snippet from the custom
'configure phase of the make-linux-libre package definition:

(let ((build (assoc-ref %standard-phases 'build))

(config (assoc-ref (or native-inputs inputs) "kconfig")))

;; Use a custom kernel configuration file or a default

;; configuration file.

(if config

(begin

(copy-file config ".config")

(chmod ".config" #o666))



Chapter 3: System Configuration 24

(invoke "make" ,defconfig)))

Below is a sample kernel package. The linux-libre package is nothing special and can
be inherited from and have its fields overridden like any other package:

(define-public linux-libre/E2140

(package

(inherit linux-libre)

(native-inputs

`(("kconfig" ,(local-file "E2140.config"))

,@(alist-delete "kconfig"

(package-native-inputs linux-libre))))))

In the same directory as the file defining linux-libre-E2140 is a file named
E2140.config, which is an actual kernel configuration file. The defconfig keyword of
make-linux-libre is left blank here, so the only kernel configuration in the package is the
one which was included in the native-inputs field.

The second way to create a custom kernel is to pass a new value to the extra-options
keyword of the make-linux-libre procedure. The extra-options keyword works with
another function defined right below it:

(define %default-extra-linux-options

`(;; https://lists.gnu.org/archive/html/guix-devel/2014-04/msg00039.html

("CONFIG_DEVPTS_MULTIPLE_INSTANCES" . #true)

;; Modules required for initrd:

("CONFIG_NET_9P" . m)

("CONFIG_NET_9P_VIRTIO" . m)

("CONFIG_VIRTIO_BLK" . m)

("CONFIG_VIRTIO_NET" . m)

("CONFIG_VIRTIO_PCI" . m)

("CONFIG_VIRTIO_BALLOON" . m)

("CONFIG_VIRTIO_MMIO" . m)

("CONFIG_FUSE_FS" . m)

("CONFIG_CIFS" . m)

("CONFIG_9P_FS" . m)))

(define (config->string options)

(string-join (map (match-lambda

((option . 'm)

(string-append option "=m"))

((option . #true)

(string-append option "=y"))

((option . #false)

(string-append option "=n")))

options)

"\n"))

And in the custom configure script from the ‘make-linux-libre‘ package:

;; Appending works even when the option wasn't in the

;; file. The last one prevails if duplicated.



Chapter 3: System Configuration 25

(let ((port (open-file ".config" "a"))

(extra-configuration ,(config->string extra-options)))

(display extra-configuration port)

(close-port port))

(invoke "make" "oldconfig")

So by not providing a configuration-file the .config starts blank, and then we write into
it the collection of flags that we want. Here’s another custom kernel:

(define %macbook41-full-config

(append %macbook41-config-options

%file-systems

%efi-support

%emulation

(@@ (gnu packages linux) %default-extra-linux-options)))

(define-public linux-libre-macbook41

;; XXX: Access the internal 'make-linux-libre*' procedure, which is

;; private and unexported, and is liable to change in the future.

((@@ (gnu packages linux) make-linux-libre*)

(@@ (gnu packages linux) linux-libre-version)

(@@ (gnu packages linux) linux-libre-gnu-revision)

(@@ (gnu packages linux) linux-libre-source)

'("x86_64-linux")

#:extra-version "macbook41"

#:extra-options %macbook41-config-options))

In the above example %file-systems is a collection of flags enabling different file sys-
tem support, %efi-support enables EFI support and %emulation enables a x86 64-linux
machine to act in 32-bit mode also. %default-extra-linux-options are the ones quoted
above, which had to be added in since they were replaced in the extra-options keyword.

This all sounds like it should be doable, but how does one even know which
modules are required for a particular system? Two places that can be helpful in
trying to answer this question is the Gentoo Handbook (https://wiki.gentoo.
org/wiki/Handbook:AMD64/Installation/Kernel) and the documentation from the
kernel itself (https://www.kernel.org/doc/html/latest/admin-guide/README.html?
highlight=localmodconfig). From the kernel documentation, it seems that make

localmodconfig is the command we want.

In order to actually run make localmodconfig we first need to get and unpack the kernel
source code:

tar xf $(guix build linux-libre --source)

Once inside the directory containing the source code run touch .config to create an
initial, empty .config to start with. make localmodconfig works by seeing what you
already have in .config and letting you know what you’re missing. If the file is blank then
you’re missing everything. The next step is to run:

guix shell -D linux-libre -- make localmodconfig

https://wiki.gentoo.org/wiki/Handbook:AMD64/Installation/Kernel
https://wiki.gentoo.org/wiki/Handbook:AMD64/Installation/Kernel
https://www.kernel.org/doc/html/latest/admin-guide/README.html?highlight=localmodconfig
https://www.kernel.org/doc/html/latest/admin-guide/README.html?highlight=localmodconfig
https://www.kernel.org/doc/html/latest/admin-guide/README.html?highlight=localmodconfig


Chapter 3: System Configuration 26

and note the output. Do note that the .config file is still empty. The output generally
contains two types of warnings. The first start with "WARNING" and can actually be
ignored in our case. The second read:

module pcspkr did not have configs CONFIG_INPUT_PCSPKR

For each of these lines, copy the CONFIG_XXXX_XXXX portion into the .config in the
directory, and append =m, so in the end it looks like this:

CONFIG_INPUT_PCSPKR=m

CONFIG_VIRTIO=m

After copying all the configuration options, run make localmodconfig again to make
sure that you don’t have any output starting with “module”. After all of these machine
specific modules there are a couple more left that are also needed. CONFIG_MODULES is
necessary so that you can build and load modules separately and not have everything built
into the kernel. CONFIG_BLK_DEV_SD is required for reading from hard drives. It is possible
that there are other modules which you will need.

This post does not aim to be a guide to configuring your own kernel however, so if you
do decide to build a custom kernel you’ll have to seek out other guides to create a kernel
which is just right for your needs.

The second way to setup the kernel configuration makes more use of Guix’s features
and allows you to share configuration segments between different kernels. For example, all
machines using EFI to boot have a number of EFI configuration flags that they need. It
is likely that all the kernels will share a list of file systems to support. By using variables
it is easier to see at a glance what features are enabled and to make sure you don’t have
features in one kernel but missing in another.

Left undiscussed however, is Guix’s initrd and its customization. It is likely that you’ll
need to modify the initrd on a machine using a custom kernel, since certain modules which
are expected to be built may not be available for inclusion into the initrd.

3.3 Guix System Image API

Historically, Guix System is centered around an operating-system structure. This struc-
ture contains various fields ranging from the bootloader and kernel declaration to the ser-
vices to install.

Depending on the target machine, that can go from a standard x86_64 machine to a
small ARM single board computer such as the Pine64, the image constraints can vary a
lot. The hardware manufacturers will impose different image formats with various partition
sizes and offsets.

To create images suitable for all those machines, a new abstraction is necessary: that’s
the goal of the image record. This record contains all the required information to be
transformed into a standalone image, that can be directly booted on any target machine.

(define-record-type* <image>

image make-image

image?

(name image-name ;symbol

(default #f))

(format image-format) ;symbol



Chapter 3: System Configuration 27

(target image-target

(default #f))

(size image-size ;size in bytes as integer

(default 'guess))

(operating-system image-operating-system ;<operating-system>

(default #f))

(partitions image-partitions ;list of <partition>

(default '()))

(compression? image-compression? ;boolean

(default #t))

(volatile-root? image-volatile-root? ;boolean

(default #t))

(substitutable? image-substitutable? ;boolean

(default #t)))

This record contains the operating-system to instantiate. The format field defines the
image type and can be efi-raw, qcow2 or iso9660 for instance. In the future, it could be
extended to docker or other image types.

A new directory in the Guix sources is dedicated to images definition. For now there are
four files:

• gnu/system/images/hurd.scm

• gnu/system/images/pine64.scm

• gnu/system/images/novena.scm

• gnu/system/images/pinebook-pro.scm

Let’s have a look to pine64.scm. It contains the pine64-barebones-os variable which
is a minimal definition of an operating-system dedicated to the Pine A64 LTS board.

(define pine64-barebones-os

(operating-system

(host-name "vignemale")

(timezone "Europe/Paris")

(locale "en_US.utf8")

(bootloader (bootloader-configuration

(bootloader u-boot-pine64-lts-bootloader)

(targets '("/dev/vda"))))

(initrd-modules '())

(kernel linux-libre-arm64-generic)

(file-systems (cons (file-system

(device (file-system-label "my-root"))

(mount-point "/")

(type "ext4"))

%base-file-systems))

(services (cons (service agetty-service-type

(agetty-configuration

(extra-options '("-L")) ; no carrier detect

(baud-rate "115200")

(term "vt100")



Chapter 3: System Configuration 28

(tty "ttyS0")))

%base-services))))

The kernel and bootloader fields are pointing to packages dedicated to this board.

Right below, the pine64-image-type variable is also defined.

(define pine64-image-type

(image-type

(name 'pine64-raw)

(constructor (cut image-with-os arm64-disk-image <>))))

It’s using a record we haven’t talked about yet, the image-type record, defined this way:

(define-record-type* <image-type>

image-type make-image-type

image-type?

(name image-type-name) ;symbol

(constructor image-type-constructor)) ;<operating-system> -> <image>

The main purpose of this record is to associate a name to a procedure transforming an
operating-system to an image. To understand why it is necessary, let’s have a look to the
command producing an image from an operating-system configuration file:

guix system image my-os.scm

This command expects an operating-system configuration but how should we indicate
that we want an image targeting a Pine64 board? We need to provide an extra information,
the image-type, by passing the --image-type or -t flag, this way:

guix system image --image-type=pine64-raw my-os.scm

This image-type parameter points to the pine64-image-type defined above. Hence,
the operating-system declared in my-os.scm will be applied the (cut image-with-os

arm64-disk-image <>) procedure to turn it into an image.

The resulting image looks like:

(image

(format 'disk-image)

(target "aarch64-linux-gnu")

(operating-system my-os)

(partitions

(list (partition

(inherit root-partition)

(offset root-offset)))))

which is the aggregation of the operating-system defined in my-os.scm to the arm64-
disk-image record.

But enough Scheme madness. What does this image API bring to the Guix user?

One can run:

mathieu@cervin:~$ guix system --list-image-types

The available image types are:

- unmatched-raw

- rock64-raw



Chapter 3: System Configuration 29

- pinebook-pro-raw

- pine64-raw

- novena-raw

- hurd-raw

- hurd-qcow2

- qcow2

- iso9660

- uncompressed-iso9660

- tarball

- efi-raw

- mbr-raw

- docker

- wsl2

- raw-with-offset

- efi32-raw

and by writing an operating-system file based on pine64-barebones-os, you can
customize your image to your preferences in a file (my-pine-os.scm) like this:

(use-modules (gnu services linux)

(gnu system images pine64))

(let ((base-os pine64-barebones-os))

(operating-system

(inherit base-os)

(timezone "America/Indiana/Indianapolis")

(services

(cons

(service earlyoom-service-type

(earlyoom-configuration

(prefer-regexp "icecat|chromium")))

(operating-system-user-services base-os)))))

run:

guix system image --image-type=pine64-raw my-pine-os.scm

or,

guix system image --image-type=hurd-raw my-hurd-os.scm

to get an image that can be written directly to a hard drive and booted from.

Without changing anything to my-hurd-os.scm, calling:

guix system image --image-type=hurd-qcow2 my-hurd-os.scm

will instead produce a Hurd QEMU image.

3.4 Using security keys

The use of security keys can improve your security by providing a second authentication
source that cannot be easily stolen or copied, at least for a remote adversary (something
that you have), to the main secret (a passphrase – something that you know), reducing the
risk of impersonation.



Chapter 3: System Configuration 30

The example configuration detailed below showcases what minimal configuration needs
to be made on your Guix System to allow the use of a Yubico security key. It is hoped the
configuration can be useful for other security keys as well, with minor adjustments.

3.4.1 Configuration for use as a two-factor authenticator (2FA)

To be usable, the udev rules of the system should be extended with key-specific rules. The
following shows how to extend your udev rules with the lib/udev/rules.d/70-u2f.rules
udev rule file provided by the libfido2 package from the (gnu packages security-token)

module and add your user to the ‘"plugdev"’ group it uses:

(use-package-modules ... security-token ...)

...

(operating-system

...

(users (cons* (user-account

(name "your-user")

(group "users")

(supplementary-groups

'("wheel" "netdev" "audio" "video"

"plugdev")) ;<- added system group

(home-directory "/home/your-user"))

%base-user-accounts))

...

(services

(cons*

...

(udev-rules-service 'fido2 libfido2 #:groups '("plugdev")))))

After re-configuring your system and re-logging in your graphical session so that the new
group is in effect for your user, you can verify that your key is usable by launching:

guix shell ungoogled-chromium -- chromium chrome://settings/securityKeys

and validating that the security key can be reset via the “Reset your security key”
menu. If it works, congratulations, your security key is ready to be used with applications
supporting two-factor authentication (2FA).

3.4.2 Disabling OTP code generation for a Yubikey

If you use a Yubikey security key and are irritated by the spurious OTP codes it generates
when inadvertently touching the key (e.g. causing you to become a spammer in the ‘#guix’
channel when discussing from your favorite IRC client!), you can disable it via the following
ykman command:

guix shell python-yubikey-manager -- ykman config usb --force --disable OTP

Alternatively, you could use the ykman-gui command provided by the yubikey-

manager-qt package and either wholly disable the ‘OTP’ application for the USB interface
or, from the ‘Applications -> OTP’ view, delete the slot 1 configuration, which comes
pre-configured with the Yubico OTP application.



Chapter 3: System Configuration 31

3.4.3 Requiring a Yubikey to open a KeePassXC database

The KeePassXC password manager application has support for Yubikeys, but it requires
installing a udev rules for your Guix System and some configuration of the Yubico OTP
application on the key.

The necessary udev rules file comes from the yubikey-personalization package, and
can be installed like:

(use-package-modules ... security-token ...)

...

(operating-system

...

(services

(cons*

...

(udev-rules-service 'yubikey yubikey-personalization))))

After reconfiguring your system (and reconnecting your Yubikey), you’ll then want to
configure the OTP challenge/response application of your Yubikey on its slot 2, which is
what KeePassXC uses. It’s easy to do so via the Yubikey Manager graphical configuration
tool, which can be invoked with:

guix shell yubikey-manager-qt -- ykman-gui

First, ensure ‘OTP’ is enabled under the ‘Interfaces’ tab, then navigate to
‘Applications -> OTP’, and click the ‘Configure’ button under the ‘Long Touch (Slot

2)’ section. Select ‘Challenge-response’, input or generate a secret key, and click the
‘Finish’ button. If you have a second Yubikey you’d like to use as a backup, you should
configure it the same way, using the same secret key.

Your Yubikey should now be detected by KeePassXC. It can be added to a database by
navigating to KeePassXC’s ‘Database -> Database Security...’ menu, then clicking the
‘Add additional protection...’ button, then ‘Add Challenge-Response’, selecting the
security key from the drop-down menu and clicking the ‘OK’ button to complete the setup.

3.5 Dynamic DNS mcron job

If your ISP (Internet Service Provider) only provides dynamic IP addresses, it can be useful
to setup a dynamic DNS (Domain Name System) (also known as DDNS (Dynamic DNS))
service to associate a static host name to a public but dynamic (often changing) IP address.
There are multiple existing services that can be used for this; in the following mcron job,
DuckDNS (https://duckdns.org) is used. It should also work with other dynamic DNS
services that offer a similar interface to update the IP address, such as https://freedns.
afraid.org/, with minor adjustments.

The mcron job is provided below, where DOMAIN should be substituted for your own
domain prefix, and the DuckDNS provided token associated to DOMAIN added to the
/etc/duckdns/DOMAIN.token file.

(define duckdns-job

;; Update personal domain IP every 5 minutes.

#~(job '(next-minute (range 0 60 5))

#$(program-file

https://duckdns.org
https://freedns.afraid.org/
https://freedns.afraid.org/


Chapter 3: System Configuration 32

"duckdns-update"

(with-extensions (list guile-gnutls) ;required by (web client)

#~(begin

(use-modules (ice-9 textual-ports)

(web client))

(let ((token (string-trim-both

(call-with-input-file "/etc/duckdns/DOMAIN.token"

get-string-all)))

(query-template (string-append "https://www.duckdns.org/"

"update?domains=DOMAIN"

"&token=~a&ip=")))

(http-get (format #f query-template token))))))

"duckdns-update"

#:user "nobody"))

The job then needs to be added to the list of mcron jobs for your system, using something
like:

(operating-system

(services

(cons* (service mcron-service-type

(mcron-configuration

(jobs (list duckdns-job ...))))

...

%base-services)))

3.6 Connecting to Wireguard VPN

To connect to a Wireguard VPN server you need the kernel module to be loaded in mem-
ory and a package providing networking tools that support it (e.g. wireguard-tools or
network-manager).

Here is a configuration example for Linux-Libre < 5.6, where the module is out of tree
and need to be loaded manually—following revisions of the kernel have it built-in and so
don’t need such configuration:

(use-modules (gnu))

(use-service-modules desktop)

(use-package-modules vpn)

(operating-system

;; ...

(services (cons (simple-service 'wireguard-module

kernel-module-loader-service-type

'("wireguard"))

%desktop-services))

(packages (cons wireguard-tools %base-packages))

(kernel-loadable-modules (list wireguard-linux-compat)))

After reconfiguring and restarting your system you can either use Wireguard tools or
NetworkManager to connect to a VPN server.



Chapter 3: System Configuration 33

3.6.1 Using Wireguard tools

To test your Wireguard setup it is convenient to use wg-quick. Just give it a configuration
file wg-quick up ./wg0.conf; or put that file in /etc/wireguard and run wg-quick up

wg0 instead.

Note: Be warned that the author described this command as a: “[. . . ] very
quick and dirty bash script [. . . ]”.

3.6.2 Using NetworkManager

Thanks to NetworkManager support for Wireguard we can connect to our VPN using nmcli
command. Up to this point this guide assumes that you’re using Network Manager service
provided by %desktop-services. Ortherwise you need to adjust your services list to load
network-manager-service-type and reconfigure your Guix system.

To import your VPN configuration execute nmcli import command:

# nmcli connection import type wireguard file wg0.conf

Connection 'wg0' (edbee261-aa5a-42db-b032-6c7757c60fde) successfully added

This will create a configuration file in /etc/NetworkManager/wg0.nmconnection. Next
connect to the Wireguard server:

$ nmcli connection up wg0

Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/6)

By default NetworkManager will connect automatically on system boot. To change that
behaviour you need to edit your config:

# nmcli connection modify wg0 connection.autoconnect no

For more specific information about NetworkManager and wireguard
see this post by thaller (https://blogs.gnome.org/thaller/2019/03/15/
wireguard-in-networkmanager/).

3.7 Customizing a Window Manager

3.7.1 StumpWM

You could install StumpWM with a Guix system by adding stumpwm and optionally
`(,stumpwm "lib") packages to a system configuration file, e.g. /etc/config.scm.

An example configuration can look like this:

(use-modules (gnu))

(use-package-modules wm)

(operating-system

;; ...

(packages (append (list sbcl stumpwm `(,stumpwm "lib"))

%base-packages)))

By default StumpWM uses X11 fonts, which could be small or pixelated on your system.
You could fix this by installing StumpWM contrib Lisp module sbcl-ttf-fonts, adding it
to Guix system packages:

(use-modules (gnu))

https://blogs.gnome.org/thaller/2019/03/15/wireguard-in-networkmanager/
https://blogs.gnome.org/thaller/2019/03/15/wireguard-in-networkmanager/


Chapter 3: System Configuration 34

(use-package-modules fonts wm)

(operating-system

;; ...

(packages (append (list sbcl stumpwm `(,stumpwm "lib"))

sbcl-ttf-fonts font-dejavu %base-packages)))

Then you need to add the following code to a StumpWM configuration file
~/.stumpwm.d/init.lisp:

(require :ttf-fonts)

(setf xft:*font-dirs* '("/run/current-system/profile/share/fonts/"))

(setf clx-truetype:+font-cache-filename+ (concat (getenv "HOME") "/.fonts/font-cache.sexp"))

(xft:cache-fonts)

(set-font (make-instance 'xft:font :family "DejaVu Sans Mono" :subfamily "Book" :size 11))

3.7.2 Session lock

Depending on your environment, locking the screen of your session might come built in or
it might be something you have to set up yourself. If you use a desktop environment like
GNOME or KDE, it’s usually built in. If you use a plain window manager like StumpWM
or EXWM, you might have to set it up yourself.

3.7.2.1 Xorg

If you use Xorg, you can use the utility xss-lock (https://www.mankier.com/1/xss-lock)
to lock the screen of your session. xss-lock is triggered by DPMS which since Xorg 1.8 is
auto-detected and enabled if ACPI is also enabled at kernel runtime.

To use xss-lock, you can simple execute it and put it into the background before you
start your window manager from e.g. your ~/.xsession:

xss-lock -- slock &

exec stumpwm

In this example, xss-lock uses slock to do the actual locking of the screen when it
determines it’s appropriate, like when you suspend your device.

For slock to be allowed to be a screen locker for the graphical session, it needs to be
made setuid-root so it can authenticate users, and it needs a PAM service. This can be
achieved by adding the following service to your config.scm:

(service screen-locker-services-type

(screen-locker-configuration

(name "slock")

(program (file-append slock "/bin/slock"))))

If you manually lock your screen, e.g. by directly calling slock when you want to lock
your screen but not suspend it, it’s a good idea to notify xss-lock about this so no confusion
occurs. This can be done by executing xset s activate immediately before you execute
slock.

https://www.mankier.com/1/xss-lock


Chapter 3: System Configuration 35

3.8 Running Guix on a Linode Server

To run Guix on a server hosted by Linode (https://www.linode.com), start with a rec-
ommended Debian server. We recommend using the default distro as a way to bootstrap
Guix. Create your SSH keys.

ssh-keygen

Be sure to add your SSH key for easy login to the remote server. This is trivially done
via Linode’s graphical interface for adding SSH keys. Go to your profile and click add SSH
Key. Copy into it the output of:

cat ~/.ssh/<username>_rsa.pub

Power the Linode down.

In the Linode’s Storage tab, resize the Debian disk to be smaller. 30 GB free space is
recommended. Then click "Add a disk", and fill out the form with the following:

• Label: "Guix"

• Filesystem: ext4

• Set it to the remaining size

In the Configurations tab, press "Edit" on the default Debian profile. Under "Block
Device Assignment" click "Add a Device". It should be /dev/sdc and you can select the
"Guix" disk. Save Changes.

Now "Add a Configuration", with the following:

• Label: Guix

• Kernel:GRUB 2 (it’s at the bottom! This step is IMPORTANT!)

• Block device assignment:

• /dev/sda: Guix

• /dev/sdb: swap

• Root device: /dev/sda

• Turn off all the filesystem/boot helpers

Now power it back up, booting with the Debian configuration. Once it’s running, ssh to
your server via ssh root@<your-server-IP-here>. (You can find your server IP address
in your Linode Summary section.) Now you can run the "install guix from see Section
“Binary Installation” in GNU Guix" steps:

sudo apt-get install gpg

wget https://sv.gnu.org/people/viewgpg.php?user_id=15145 -qO - | gpg --import -

wget https://git.savannah.gnu.org/cgit/guix.git/plain/etc/guix-install.sh

chmod +x guix-install.sh

./guix-install.sh

guix pull

Now it’s time to write out a config for the server. The key information is below. Save
the resulting file as guix-config.scm.

(use-modules (gnu)

(guix modules))

(use-service-modules networking

https://www.linode.com


Chapter 3: System Configuration 36

ssh)

(use-package-modules admin

package-management

ssh

tls)

(operating-system

(host-name "my-server")

(timezone "America/New_York")

(locale "en_US.UTF-8")

;; This goofy code will generate the grub.cfg

;; without installing the grub bootloader on disk.

(bootloader (bootloader-configuration

(bootloader

(bootloader

(inherit grub-bootloader)

(installer #~(const #true))))))

(file-systems (cons (file-system

(device "/dev/sda")

(mount-point "/")

(type "ext4"))

%base-file-systems))

(swap-devices (list "/dev/sdb"))

(initrd-modules (cons "virtio_scsi" ; Needed to find the disk

%base-initrd-modules))

(users (cons (user-account

(name "janedoe")

(group "users")

;; Adding the account to the "wheel" group

;; makes it a sudoer.

(supplementary-groups '("wheel"))

(home-directory "/home/janedoe"))

%base-user-accounts))

(packages (cons* openssh-sans-x

%base-packages))

(services (cons*

(service dhcp-client-service-type)

(service openssh-service-type

(openssh-configuration

(openssh openssh-sans-x)



Chapter 3: System Configuration 37

(password-authentication? #false)

(authorized-keys

`(("janedoe" ,(local-file "janedoe_rsa.pub"))

("root" ,(local-file "janedoe_rsa.pub"))))))

%base-services)))

Replace the following fields in the above configuration:

(host-name "my-server") ; replace with your server name

; if you chose a linode server outside the U.S., then

; use tzselect to find a correct timezone string

(timezone "America/New_York") ; if needed replace timezone

(name "janedoe") ; replace with your username

("janedoe" ,(local-file "janedoe_rsa.pub")) ; replace with your ssh key

("root" ,(local-file "janedoe_rsa.pub")) ; replace with your ssh key

The last line in the above example lets you log into the server as root and set the initial
root password (see the note at the end of this recipe about root login). After you have done
this, you may delete that line from your configuration and reconfigure to prevent root login.

Copy your ssh public key (eg: ~/.ssh/id_rsa.pub) as <your-username-here>_rsa.pub
and put guix-config.scm in the same directory. In a new terminal run these commands.

sftp root@<remote server ip address>

put /path/to/files/<username>_rsa.pub .

put /path/to/files/guix-config.scm .

In your first terminal, mount the guix drive:

mkdir /mnt/guix

mount /dev/sdc /mnt/guix

Due to the way we set up the bootloader section of the guix-config.scm, only the grub
configuration file will be installed. So, we need to copy over some of the other GRUB stuff
already installed on the Debian system:

mkdir -p /mnt/guix/boot/grub

cp -r /boot/grub/* /mnt/guix/boot/grub/

Now initialize the Guix installation:

guix system init guix-config.scm /mnt/guix

Ok, power it down! Now from the Linode console, select boot and select "Guix".

Once it boots, you should be able to log in via SSH! (The server config will have changed
though.) You may encounter an error like:

$ ssh root@<server ip address>

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @@@@@@@@@@@@@@@@@@@@@@@@@@@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that a host key has just been changed.

The fingerprint for the ECDSA key sent by the remote host is

SHA256:0B+wp33w57AnKQuHCvQP0+ZdKaqYrI/kyU7CfVbS7R4.

Please contact your system administrator.

Add correct host key in /home/joshua/.ssh/known_hosts to get rid of this message.

Offending ECDSA key in /home/joshua/.ssh/known_hosts:3



Chapter 3: System Configuration 38

ECDSA host key for 198.58.98.76 has changed and you have requested strict checking.

Host key verification failed.

Either delete ~/.ssh/known_hosts file, or delete the offending line starting with your
server IP address.

Be sure to set your password and root’s password.

ssh root@<remote ip address>

passwd ; for the root password

passwd <username> ; for the user password

You may not be able to run the above commands at this point. If you have issues
remotely logging into your linode box via SSH, then you may still need to set your root and
user password initially by clicking on the “Launch Console” option in your linode. Choose
the “Glish” instead of “Weblish”. Now you should be able to ssh into the machine.

Hooray! At this point you can shut down the server, delete the Debian disk, and resize
the Guix to the rest of the size. Congratulations!

By the way, if you save it as a disk image right at this point, you’ll have an easy time
spinning up new Guix images! You may need to down-size the Guix image to 6144MB, to
save it as an image. Then you can resize it again to the max size.

3.9 Running Guix on a Kimsufi Server

To run Guix on a server hosted by Kimsufi (https://www.kimsufi.com/), click on the
netboot tab then select rescue64-pro and restart.

OVH will email you the credentials required to ssh into a Debian system.

Now you can run the "install guix from see Section “Binary Installation” in GNU Guix"
steps:

wget https://git.savannah.gnu.org/cgit/guix.git/plain/etc/guix-install.sh

chmod +x guix-install.sh

./guix-install.sh

guix pull

Partition the drives and format them, first stop the raid array:

mdadm --stop /dev/md127

mdadm --zero-superblock /dev/sda2 /dev/sdb2

Then wipe the disks and set up the partitions, we will create a RAID 1 array.

wipefs -a /dev/sda

wipefs -a /dev/sdb

parted /dev/sda --align=opt -s -m -- mklabel gpt

parted /dev/sda --align=opt -s -m -- \

mkpart bios_grub 1049kb 512MiB \

set 1 bios_grub on

parted /dev/sda --align=opt -s -m -- \

mkpart primary 512MiB -512MiB

set 2 raid on

parted /dev/sda --align=opt -s -m -- mkpart primary linux-swap 512MiB 100%

https://www.kimsufi.com/


Chapter 3: System Configuration 39

parted /dev/sdb --align=opt -s -m -- mklabel gpt

parted /dev/sdb --align=opt -s -m -- \

mkpart bios_grub 1049kb 512MiB \

set 1 bios_grub on

parted /dev/sdb --align=opt -s -m -- \

mkpart primary 512MiB -512MiB \

set 2 raid on

parted /dev/sdb --align=opt -s -m -- mkpart primary linux-swap 512MiB 100%

Create the array:

mdadm --create /dev/md127 --level=1 --raid-disks=2 \

--metadata=0.90 /dev/sda2 /dev/sdb2

Now create file systems on the relevant partitions, first the boot partitions:

mkfs.ext4 /dev/sda1

mkfs.ext4 /dev/sdb1

Then the root partition:

mkfs.ext4 /dev/md127

Initialize the swap partitions:

mkswap /dev/sda3

swapon /dev/sda3

mkswap /dev/sdb3

swapon /dev/sdb3

Mount the guix drive:

mkdir /mnt/guix

mount /dev/md127 /mnt/guix

Now is time to write an operating system declaration os.scm file; here is a sample:

(use-modules (gnu) (guix))

(use-service-modules networking ssh vpn virtualization sysctl admin mcron)

(use-package-modules ssh tls tmux vpn virtualization)

(operating-system

(host-name "kimsufi")

(bootloader (bootloader-configuration

(bootloader grub-bootloader)

(targets (list "/dev/sda" "/dev/sdb"))

(terminal-outputs '(console))))

;; Add a kernel module for RAID-1 (aka. "mirror").

(initrd-modules (cons* "raid1" %base-initrd-modules))

(mapped-devices

(list (mapped-device

(source (list "/dev/sda2" "/dev/sdb2"))



Chapter 3: System Configuration 40

(target "/dev/md127")

(type raid-device-mapping))))

(swap-devices

(list (swap-space

(target "/dev/sda3"))

(swap-space

(target "/dev/sdb3"))))

(issue

;; Default contents for /etc/issue.

"\

This is the GNU system at Kimsufi. Welcome.\n")

(file-systems (cons* (file-system

(mount-point "/")

(device "/dev/md127")

(type "ext4")

(dependencies mapped-devices))

%base-file-systems))

(users (cons (user-account

(name "guix")

(comment "guix")

(group "users")

(supplementary-groups '("wheel"))

(home-directory "/home/guix"))

%base-user-accounts))

(sudoers-file

(plain-file "sudoers" "\

root ALL=(ALL) ALL

%wheel ALL=(ALL) ALL

guix ALL=(ALL) NOPASSWD:ALL\n"))

;; Globally-installed packages.

(packages (cons* tmux gnutls wireguard-tools %base-packages))

(services

(cons*

(service static-networking-service-type

(list (static-networking

(addresses (list (network-address

(device "enp3s0")

(value "server-ip-address/24"))))

(routes (list (network-route

(destination "default")

(gateway "server-gateway"))))



Chapter 3: System Configuration 41

(name-servers '("213.186.33.99")))))

(service unattended-upgrade-service-type)

(service openssh-service-type

(openssh-configuration

(openssh openssh-sans-x)

(permit-root-login #f)

(authorized-keys

`(("guix" ,(plain-file "ssh-key-name.pub"

"ssh-public-key-content"))))))

(modify-services %base-services

(sysctl-service-type

config =>

(sysctl-configuration

(settings (append '(("net.ipv6.conf.all.autoconf" . "0")

("net.ipv6.conf.all.accept_ra" . "0"))

%default-sysctl-settings))))))))

Don’t forget to substitute the server-ip-address, server-gateway, ssh-key-name and ssh-
public-key-content variables with your own values.

The gateway is the last usable IP in your block so if you have a server with an IP of
‘37.187.79.10’ then its gateway will be ‘37.187.79.254’.

Transfer your operating system declaration os.scm file on the server via the scp or sftp
commands.

Now all that is left is to install Guix with a guix system init and restart.

However we first need to set up a chroot, because the root partition of the rescue system
is mounted on an aufs partition and if you try to install Guix it will fail at the GRUB install
step complaining about the canonical path of "aufs".

Install packages that will be used in the chroot:

guix install bash-static parted util-linux-with-udev coreutils guix

Then run the following to create directories needed for the chroot:

cd /mnt && \

mkdir -p bin etc gnu/store root/.guix-profile/ root/.config/guix/current \

var/guix proc sys dev

Copy the host resolv.conf in the chroot:

cp /etc/resolv.conf etc/

Mount block devices, the store and its database and the current guix config:

mount --rbind /proc /mnt/proc

mount --rbind /sys /mnt/sys

mount --rbind /dev /mnt/dev

mount --rbind /var/guix/ var/guix/

mount --rbind /gnu/store gnu/store/

mount --rbind /root/.config/ root/.config/

mount --rbind /root/.guix-profile/bin/ bin



Chapter 3: System Configuration 42

mount --rbind /root/.guix-profile root/.guix-profile/

Chroot in /mnt and install the system:

chroot /mnt/ /bin/bash

guix system init /root/os.scm /guix

Finally, from the web user interface (UI), change ‘netboot’ to ‘boot to disk’ and restart
(also from the web UI).

Wait a few minutes and try to ssh with ssh guix@server-ip-address> -i path-to-

your-ssh-key

You should have a Guix system up and running on Kimsufi; congratulations!

3.10 Setting up a bind mount

To bind mount a file system, one must first set up some definitions before the operating-
system section of the system definition. In this example we will bind mount a folder from a
spinning disk drive to /tmp, to save wear and tear on the primary SSD, without dedicating
an entire partition to be mounted as /tmp.

First, the source drive that hosts the folder we wish to bind mount should be defined,
so that the bind mount can depend on it.

(define source-drive ;; "source-drive" can be named anything you want.

(file-system

(device (uuid "UUID goes here"))

(mount-point "/path-to-spinning-disk-goes-here")

(type "ext4"))) ;; Make sure to set this to the appropriate type for your drive.

The source folder must also be defined, so that guix will know it’s not a regular block
device, but a folder.

(define (%source-directory) "/path-to-spinning-disk-goes-here/tmp") ;; "source-directory" can be named any valid variable name.

Finally, inside the file-systems definition, we must add the mount itself.

(file-systems (cons*

...<other drives omitted for clarity>...

source-drive ;; Must match the name you gave the source drive in the earlier definition.

(file-system

(device (%source-directory)) ;; Make sure "source-directory" matches your earlier definition.

(mount-point "/tmp")

(type "none") ;; We are mounting a folder, not a partition, so this type needs to be "none"

(flags '(bind-mount))

(dependencies (list source-drive)) ;; Ensure "source-drive" matches what you've named the variable for the drive.

)

...<other drives omitted for clarity>...

))



Chapter 3: System Configuration 43

3.11 Getting substitutes from Tor

Guix daemon can use a HTTP proxy to get substitutes, here we are configuring it to get
them via Tor.

Warning: Not all Guix daemon’s traffic will go through Tor! Only
HTTP/HTTPS will get proxied; FTP, Git protocol, SSH, etc connections will
still go through the clearnet. Again, this configuration isn’t foolproof some of
your traffic won’t get routed by Tor at all. Use it at your own risk.

Also note that the procedure described here applies only to package substitu-
tion. When you update your guix distribution with guix pull, you still need
to use torsocks if you want to route the connection to guix’s git repository
servers through Tor.

Guix’s substitute server is available as a Onion service, if you want to use it to get your
substitutes through Tor configure your system as follow:

(use-modules (gnu))

(use-service-module base networking)

(operating-system

...

(services

(cons

(service tor-service-type

(tor-configuration

(config-file (plain-file "tor-config"

"HTTPTunnelPort 127.0.0.1:9250"))))

(modify-services %base-services

(guix-service-type

config => (guix-configuration

(inherit config)

;; ci.guix.gnu.org's Onion service

(substitute-urls

"https://4zwzi66wwdaalbhgnix55ea3ab4pvvw66ll2ow53kjub6se4q2bclcyd.onion")

(http-proxy "http://localhost:9250")))))))

This will keep a tor process running that provides a HTTP CONNECT tunnel which will
be used by guix-daemon. The daemon can use other protocols than HTTP(S) to get remote
resources, request using those protocols won’t go through Tor since we are only setting a
HTTP tunnel here. Note that substitutes-urls is using HTTPS and not HTTP or it
won’t work, that’s a limitation of Tor’s tunnel; you may want to use privoxy instead to
avoid such limitations.

If you don’t want to always get substitutes through Tor but using it just some of the
times, then skip the guix-configuration. When you want to get a substitute from the
Tor tunnel run:

sudo herd set-http-proxy guix-daemon http://localhost:9250

guix build \

--substitute-urls=https://4zwzi66wwdaalbhgnix55ea3ab4pvvw66ll2ow53kjub6se4q2bclcyd.onion ...



Chapter 3: System Configuration 44

3.12 Setting up NGINX with Lua

NGINX could be extended with Lua scripts.

Guix provides NGINX service with ability to load Lua module and specific Lua packages,
and reply to requests by evaluating Lua scripts.

The following example demonstrates system definition with configuration to evaluate
index.lua Lua script on HTTP request to http://localhost/hello endpoint:

local shell = require "resty.shell"

local stdin = ""

local timeout = 1000 -- ms

local max_size = 4096 -- byte

local ok, stdout, stderr, reason, status =

shell.run([[/run/current-system/profile/bin/ls /tmp]], stdin, timeout, max_size)

ngx.say(stdout)

(use-modules (gnu))

(use-service-modules #;... web)

(use-package-modules #;... lua)

(operating-system

;; ...

(services

;; ...

(service nginx-service-type

(nginx-configuration

(modules

(list

(file-append nginx-lua-module "/etc/nginx/modules/ngx_http_lua_module.so")))

(lua-package-path (list lua-resty-core

lua-resty-lrucache

lua-resty-signal

lua-tablepool

lua-resty-shell))

(lua-package-cpath (list lua-resty-signal))

(server-blocks

(list (nginx-server-configuration

(server-name '("localhost"))

(listen '("80"))

(root "/etc")

(locations (list

(nginx-location-configuration

(uri "/hello")

(body (list #~(format #f "content_by_lua_file ~s;"

#$(local-file "index.lua"))))))))))))))

http://localhost/hello


Chapter 3: System Configuration 45

3.13 Music Server with Bluetooth Audio

MPD, the Music Player Daemon, is a flexible server-side application for playing music.
Client programs on different machines on the network — a mobile phone, a laptop, a
desktop workstation — can connect to it to control the playback of audio files from your
local music collection. MPD decodes the audio files and plays them back on one or many
outputs.

By default MPD will play to the default audio device. In the example below we make
things a little more interesting by setting up a headless music server. There will be no
graphical user interface, no Pulseaudio daemon, and no local audio output. Instead we will
configure MPD with two outputs: a bluetooth speaker and a web server to serve audio
streams to any streaming media player.

Bluetooth is often rather frustrating to set up. You will have to pair your Bluetooth
device and make sure that the device is automatically connected as soon as it powers on.
The Bluetooth system service returned by the bluetooth-service procedure provides the
infrastructure needed to set this up.

Reconfigure your system with at least the following services and packages:

(operating-system

;; ...

(packages (cons* bluez bluez-alsa

%base-packages))

(services

;; ...

(dbus-service #:services (list bluez-alsa))

(bluetooth-service #:auto-enable? #t)))

Start the bluetooth service and then use bluetoothctl to scan for Bluetooth devices.
Try to identify your Bluetooth speaker and pick out its device ID from the resulting list of
devices that is indubitably dominated by a baffling smorgasbord of your neighbors’ home
automation gizmos. This only needs to be done once:

$ bluetoothctl

[NEW] Controller 00:11:22:33:95:7F BlueZ 5.40 [default]

[bluetooth]# power on

[bluetooth]# Changing power on succeeded

[bluetooth]# agent on

[bluetooth]# Agent registered

[bluetooth]# default-agent

[bluetooth]# Default agent request successful

[bluetooth]# scan on

[bluetooth]# Discovery started

[CHG] Controller 00:11:22:33:95:7F Discovering: yes

[NEW] Device AA:BB:CC:A4:AA:CD My Bluetooth Speaker

[NEW] Device 44:44:FF:2A:20:DC My Neighbor's TV



Chapter 3: System Configuration 46

...

[bluetooth]# pair AA:BB:CC:A4:AA:CD

Attempting to pair with AA:BB:CC:A4:AA:CD

[CHG] Device AA:BB:CC:A4:AA:CD Connected: yes

[My Bluetooth Speaker]# [CHG] Device AA:BB:CC:A4:AA:CD UUIDs: 0000110b-0000-1000-8000-00xxxxxxxxxx

[CHG] Device AA:BB:CC:A4:AA:CD UUIDs: 0000110c-0000-1000-8000-00xxxxxxxxxx

[CHG] Device AA:BB:CC:A4:AA:CD UUIDs: 0000110e-0000-1000-8000-00xxxxxxxxxx

[CHG] Device AA:BB:CC:A4:AA:CD Paired: yes

Pairing successful

[CHG] Device AA:BB:CC:A4:AA:CD Connected: no

[bluetooth]#

[bluetooth]# trust AA:BB:CC:A4:AA:CD

[bluetooth]# [CHG] Device AA:BB:CC:A4:AA:CD Trusted: yes

Changing AA:BB:CC:A4:AA:CD trust succeeded

[bluetooth]#

[bluetooth]# connect AA:BB:CC:A4:AA:CD

Attempting to connect to AA:BB:CC:A4:AA:CD

[bluetooth]# [CHG] Device AA:BB:CC:A4:AA:CD RSSI: -63

[CHG] Device AA:BB:CC:A4:AA:CD Connected: yes

Connection successful

[My Bluetooth Speaker]# scan off

[CHG] Device AA:BB:CC:A4:AA:CD RSSI is nil

Discovery stopped

[CHG] Controller 00:11:22:33:95:7F Discovering: no

Congratulations, you can now automatically connect to your Bluetooth speaker!

It is now time to configure ALSA to use the bluealsa Bluetooth module, so that you
can define an ALSA pcm device corresponding to your Bluetooth speaker. For a head-
less server using bluealsa with a fixed Bluetooth device is likely simpler than configuring
Pulseaudio and its stream switching behavior. We configure ALSA by crafting a custom
alsa-configuration for the alsa-service-type. The configuration will declare a pcm

type bluealsa from the bluealsa module provided by the bluez-alsa package, and then
define a pcm device of that type for your Bluetooth speaker.

All that is left then is to make MPD send audio data to this ALSA device. We also add
a secondary MPD output that makes the currently played audio files available as a stream
through a web server on port 8080. When enabled a device on the network could listen
to the audio stream by connecting any capable media player to the HTTP server on port
8080, independent of the status of the Bluetooth speaker.

What follows is the outline of an operating-system declaration that should accomplish
the above-mentioned tasks:

(use-modules (gnu))



Chapter 3: System Configuration 47

(use-service-modules audio dbus sound #;... etc)

(use-package-modules audio linux #;... etc)

(operating-system

;; ...

(packages (cons* bluez bluez-alsa

%base-packages))

(services

;; ...

(service mpd-service-type

(mpd-configuration

(user "your-username")

(music-dir "/path/to/your/music")

(address "192.168.178.20")

(outputs (list (mpd-output

(type "alsa")

(name "MPD")

(extra-options

;; Use the same name as in the ALSA

;; configuration below.

'((device . "pcm.btspeaker"))))

(mpd-output

(type "httpd")

(name "streaming")

(enabled? #false)

(always-on? #true)

(tags? #true)

(mixer-type 'null)

(extra-options

'((encoder . "vorbis")

(port . "8080")

(bind-to-address . "192.168.178.20")

(max-clients . "0") ;no limit

(quality . "5.0")

(format . "44100:16:1"))))))))

(dbus-service #:services (list bluez-alsa))

(bluetooth-service #:auto-enable? #t)

(service alsa-service-type

(alsa-configuration

(pulseaudio? #false) ;we don't need it

(extra-options

#~(string-append "\

# Declare Bluetooth audio device type \"bluealsa\" from bluealsa module

pcm_type.bluealsa {

lib \"" #$(file-append bluez-alsa "/lib/alsa-lib/libasound_module_pcm_bluealsa.so") "\"

}

# Declare control device type \"bluealsa\" from the same module



Chapter 3: System Configuration 48

ctl_type.bluealsa {

lib \"" #$(file-append bluez-alsa "/lib/alsa-lib/libasound_module_ctl_bluealsa.so") "\"

}

# Define the actual Bluetooth audio device.

pcm.btspeaker {

type bluealsa

device \"AA:BB:CC:A4:AA:CD\" # unique device identifier

profile \"a2dp\"

}

# Define an associated controller.

ctl.btspeaker {

type bluealsa

}

"))))))

Enjoy the music with the MPD client of your choice or a media player capable of stream-
ing via HTTP!



49

4 Containers

The kernel Linux provides a number of shared facilities that are available to processes in the
system. These facilities include a shared view on the file system, other processes, network
devices, user and group identities, and a few others. Since Linux 3.19 a user can choose
to unshare some of these shared facilities for selected processes, providing them (and their
child processes) with a different view on the system.

A process with an unshared mount namespace, for example, has its own view on the
file system — it will only be able to see directories that have been explicitly bound in its
mount namespace. A process with its own proc namespace will consider itself to be the
only process running on the system, running as PID 1.

Guix uses these kernel features to provide fully isolated environments and even complete
Guix System containers, lightweight virtual machines that share the host system’s kernel.
This feature comes in especially handy when using Guix on a foreign distribution to prevent
interference from foreign libraries or configuration files that are available system-wide.

4.1 Guix Containers

The easiest way to get started is to use guix shell with the --container option. See
Section “Invoking guix shell” inGNUGuix Reference Manual for a reference of valid options.

The following snippet spawns a minimal shell process with most namespaces unshared
from the system. The current working directory is visible to the process, but anything else
on the file system is unavailable. This extreme isolation can be very useful when you want
to rule out any sort of interference from environment variables, globally installed libraries,
or configuration files.

guix shell --container

It is a bleak environment, barren, desolate. You will find that not even the GNU coreutils
are available here, so to explore this deserted wasteland you need to use built-in shell
commands. Even the usually gigantic /gnu/store directory is reduced to a faint shadow of
itself.

$ echo /gnu/store/*

/gnu/store/...-gcc-10.3.0-lib

/gnu/store/...-glibc-2.33

/gnu/store/...-bash-static-5.1.8

/gnu/store/...-ncurses-6.2.20210619

/gnu/store/...-bash-5.1.8

/gnu/store/...-profile

/gnu/store/...-readline-8.1.1

There isn’t much you can do in an environment like this other than exiting it. You can
use ^D or exit to terminate this limited shell environment.

You can make other directories available inside of the container environment; use
--expose=DIRECTORY to bind-mount the given directory as a read-only location inside the
container, or use --share=DIRECTORY to make the location writable. With an additional
mapping argument after the directory name you can control the name of the directory



Chapter 4: Containers 50

inside the container. In the following example we map /etc on the host system to
/the/host/etc inside a container in which the GNU coreutils are installed.

$ guix shell --container --share=/etc=/the/host/etc coreutils

$ ls /the/host/etc

Similarly, you can prevent the current working directory from being mapped into the
container with the --no-cwd option. Another good idea is to create a dedicated directory
that will serve as the container’s home directory, and spawn the container shell from that
directory.

On a foreign system a container environment can be used to compile software that cannot
possibly be linked with system libraries or with the system’s compiler toolchain. A common
use-case in a research context is to install packages from within an R session. Outside
of a container environment there is a good chance that the foreign compiler toolchain
and incompatible system libraries are found first, resulting in incompatible binaries that
cannot be used by R. In a container shell this problem disappears, as system libraries and
executables simply aren’t available due to the unshared mount namespace.

Let’s take a comprehensive manifest providing a comfortable development environment
for use with R:

(specifications->manifest

(list "r-minimal"

;; base packages

"bash-minimal"

"glibc-locales"

"nss-certs"

;; Common command line tools lest the container is too empty.

"coreutils"

"grep"

"which"

"wget"

"sed"

;; R markdown tools

"pandoc"

;; Toolchain and common libraries for "install.packages"

"gcc-toolchain@10"

"gfortran-toolchain"

"gawk"

"tar"

"gzip"

"unzip"

"make"

"cmake"

"pkg-config"

"cairo"



Chapter 4: Containers 51

"libxt"

"openssl"

"curl"

"zlib"))

Let’s use this to run R inside a container environment. For convenience we share the
net namespace to use the host system’s network interfaces. Now we can build R packages
from source the traditional way without having to worry about ABI mismatch or incom-
patibilities.

$ guix shell --container --network --manifest=manifest.scm -- R

R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"

Copyright (C) 2022 The R Foundation for Statistical Computing

...

> e <- Sys.getenv("GUIX_ENVIRONMENT")

> Sys.setenv(GIT_SSL_CAINFO=paste0(e, "/etc/ssl/certs/ca-certificates.crt"))

> Sys.setenv(SSL_CERT_FILE=paste0(e, "/etc/ssl/certs/ca-certificates.crt"))

> Sys.setenv(SSL_CERT_DIR=paste0(e, "/etc/ssl/certs"))

> install.packages("Cairo", lib=paste0(getwd()))

...

* installing *source* package 'Cairo' ...

...

* DONE (Cairo)

The downloaded source packages are in

'/tmp/RtmpCuwdwM/downloaded_packages'

> library("Cairo", lib=getwd())

> # success!

Using container shells is fun, but they can become a little cumbersome when you want
to go beyond just a single interactive process. Some tasks become a lot easier when they
sit on the rock solid foundation of a proper Guix System and its rich set of system services.
The next section shows you how to launch a complete Guix System inside of a container.

4.2 Guix System Containers

The Guix System provides a wide array of interconnected system services that are configured
declaratively to form a dependable stateless GNU System foundation for whatever tasks
you throw at it. Even when using Guix on a foreign distribution you can benefit from
the design of Guix System by running a system instance as a container. Using the same
kernel features of unshared namespaces mentioned in the previous section, the resulting
Guix System instance is isolated from the host system and only shares file system locations
that you explicitly declare.

A Guix System container differs from the shell process created by guix shell

--container in a number of important ways. While in a container shell the containerized
process is a Bash shell process, a Guix System container runs the Shepherd as PID 1. In
a system container all system services (see Section “Services” in GNU Guix Reference
Manual) are set up just as they would be on a Guix System in a virtual machine or on



Chapter 4: Containers 52

bare metal—this includes daemons managed by the GNU Shepherd (see Section “Shepherd
Services” in GNU Guix Reference Manual) as well as other kinds of extensions to the
operating system (see Section “Service Composition” in GNU Guix Reference Manual).

The perceived increase in complexity of running a Guix System container is easily jus-
tified when dealing with more complex applications that have higher or just more rigid
requirements on their execution contexts—configuration files, dedicated user accounts, di-
rectories for caches or log files, etc. In Guix System the demands of this kind of software
are satisfied through the deployment of system services.

4.2.1 A Database Container

A good example might be a PostgreSQL database server. Much of the complexity of setting
up such a database server is encapsulated in this deceptively short service declaration:

(service postgresql-service-type

(postgresql-configuration

(postgresql postgresql-14)))

A complete operating system declaration for use with a Guix System container would
look something like this:

(use-modules (gnu))

(use-package-modules databases)

(use-service-modules databases)

(operating-system

(host-name "container")

(timezone "Europe/Berlin")

(file-systems (cons (file-system

(device (file-system-label "does-not-matter"))

(mount-point "/")

(type "ext4"))

%base-file-systems))

(bootloader (bootloader-configuration

(bootloader grub-bootloader)

(targets '("/dev/sdX"))))

(services

(cons* (service postgresql-service-type

(postgresql-configuration

(postgresql postgresql-14)

(config-file

(postgresql-config-file

(log-destination "stderr")

(hba-file

(plain-file "pg_hba.conf"

"\

local all all trust

host all all 10.0.0.1/32 trust"))

(extra-config

'(("listen_addresses" "*")



Chapter 4: Containers 53

("log_directory" "/var/log/postgresql")))))))

(service postgresql-role-service-type

(postgresql-role-configuration

(roles

(list (postgresql-role

(name "test")

(create-database? #t))))))

%base-services)))

With postgresql-role-service-type we define a role “test” and create a match-
ing database, so that we can test right away without any further manual setup. The
postgresql-config-file settings allow a client from IP address 10.0.0.1 to connect with-
out requiring authentication—a bad idea in production systems, but convenient for this
example.

Let’s build a script that will launch an instance of this Guix System as a container.
Write the operating-system declaration above to a file os.scm and then use guix system

container to build the launcher. (see Section “Invoking guix system” in GNU Guix Ref-
erence Manual).

$ guix system container os.scm

The following derivations will be built:

/gnu/store/...-run-container.drv

...

building /gnu/store/...-run-container.drv...

/gnu/store/...-run-container

Now that we have a launcher script we can run it to spawn the new system with a
running PostgreSQL service. Note that due to some as yet unresolved limitations we need
to run the launcher as the root user, for example with sudo.

$ sudo /gnu/store/...-run-container

system container is running as PID 5983

...

Background the process with Ctrl-z followed by bg. Note the process ID in the output;
we will need it to connect to the container later. You know what? Let’s try attaching to
the container right now. We will use nsenter, a tool provided by the util-linux package:

$ guix shell util-linux

$ sudo nsenter -a -t 5983

root@container /# pgrep -a postgres

49 /gnu/store/...-postgresql-14.4/bin/postgres -D /var/lib/postgresql/data --config-file=/gnu/store/...-postgresql.conf -p 5432

51 postgres: checkpointer

52 postgres: background writer

53 postgres: walwriter

54 postgres: autovacuum launcher

55 postgres: stats collector

56 postgres: logical replication launcher

root@container /# exit

The PostgreSQL service is running in the container!



Chapter 4: Containers 54

4.2.2 Container Networking

What good is a Guix System running a PostgreSQL database service as a container when
we can only talk to it with processes originating in the container? It would be much better
if we could talk to the database over the network.

The easiest way to do this is to create a pair of connected virtual Ethernet devices
(known as veth). We move one of the devices (ceth-test) into the net namespace of the
container and leave the other end (veth-test) of the connection on the host system.

pid=5983

ns="guix-test"

host="veth-test"

client="ceth-test"

# Attach the new net namespace "guix-test" to the container PID.

sudo ip netns attach $ns $pid

# Create the pair of devices

sudo ip link add $host type veth peer name $client

# Move the client device into the container's net namespace

sudo ip link set $client netns $ns

Then we configure the host side:

sudo ip link set $host up

sudo ip addr add 10.0.0.1/24 dev $host

. . . and then we configure the client side:

sudo ip netns exec $ns ip link set lo up

sudo ip netns exec $ns ip link set $client up

sudo ip netns exec $ns ip addr add 10.0.0.2/24 dev $client

At this point the host can reach the container at IP address 10.0.0.2, and the container
can reach the host at IP 10.0.0.1. This is all we need to talk to the database server inside
the container from the host system on the outside.

$ psql -h 10.0.0.2 -U test

psql (14.4)

Type "help" for help.

test=> CREATE TABLE hello (who TEXT NOT NULL);

CREATE TABLE

test=> INSERT INTO hello (who) VALUES ('world');

INSERT 0 1

test=> SELECT * FROM hello;

who

-------

world

(1 row)

Now that we’re done with this little demonstration let’s clean up:

sudo kill $pid



Chapter 4: Containers 55

sudo ip netns del $ns

sudo ip link del $host



56

5 Virtual Machines

Guix can produce disk images (see Section “Invoking guix system” in GNU Guix Reference
Manual) that can be used with virtual machines solutions such as virt-manager, GNOME
Boxes or the more bare QEMU, among others.

This chapter aims to provide hands-on, practical examples that relates to the usage and
configuration of virtual machines on a Guix System.

5.1 Network bridge for QEMU

By default, QEMU uses a so-called “user mode” host network back-end, which is convenient
as it does not require any configuration. Unfortunately, it is also quite limited. In this mode,
the guest VM (virtual machine) can access the network the same way the host would, but
it cannot be reached from the host. Additionally, since the QEMU user networking mode
relies on ICMP, ICMP-based networking tools such as ping do not work in this mode.
Thus, it is often desirable to configure a network bridge, which enables the guest to fully
participate in the network. This is necessary, for example, when the guest is to be used as
a server.

5.1.1 Creating a network bridge interface

There are many ways to create a network bridge. The following command shows how to use
NetworkManager and its nmcli command line interface (CLI) tool, which should already
be available if your operating system declaration is based on one of the desktop templates:

# nmcli con add type bridge con-name br0 ifname br0

To have this bridge be part of your network, you must associate your network bridge
with the Ethernet interface used to connect with the network. Assuming your interface is
named ‘enp2s0’, the following command can be used to do so:

# nmcli con add type bridge-slave ifname enp2s0 master br0

Important: Only Ethernet interfaces can be added to a bridge. For wireless
interfaces, consider the routed network approach detailed in See Section 5.2
[Routed network for libvirt], page 57.

By default, the network bridge will allow your guests to obtain their IP address via
DHCP, if available on your local network. For simplicity, this is what we will use here. To
easily find the guests, they can be configured to advertise their host names via mDNS.

5.1.2 Configuring the QEMU bridge helper script

QEMU comes with a helper program to conveniently make use of a network bridge interface
as an unprivileged user see Section “Network options” in QEMU Documentation. The
binary must be made setuid root for proper operation; this can be achieved by adding it to
the setuid-programs field of your (host) operating-system definition, as shown below:

(setuid-programs

(cons (file-append qemu "/libexec/qemu-bridge-helper")

%setuid-programs))

The file /etc/qemu/bridge.conf must also be made to allow the bridge interface, as
the default is to deny all. Add the following to your list of services to do so:

(extra-special-file "/etc/qemu/host.conf" "allow br0\n")



Chapter 5: Virtual Machines 57

5.1.3 Invoking QEMU with the right command line options

When invoking QEMU, the following options should be provided so that the network bridge
is used, after having selected a unique MAC address for the guest.

Important: By default, a single MAC address is used for all guests, unless
provided. Failing to provide different MAC addresses to each virtual machine
making use of the bridge would cause networking issues.

$ qemu-system-x86_64 [...] \

-device virtio-net-pci,netdev=user0,mac=XX:XX:XX:XX:XX:XX \

-netdev bridge,id=user0,br=br0 \

[...]

To generate MAC addresses that have the QEMU registered prefix, the following snippet
can be employed:

mac_address="52:54:00:$(dd if=/dev/urandom bs=512 count=1 2>/dev/null \

| md5sum \

| sed -E 's/^(..)(..)(..).*$/\1:\2:\3/')"

echo $mac_address

5.1.4 Networking issues caused by Docker

If you use Docker on your machine, you may experience connectivity issues when attempting
to use a network bridge, which are caused by Docker also relying on network bridges and
configuring its own routing rules. The solution is add the following iptables snippet to
your operating-system declaration:

(service iptables-service-type

(iptables-configuration

(ipv4-rules (plain-file "iptables.rules" "\

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

-A FORWARD -i br0 -o br0 -j ACCEPT

COMMIT

"))

5.2 Routed network for libvirt

If the machine hosting your virtual machines is connected wirelessly to the network, you
won’t be able to use a true network bridge as explained in the preceding section (see Sec-
tion 5.1 [Network bridge for QEMU], page 56). In this case, the next best option is to use a
virtual bridge with static routing and to configure a libvirt-powered virtual machine to use
it (via the virt-manager GUI for example). This is similar to the default mode of opera-
tion of QEMU/libvirt, except that instead of using NAT (Network Address Translation), it
relies on static routes to join the VM (virtual machine) IP address to the LAN (local area
network). This provides two-way connectivity to and from the virtual machine, which is
needed for exposing services hosted on the virtual machine.



Chapter 5: Virtual Machines 58

5.2.1 Creating a virtual network bridge

A virtual network bridge consists of a few components/configurations, such as a TUN
(network tunnel) interface, DHCP server (dnsmasq) and firewall rules (iptables). The virsh
command, provided by the libvirt package, makes it very easy to create a virtual bridge.
You first need to choose a network subnet for your virtual bridge; if your home LAN is
in the ‘192.168.1.0/24’ network, you could opt to use e.g. ‘192.168.2.0/24’. Define an
XML file, e.g. /tmp/virbr0.xml, containing the following:

<network>

<name>virbr0</name>

<bridge name="virbr0" />

<forward mode="route"/>

<ip address="192.168.2.0" netmask="255.255.255.0">

<dhcp>

<range start="192.168.2.1" end="192.168.2.254"/>

</dhcp>

</ip>

</network>

Then create and configure the interface using the virsh command, as root:

virsh net-define /tmp/virbr0.xml

virsh net-autostart virbr0

virsh net-start virbr0

The ‘virbr0’ interface should now be visible e.g. via the ‘ip address’ command. It will
be automatically started every time your libvirt virtual machine is started.

5.2.2 Configuring the static routes for your virtual bridge

If you configured your virtual machine to use your newly created ‘virbr0’ virtual bridge
interface, it should already receive an IP via DHCP such as ‘192.168.2.15’ and be reachable
from the server hosting it, e.g. via ‘ping 192.168.2.15’. There’s one last configuration
needed so that the VM can reach the external network: adding static routes to the network’s
router.

In this example, the LAN network is ‘192.168.1.0/24’ and the router configuration
web page may be accessible via e.g. the http://192.168.1.1 page. On a router running
the libreCMC (https://librecmc.org/) firmware, you would navigate to the Network →
Static Routes page (https://192.168.1.1/cgi-bin/luci/admin/network/routes), and
you would add a new entry to the ‘Static IPv4 Routes’ with the following information:

‘Interface’
lan

‘Target’ 192.168.2.0

‘IPv4-Netmask’
255.255.255.0

‘IPv4-Gateway’
server-ip

‘Route type’
unicast

http://192.168.1.1
https://librecmc.org/
https://192.168.1.1/cgi-bin/luci/admin/network/routes


Chapter 5: Virtual Machines 59

where server-ip is the IP address of the machine hosting the VMs, which should be static.

After saving/applying this new static route, external connectivity should work from
within your VM; you can e.g. run ‘ping gnu.org’ to verify that it functions correctly.



60

6 Advanced package management

Guix is a functional package manager that offers many features beyond what more tradi-
tional package managers can do. To the uninitiated, those features might not have obvious
use cases at first. The purpose of this chapter is to demonstrate some advanced package
management concepts.

see Section “Package Management” in GNU Guix Reference Manual for a complete
reference.

6.1 Guix Profiles in Practice

Guix provides a very useful feature that may be quite foreign to newcomers: profiles. They
are a way to group package installations together and all users on the same system are free
to use as many profiles as they want.

Whether you’re a developer or not, you may find that multiple profiles bring you great
power and flexibility. While they shift the paradigm somewhat compared to traditional
package managers, they are very convenient to use once you’ve understood how to set them
up.

Note: This section is an opinionated guide on the use of multiple profiles. It
predates guix shell and its fast profile cache (see Section “Invoking guix shell”
in GNU Guix Reference Manual).

In many cases, you may find that using guix shell to set up the environment
you need, when you need it, is less work that maintaining a dedicated profile.
Your call!

If you are familiar with Python’s ‘virtualenv’, you can think of a profile as a kind
of universal ‘virtualenv’ that can hold any kind of software whatsoever, not just Python
software. Furthermore, profiles are self-sufficient: they capture all the runtime dependencies
which guarantees that all programs within a profile will always work at any point in time.

Multiple profiles have many benefits:

• Clean semantic separation of the various packages a user needs for different contexts.

• Multiple profiles can be made available into the environment either on login or within
a dedicated shell.

• Profiles can be loaded on demand. For instance, the user can use multiple shells, each
of them running different profiles.

• Isolation: Programs from one profile will not use programs from the other, and the
user can even install different versions of the same programs to the two profiles without
conflict.

• Deduplication: Profiles share dependencies that happens to be the exact same. This
makes multiple profiles storage-efficient.

• Reproducible: when used with declarative manifests, a profile can be fully specified by
the Guix commit that was active when it was set up. This means that the exact same
profile can be set up anywhere and anytime (https://guix.gnu.org/blog/2018/
multi-dimensional-transactions-and-rollbacks-oh-my/), with just the commit
information. See the section on Section 6.1.5 [Reproducible profiles], page 64.

https://guix.gnu.org/blog/2018/multi-dimensional-transactions-and-rollbacks-oh-my/
https://guix.gnu.org/blog/2018/multi-dimensional-transactions-and-rollbacks-oh-my/


Chapter 6: Advanced package management 61

• Easier upgrades and maintenance: Multiple profiles make it easy to keep package list-
ings at hand and make upgrades completely frictionless.

Concretely, here follows some typical profiles:

• The dependencies of a project you are working on.

• Your favourite programming language libraries.

• Laptop-specific programs (like ‘powertop’) that you don’t need on a desktop.

• TEXlive (this one can be really useful when you need to install just one package for this
one document you’ve just received over email).

• Games.

Let’s dive in the set up!

6.1.1 Basic setup with manifests

A Guix profile can be set up via a manifest. A manifest is a snippet of Scheme code that
specifies the set of packages you want to have in your profile; it looks like this:

(specifications->manifest

'("package-1"

;; Version 1.3 of package-2.

"package-2@1.3"

;; The "lib" output of package-3.

"package-3:lib"

; ...

"package-N"))

See Section “Writing Manifests” in GNU Guix Reference Manual, for more information
about the syntax.

We can create a manifest specification per profile and install them this way:

GUIX_EXTRA_PROFILES=$HOME/.guix-extra-profiles

mkdir -p "$GUIX_EXTRA_PROFILES"/my-project # if it does not exist yet

guix package --manifest=/path/to/guix-my-project-manifest.scm --profile="$GUIX_EXTRA_PROFILES"/my-project/my-project

Here we set an arbitrary variable ‘GUIX_EXTRA_PROFILES’ to point to the directory where
we will store our profiles in the rest of this article.

Placing all your profiles in a single directory, with each profile getting its own sub-
directory, is somewhat cleaner. This way, each sub-directory will contain all the sym-
links for precisely one profile. Besides, “looping over profiles” becomes obvious from any
programming language (e.g. a shell script) by simply looping over the sub-directories of
‘$GUIX_EXTRA_PROFILES’.

Note that it’s also possible to loop over the output of

guix package --list-profiles

although you’ll probably have to filter out ~/.config/guix/current.

To enable all profiles on login, add this to your ~/.bash_profile (or similar):

for i in $GUIX_EXTRA_PROFILES/*; do

profile=$i/$(basename "$i")

if [ -f "$profile"/etc/profile ]; then



Chapter 6: Advanced package management 62

GUIX_PROFILE="$profile"

. "$GUIX_PROFILE"/etc/profile

fi

unset profile

done

Note to Guix System users: the above reflects how your default profile ~/.guix-profile
is activated from /etc/profile, that latter being loaded by ~/.bashrc by default.

You can obviously choose to only enable a subset of them:

for i in "$GUIX_EXTRA_PROFILES"/my-project-1 "$GUIX_EXTRA_PROFILES"/my-project-2; do

profile=$i/$(basename "$i")

if [ -f "$profile"/etc/profile ]; then

GUIX_PROFILE="$profile"

. "$GUIX_PROFILE"/etc/profile

fi

unset profile

done

When a profile is off, it’s straightforward to enable it for an individual shell without
"polluting" the rest of the user session:

GUIX_PROFILE="path/to/my-project" ; . "$GUIX_PROFILE"/etc/profile

The key to enabling a profile is to source its ‘etc/profile’ file. This file contains
shell code that exports the right environment variables necessary to activate the software
contained in the profile. It is built automatically by Guix and meant to be sourced. It
contains the same variables you would get if you ran:

guix package --search-paths=prefix --profile=$my_profile"

Once again, see (see Section “Invoking guix package” in GNU Guix Reference Manual)
for the command line options.

To upgrade a profile, simply install the manifest again:

guix package -m /path/to/guix-my-project-manifest.scm -p "$GUIX_EXTRA_PROFILES"/my-project/my-project

To upgrade all profiles, it’s easy enough to loop over them. For instance, assuming your
manifest specifications are stored in ~/.guix-manifests/guix-$profile-manifest.scm,
with ‘$profile’ being the name of the profile (e.g. "project1"), you could do the following
in Bourne shell:

for profile in "$GUIX_EXTRA_PROFILES"/*; do

guix package --profile="$profile" --manifest="$HOME/.guix-manifests/guix-$profile-manifest.scm"

done

Each profile has its own generations:

guix package -p "$GUIX_EXTRA_PROFILES"/my-project/my-project --list-generations

You can roll-back to any generation of a given profile:

guix package -p "$GUIX_EXTRA_PROFILES"/my-project/my-project --switch-generations=17

Finally, if you want to switch to a profile without inheriting from the current environ-
ment, you can activate it from an empty shell:

env -i $(which bash) --login --noprofile --norc

. my-project/etc/profile



Chapter 6: Advanced package management 63

6.1.2 Required packages

Activating a profile essentially boils down to exporting a bunch of environmental variables.
This is the role of the ‘etc/profile’ within the profile.

Note: Only the environmental variables of the packages that consume them will be set.

For instance, ‘MANPATH’ won’t be set if there is no consumer application for man pages
within the profile. So if you need to transparently access man pages once the profile is
loaded, you’ve got two options:

• Either export the variable manually, e.g.

export MANPATH=/path/to/profile${MANPATH:+:}$MANPATH

• Or include ‘man-db’ to the profile manifest.

The same is true for ‘INFOPATH’ (you can install ‘info-reader’), ‘PKG_CONFIG_PATH’
(install ‘pkg-config’), etc.

6.1.3 Default profile

What about the default profile that Guix keeps in ~/.guix-profile?

You can assign it the role you want. Typically you would install the manifest of the
packages you want to use all the time.

Alternatively, you could keep it “manifest-less” for throw-away packages that you would
just use for a couple of days. This way makes it convenient to run

guix install package-foo

guix upgrade package-bar

without having to specify the path to a profile.

6.1.4 The benefits of manifests

Manifests let you declare the set of packages you’d like to have in a profile (see Section
“Writing Manifests” in GNU Guix Reference Manual). They are a convenient way to keep
your package lists around and, say, to synchronize them across multiple machines using a
version control system.

A common complaint about manifests is that they can be slow to install when they
contain large number of packages. This is especially cumbersome when you just want get
an upgrade for one package within a big manifest.

This is one more reason to use multiple profiles, which happen to be just perfect to break
down manifests into multiple sets of semantically connected packages. Using multiple, small
profiles provides more flexibility and usability.

Manifests come with multiple benefits. In particular, they ease maintenance:

• When a profile is set up from a manifest, the manifest itself is self-sufficient to keep a
“package listing” around and reinstall the profile later or on a different system. For ad-
hoc profiles, we would need to generate a manifest specification manually and maintain
the package versions for the packages that don’t use the default version.

• guix package --upgrade always tries to update the packages that have propagated
inputs, even if there is nothing to do. Guix manifests remove this problem.



Chapter 6: Advanced package management 64

• When partially upgrading a profile, conflicts may arise (due to diverging dependencies
between the updated and the non-updated packages) and they can be annoying to
resolve manually. Manifests remove this problem altogether since all packages are
always upgraded at once.

• As mentioned above, manifests allow for reproducible profiles, while the imperative
guix install, guix upgrade, etc. do not, since they produce different profiles every
time even when they hold the same packages. See the related discussion on the matter
(https://issues.guix.gnu.org/issue/33285).

• Manifest specifications are usable by other ‘guix’ commands. For example, you can
run guix weather -m manifest.scm to see how many substitutes are available, which
can help you decide whether you want to try upgrading today or wait a while. Another
example: you can run guix pack -m manifest.scm to create a pack containing all the
packages in the manifest (and their transitive references).

• Finally, manifests have a Scheme representation, the ‘<manifest>’ record type. They
can be manipulated in Scheme and passed to the various Guix APIs (https://en.
wikipedia.org/wiki/Api).

It’s important to understand that while manifests can be used to declare profiles, they
are not strictly equivalent: profiles have the side effect that they “pin” packages in the
store, which prevents them from being garbage-collected (see Section “Invoking guix gc”
in GNU Guix Reference Manual) and ensures that they will still be available at any point
in the future. The guix shell command also protects recently-used profiles from garbage
collection; profiles that have not been used for a while may be garbage-collected though,
along with the packages they refer to.

To be 100% sure that a given profile will never be collected, install the manifest to a pro-
file and use GUIX_PROFILE=/the/profile; . "$GUIX_PROFILE"/etc/profile as explained
above: this guarantees that our hacking environment will be available at all times.

Security warning: While keeping old profiles around can be convenient, keep in mind
that outdated packages may not have received the latest security fixes.

6.1.5 Reproducible profiles

To reproduce a profile bit-for-bit, we need two pieces of information:

• a manifest (see Section “Writing Manifests” in GNU Guix Reference Manual);

• a Guix channel specification (see Section “Replicating Guix” in GNU Guix Reference
Manual).

Indeed, manifests alone might not be enough: different Guix versions (or different chan-
nels) can produce different outputs for a given manifest.

You can output the Guix channel specification with ‘guix describe

--format=channels’ (see Section “Invoking guix describe” in GNU Guix Refer-
ence Manual). Save this to a file, say ‘channel-specs.scm’.

On another computer, you can use the channel specification file and the manifest to
reproduce the exact same profile:

GUIX_EXTRA_PROFILES=$HOME/.guix-extra-profiles

GUIX_EXTRA=$HOME/.guix-extra

https://issues.guix.gnu.org/issue/33285
https://issues.guix.gnu.org/issue/33285
https://en.wikipedia.org/wiki/Api
https://en.wikipedia.org/wiki/Api


Chapter 6: Advanced package management 65

mkdir -p "$GUIX_EXTRA"/my-project

guix pull --channels=channel-specs.scm --profile="$GUIX_EXTRA/my-project/guix"

mkdir -p "$GUIX_EXTRA_PROFILES/my-project"

"$GUIX_EXTRA"/my-project/guix/bin/guix package --manifest=/path/to/guix-my-project-manifest.scm --profile="$GUIX_EXTRA_PROFILES"/my-project/my-project

It’s safe to delete the Guix channel profile you’ve just installed with the channel speci-
fication, the project profile does not depend on it.



66

7 Software Development

Guix is a handy tool for developers; guix shell, in particular, gives a standalone develop-
ment environment for your package, no matter what language(s) it’s written in (see Section
“Invoking guix shell” in GNU Guix Reference Manual). To benefit from it, you have to
initially write a package definition and have it either in Guix proper, or in a channel, or
directly in your project’s source tree as a guix.scm file. This last option is appealing: all
developers have to do to get set up is clone the project’s repository and run guix shell,
with no arguments.

Development needs go beyond development environments though. How can develop-
ers perform continuous integration of their code in Guix build environments? How can
they deliver their code straight to adventurous users? This chapter describes a set of files
developers can add to their repository to set up Guix-based development environments,
continuous integration, and continuous delivery—all at once1.

7.1 Getting Started

How do we go about “Guixifying” a repository? The first step, as we’ve seen, will be to add
a guix.scm at the root of the repository in question. We’ll take Guile (https://www.gnu.
org/software/guile) as an example in this chapter: it’s written in Scheme (mostly) and
C, and has a number of dependencies—a C compilation tool chain, C libraries, Autoconf
and its friends, LaTeX, and so on. The resulting guix.scm looks like the usual package
definition (see Section “Defining Packages” in GNU Guix Reference Manual), just without
the define-public bit:

;; The ‘guix.scm’ file for Guile, for use by ‘guix shell’.

(use-modules (guix)

(guix build-system gnu)

((guix licenses) #:prefix license:)

(gnu packages autotools)

(gnu packages base)

(gnu packages bash)

(gnu packages bdw-gc)

(gnu packages compression)

(gnu packages flex)

(gnu packages gdb)

(gnu packages gettext)

(gnu packages gperf)

(gnu packages libffi)

(gnu packages libunistring)

(gnu packages linux)

(gnu packages pkg-config)

(gnu packages readline)

1 This chapter is adapted from a blog post (https://guix.gnu.org/en/blog/2023/
from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/

) published in June 2023 on the Guix web site.

https://www.gnu.org/software/guile
https://www.gnu.org/software/guile
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/


Chapter 7: Software Development 67

(gnu packages tex)

(gnu packages texinfo)

(gnu packages version-control))

(package

(name "guile")

(version "3.0.99-git") ;funky version number

(source #f) ;no source

(build-system gnu-build-system)

(native-inputs

(append (list autoconf

automake

libtool

gnu-gettext

flex

texinfo

texlive-base ;for "make pdf"

texlive-epsf

gperf

git

gdb

strace

readline

lzip

pkg-config)

;; When cross-compiling, a native version of Guile itself is

;; needed.

(if (%current-target-system)

(list this-package)

'())))

(inputs

(list libffi bash-minimal))

(propagated-inputs

(list libunistring libgc))

(native-search-paths

(list (search-path-specification

(variable "GUILE_LOAD_PATH")

(files '("share/guile/site/3.0")))

(search-path-specification

(variable "GUILE_LOAD_COMPILED_PATH")

(files '("lib/guile/3.0/site-ccache")))))

(synopsis "Scheme implementation intended especially for extensions")

(description

"Guile is the GNU Ubiquitous Intelligent Language for Extensions,

and it's actually a full-blown Scheme implementation!")



Chapter 7: Software Development 68

(home-page "https://www.gnu.org/software/guile/")

(license license:lgpl3+))

Quite a bit of boilerplate, but now someone who’d like to hack on Guile now only needs
to run:

guix shell

That gives them a shell containing all the dependencies of Guile: those listed above, but
also implicit dependencies such as the GCC tool chain, GNU Make, sed, grep, and so on.
See Section “Invoking guix shell” in GNU Guix Reference Manual, for more info on guix

shell.

The chef ’s recommendation: Our suggestion is to create development environ-
ments like this:

guix shell --container --link-profile

... or, for short:

guix shell -CP

That gives a shell in an isolated container, and all the dependencies show up
in $HOME/.guix-profile, which plays well with caches such as config.cache
(see Section “Cache Files” in Autoconf ) and absolute file names recorded in
generated Makefiles and the likes. The fact that the shell runs in a container
brings peace of mind: nothing but the current directory and Guile’s depen-
dencies is visible inside the container; nothing from the system can possibly
interfere with your development.

7.2 Level 1: Building with Guix

Now that we have a package definition (see Section 7.1 [Getting Started], page 66), why not
also take advantage of it so we can build Guile with Guix? We had left the source field
empty, because guix shell above only cares about the inputs of our package—so it can set
up the development environment—not about the package itself.

To build the package with Guix, we’ll need to fill out the source field, along these lines:

(use-modules (guix)

(guix git-download) ;for ‘git-predicate’

...)

(define vcs-file?

;; Return true if the given file is under version control.

(or (git-predicate (current-source-directory))

(const #t))) ;not in a Git checkout

(package

(name "guile")

(version "3.0.99-git") ;funky version number

(source (local-file "." "guile-checkout"

#:recursive? #t

#:select? vcs-file?))

...)



Chapter 7: Software Development 69

Here’s what we changed compared to the previous section:

1. We added (guix git-download) to our set of imported modules, so we can use its
git-predicate procedure.

2. We defined vcs-file? as a procedure that returns true when passed a file that is under
version control. For good measure, we add a fallback case for when we’re not in a Git
checkout: always return true.

3. We set source to a local-file (https://guix.gnu.org/manual/devel/en/
html_node/G_002dExpressions.html#index-local_002dfile)—a recursive copy of
the current directory ("."), limited to files under version control (the #:select? bit).

From there on, our guix.scm file serves a second purpose: it lets us build the software
with Guix. The whole point of building with Guix is that it’s a “clean” build—you can be
sure nothing from your working tree or system interferes with the build result—and it lets
you test a variety of things. First, you can do a plain native build:

guix build -f guix.scm

But you can also build for another system (possibly after setting up see Section “Daemon
Offload Setup” in GNU Guix Reference Manual or see Section “Virtualization Services” in
GNU Guix Reference Manual):

guix build -f guix.scm -s aarch64-linux -s riscv64-linux

. . . or cross-compile:

guix build -f guix.scm --target=x86_64-w64-mingw32

You can also use package transformations to test package variants (see Section “Package
Transformation Options” in GNU Guix Reference Manual):

# What if we built with Clang instead of GCC?

guix build -f guix.scm \

--with-c-toolchain=guile@3.0.99-git=clang-toolchain

# What about that under-tested configure flag?

guix build -f guix.scm \

--with-configure-flag=guile@3.0.99-git=--disable-networking

Handy!

7.3 Level 2: The Repository as a Channel

We now have a Git repository containing (among other things) a package definition (see
Section 7.2 [Building with Guix], page 68). Can’t we turn it into a channel (see Section
“Channels” in GNU Guix Reference Manual)? After all, channels are designed to ship
package definitions to users, and that’s exactly what we’re doing with our guix.scm.

Turns out we can indeed turn it into a channel, but with one caveat: we must create
a separate directory for the .scm file(s) of our channel so that guix pull doesn’t load
unrelated .scm files when someone pulls the channel—and in Guile, there are lots of them!
So we’ll start like this, keeping a top-level guix.scm symlink for the sake of guix shell:

mkdir -p .guix/modules

mv guix.scm .guix/modules/guile-package.scm

ln -s .guix/modules/guile-package.scm guix.scm

https://guix.gnu.org/manual/devel/en/html_node/G_002dExpressions.html#index-local_002dfile
https://guix.gnu.org/manual/devel/en/html_node/G_002dExpressions.html#index-local_002dfile


Chapter 7: Software Development 70

To make it usable as part of a channel, we need to turn our guix.scm file into a package
module (see Section “Package Modules” in GNU Guix Reference Manual): we do that by
changing the use-modules form at the top to a define-module form. We also need to
actually export a package variable, with define-public, while still returning the package
value at the end of the file so we can still use guix shell and guix build -f guix.scm.
The end result looks like this (not repeating things that haven’t changed):

(define-module (guile-package)

#:use-module (guix)

#:use-module (guix git-download) ;for ‘git-predicate’

...)

(define vcs-file?

;; Return true if the given file is under version control.

(or (git-predicate (dirname (dirname (current-source-directory))))

(const #t))) ;not in a Git checkout

(define-public guile

(package

(name "guile")

(version "3.0.99-git") ;funky version number

(source (local-file "../.." "guile-checkout"

#:recursive? #t

#:select? vcs-file?))

...))

;; Return the package object define above at the end of the module.

guile

We need one last thing: a .guix-channel file (https://guix.gnu.org/manual/devel/
en/html_node/Package-Modules-in-a-Sub_002ddirectory.html) so Guix knows where
to look for package modules in our repository:

;; This file lets us present this repo as a Guix channel.

(channel

(version 0)

(directory ".guix/modules")) ;look for package modules under .guix/modules/

To recap, we now have these files:

.

.guix-channel

guix.scm → .guix/modules/guile-package.scm

.guix

modules

guile-package.scm

And that’s it: we have a channel! (We could do better and support
channel authentication (https://guix.gnu.org/manual/devel/en/html_node/
Specifying-Channel-Authorizations.html) so users know they’re pulling genuine

https://guix.gnu.org/manual/devel/en/html_node/Package-Modules-in-a-Sub_002ddirectory.html
https://guix.gnu.org/manual/devel/en/html_node/Package-Modules-in-a-Sub_002ddirectory.html
https://guix.gnu.org/manual/devel/en/html_node/Specifying-Channel-Authorizations.html
https://guix.gnu.org/manual/devel/en/html_node/Specifying-Channel-Authorizations.html


Chapter 7: Software Development 71

code. We’ll spare you the details here but it’s worth considering!) Users can pull from
this channel by adding it to ~/.config/guix/channels.scm (https://guix.gnu.org/
manual/devel/en/html_node/Specifying-Additional-Channels.html), along these
lines:

(append (list (channel

(name 'guile)

(url "https://git.savannah.gnu.org/git/guile.git")

(branch "main")))

%default-channels)

After running guix pull, we can see the new package:

$ guix describe

Generation 264 May 26 2023 16:00:35 (current)

guile 36fd2b4

repository URL: https://git.savannah.gnu.org/git/guile.git

branch: main

commit: 36fd2b4920ae926c79b936c29e739e71a6dff2bc

guix c5bc698

repository URL: https://git.savannah.gnu.org/git/guix.git

commit: c5bc698e8922d78ed85989985cc2ceb034de2f23

$ guix package -A ^guile$

guile 3.0.99-git out,debug guile-package.scm:51:4

guile 3.0.9 out,debug gnu/packages/guile.scm:317:2

guile 2.2.7 out,debug gnu/packages/guile.scm:258:2

guile 2.2.4 out,debug gnu/packages/guile.scm:304:2

guile 2.0.14 out,debug gnu/packages/guile.scm:148:2

guile 1.8.8 out gnu/packages/guile.scm:77:2

$ guix build guile@3.0.99-git

[...]

/gnu/store/axnzbl89yz7ld78bmx72vpqp802dwsar-guile-3.0.99-git-debug

/gnu/store/r34gsij7f0glg2fbakcmmk0zn4v62s5w-guile-3.0.99-git

That’s how, as a developer, you get your software delivered directly into the hands of
users! No intermediaries, yet no loss of transparency and provenance tracking.

With that in place, it also becomes trivial for anyone to create Docker images, Deb/RPM
packages, or a plain tarball with guix pack (see Section “Invoking guix pack” in GNU Guix
Reference Manual):

# How about a Docker image of our Guile snapshot?

guix pack -f docker -S /bin=bin guile@3.0.99-git

# And a relocatable RPM?

guix pack -f rpm -R -S /bin=bin guile@3.0.99-git

7.4 Bonus: Package Variants

We now have an actual channel, but it contains only one package (see Section 7.3 [The
Repository as a Channel], page 69). While we’re at it, we can define package variants

https://guix.gnu.org/manual/devel/en/html_node/Specifying-Additional-Channels.html
https://guix.gnu.org/manual/devel/en/html_node/Specifying-Additional-Channels.html


Chapter 7: Software Development 72

(see Section “Defining Package Variants” in GNU Guix Reference Manual) in our guile-
package.scm file, variants that we want to be able to test as Guile developers—similar to
what we did above with transformation options. We can add them like so:

;; This is the ‘.guix/modules/guile-package.scm’ file.

(define-module (guile-package)

...)

(define-public guile

...)

(define (package-with-configure-flags p flags)

"Return P with FLAGS as additional 'configure' flags."

(package/inherit p

(arguments

(substitute-keyword-arguments (package-arguments p)

((#:configure-flags original-flags #~(list))

#~(append #$original-flags #$flags))))))

(define-public guile-without-threads

(package

(inherit (package-with-configure-flags guile

#~(list "--without-threads")))

(name "guile-without-threads")))

(define-public guile-without-networking

(package

(inherit (package-with-configure-flags guile

#~(list "--disable-networking")))

(name "guile-without-networking")))

;; Return the package object defined above at the end of the module.

guile

We can build these variants as regular packages once we’ve pulled the channel. Al-
ternatively, from a checkout of Guile, we can run a command like this one from the top
level:

guix build -L $PWD/.guix/modules guile-without-threads

7.5 Level 3: Setting Up Continuous Integration

The channel we defined above (see Section 7.3 [The Repository as a Channel], page 69)
becomes even more interesting once we set up continuous integration (https://en.
wikipedia.org/wiki/Continuous_integration) (CI). There are several ways to do that.

You can use one of the mainstream continuous integration tools, such as GitLab-CI. To
do that, you need to make sure you run jobs in a Docker image or virtual machine that has

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration


Chapter 7: Software Development 73

Guix installed. If we were to do that in the case of Guile, we’d have a job that runs a shell
command like this one:

guix build -L $PWD/.guix/modules guile@3.0.99-git

Doing this works great and has the advantage of being easy to achieve on your favorite
CI platform.

That said, you’ll really get the most of it by using Cuirass (https://guix.gnu.org/en/
cuirass), a CI tool designed for and tightly integrated with Guix. Using it is more work
than using a hosted CI tool because you first need to set it up, but that setup phase is
greatly simplified if you use its Guix System service (see Section “Continuous Integration”
in GNU Guix Reference Manual). Going back to our example, we give Cuirass a spec file
that goes like this:

;; Cuirass spec file to build all the packages of the ‘guile’ channel.

(list (specification

(name "guile")

(build '(channels guile))

(channels

(append (list (channel

(name 'guile)

(url "https://git.savannah.gnu.org/git/guile.git")

(branch "main")))

%default-channels))))

It differs from what you’d do with other CI tools in two important ways:

• Cuirass knows it’s tracking two channels, guile and guix. Indeed, our own guile

package depends on many packages provided by the guix channel—GCC, the GNU
libc, libffi, and so on. Changes to packages from the guix channel can potentially
influence our guile build and this is something we’d like to see as soon as possible as
Guile developers.

• Build results are not thrown away: they can be distributed as substitutes so that users
of our guile channel transparently get pre-built binaries! (see Section “Substitutes”
in GNU Guix Reference Manual, for background info on substitutes.)

From a developer’s viewpoint, the end result is this status page (https://ci.guix.
gnu.org/jobset/guile) listing evaluations: each evaluation is a combination of commits
of the guix and guile channels providing a number of jobs—one job per package defined
in guile-package.scm times the number of target architectures.

As for substitutes, they come for free! As an example, since our guile jobset is built
on ci.guix.gnu.org, which runs guix publish (see Section “Invoking guix publish” in GNU
Guix Reference Manual) in addition to Cuirass, one automatically gets substitutes for guile
builds from ci.guix.gnu.org; no additional work is needed for that.

7.6 Bonus: Build manifest

The Cuirass spec above is convenient: it builds every package in our channel, which includes
a few variants (see Section 7.5 [Setting Up Continuous Integration], page 72). However, this
might be insufficiently expressive in some cases: one might want specific cross-compilation
jobs, transformations, Docker images, RPM/Deb packages, or even system tests.

https://guix.gnu.org/en/cuirass
https://guix.gnu.org/en/cuirass
https://ci.guix.gnu.org/jobset/guile
https://ci.guix.gnu.org/jobset/guile


Chapter 7: Software Development 74

To achieve that, you can write a manifest (see Section “Writing Manifests” in GNU
Guix Reference Manual). The one we have for Guile has entries for the package variants
we defined above, as well as additional variants and cross builds:

;; This is ‘.guix/manifest.scm’.

(use-modules (guix)

(guix profiles)

(guile-package)) ;import our own package module

(define* (package->manifest-entry* package system

#:key target)

"Return a manifest entry for PACKAGE on SYSTEM, optionally cross-compiled to

TARGET."

(manifest-entry

(inherit (package->manifest-entry package))

(name (string-append (package-name package) "." system

(if target

(string-append "." target)

"")))

(item (with-parameters ((%current-system system)

(%current-target-system target))

package))))

(define native-builds

(manifest

(append (map (lambda (system)

(package->manifest-entry* guile system))

'("x86_64-linux" "i686-linux"

"aarch64-linux" "armhf-linux"

"powerpc64le-linux"))

(map (lambda (guile)

(package->manifest-entry* guile "x86_64-linux"))

(cons (package

(inherit (package-with-c-toolchain

guile

`(("clang-toolchain"

,(specification->package

"clang-toolchain")))))

(name "guile-clang"))

(list guile-without-threads

guile-without-networking

guile-debug

guile-strict-typing))))))

(define cross-builds



Chapter 7: Software Development 75

(manifest

(map (lambda (target)

(package->manifest-entry* guile "x86_64-linux"

#:target target))

'("i586-pc-gnu"

"aarch64-linux-gnu"

"riscv64-linux-gnu"

"i686-w64-mingw32"

"x86_64-linux-gnu"))))

(concatenate-manifests (list native-builds cross-builds))

We won’t go into the details of this manifest; suffice to say that it provides additional
flexibility. We now need to tell Cuirass to build this manifest, which is done with a spec
slightly different from the previous one:

;; Cuirass spec file to build all the packages of the ‘guile’ channel.

(list (specification

(name "guile")

(build '(manifest ".guix/manifest.scm"))

(channels

(append (list (channel

(name 'guile)

(url "https://git.savannah.gnu.org/git/guile.git")

(branch "main")))

%default-channels))))

We changed the (build ...) part of the spec to '(manifest ".guix/manifest.scm")

so that it would pick our manifest, and that’s it!

7.7 Wrapping Up

We picked Guile as the running example in this chapter and you can see the result here:

• .guix-channel (https://git.savannah.gnu.org/cgit/guile.git/tree/.
guix-channel?id=cd57379b3df636198d8cd8e76c1bfbc523762e79);

• .guix/modules/guile-package.scm (https://git.savannah.
gnu.org/cgit/guile.git/tree/.guix/modules/guile-package.scm?

id=cd57379b3df636198d8cd8e76c1bfbc523762e79) with the top-level guix.scm

symlink;

• .guix/manifest.scm (https://git.savannah.gnu.org/cgit/guile.git/tree/.
guix/manifest.scm?id=cd57379b3df636198d8cd8e76c1bfbc523762e79).

These days, repositories are commonly peppered with dot files for various tools:
.envrc, .gitlab-ci.yml, .github/workflows, Dockerfile, .buildpacks, Aptfile,
requirements.txt, and whatnot. It may sound like we’re proposing a bunch of additional
files, but in fact those files are expressive enough to supersede most or all of those listed
above.

With a couple of files, we get support for:

• development environments (guix shell);

https://git.savannah.gnu.org/cgit/guile.git/tree/.guix-channel?id=cd57379b3df636198d8cd8e76c1bfbc523762e79
https://git.savannah.gnu.org/cgit/guile.git/tree/.guix-channel?id=cd57379b3df636198d8cd8e76c1bfbc523762e79
https://git.savannah.gnu.org/cgit/guile.git/tree/.guix/modules/guile-package.scm?id=cd57379b3df636198d8cd8e76c1bfbc523762e79
https://git.savannah.gnu.org/cgit/guile.git/tree/.guix/modules/guile-package.scm?id=cd57379b3df636198d8cd8e76c1bfbc523762e79
https://git.savannah.gnu.org/cgit/guile.git/tree/.guix/modules/guile-package.scm?id=cd57379b3df636198d8cd8e76c1bfbc523762e79
https://git.savannah.gnu.org/cgit/guile.git/tree/.guix/manifest.scm?id=cd57379b3df636198d8cd8e76c1bfbc523762e79
https://git.savannah.gnu.org/cgit/guile.git/tree/.guix/manifest.scm?id=cd57379b3df636198d8cd8e76c1bfbc523762e79


Chapter 7: Software Development 76

• pristine test builds, including for package variants and for cross-compilation (guix
build);

• continuous integration (with Cuirass or with some other tool);

• continuous delivery to users (via the channel and with pre-built binaries);

• generation of derivative build artifacts such as Docker images or Deb/RPM packages
(guix pack).

This a nice (in our view!) unified tool set for reproducible software deployment, and an
illustration of how you as a developer can benefit from it!



77

8 Environment management

Guix provides multiple tools to manage environment. This chapter demonstrate such utili-
ties.

8.1 Guix environment via direnv

Guix provides a ‘direnv’ package, which could extend shell after directory change. This
tool could be used to prepare a pure Guix environment.

The following example provides a shell function for ~/.direnvrc file, which could be
used from Guix Git repository in ~/src/guix/.envrc file to setup a build environment
similar to described in see Section “Building from Git” in GNU Guix Reference Manual.

Create a ~/.direnvrc with a Bash code:

# Thanks <https://github.com/direnv/direnv/issues/73#issuecomment-152284914>

export_function()

{

local name=$1

local alias_dir=$PWD/.direnv/aliases

mkdir -p "$alias_dir"

PATH_add "$alias_dir"

local target="$alias_dir/$name"

if declare -f "$name" >/dev/null; then

echo "#!$SHELL" > "$target"

declare -f "$name" >> "$target" 2>/dev/null

# Notice that we add shell variables to the function trigger.

echo "$name \$*" >> "$target"

chmod +x "$target"

fi

}

use_guix()

{

# Set GitHub token.

export GUIX_GITHUB_TOKEN="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

# Unset 'GUIX_PACKAGE_PATH'.

export GUIX_PACKAGE_PATH=""

# Recreate a garbage collector root.

gcroots="$HOME/.config/guix/gcroots"

mkdir -p "$gcroots"

gcroot="$gcroots/guix"

if [ -L "$gcroot" ]

then

rm -v "$gcroot"

fi



Chapter 8: Environment management 78

# Miscellaneous packages.

PACKAGES_MAINTENANCE=(

direnv

git

git:send-email

git-cal

gnupg

guile-colorized

guile-readline

less

ncurses

openssh

xdot

)

# Environment packages.

PACKAGES=(help2man guile-sqlite3 guile-gcrypt)

# Thanks <https://lists.gnu.org/archive/html/guix-devel/2016-09/msg00859.html>

eval "$(guix environment --search-paths --root="$gcroot" --pure guix --ad-hoc ${PACKAGES[@]} ${PACKAGES_MAINTENANCE[@]} "$@")"

# Predefine configure flags.

configure()

{

./configure --localstatedir=/var --prefix=

}

export_function configure

# Run make and optionally build something.

build()

{

make -j 2

if [ $# -gt 0 ]

then

./pre-inst-env guix build "$@"

fi

}

export_function build

# Predefine push Git command.

push()

{

git push --set-upstream origin

}

export_function push



Chapter 8: Environment management 79

clear # Clean up the screen.

git-cal --author='Your Name' # Show contributions calendar.

# Show commands help.

echo "

build build a package or just a project if no argument provided

configure run ./configure with predefined parameters

push push to upstream Git repository

"

}

Every project containing .envrc with a string use guix will have predefined environment
variables and procedures.

Run direnv allow to setup the environment for the first time.



80

9 Installing Guix on a Cluster

Guix is appealing to scientists and HPC (high-performance computing) practitioners: it
makes it easy to deploy potentially complex software stacks, and it lets you do so in a
reproducible fashion—you can redeploy the exact same software on different machines and
at different points in time.

In this chapter we look at how a cluster sysadmin can install Guix for system-wide use,
such that it can be used on all the cluster nodes, and discuss the various tradeoffs1.

Note: Here we assume that the cluster is running a GNU/Linux distro other
than Guix System and that we are going to install Guix on top of it.

9.1 Setting Up a Head Node

The recommended approach is to set up one head node running guix-daemon and exporting
/gnu/store over NFS to compute nodes.

Remember that guix-daemon is responsible for spawning build processes and downloads
on behalf of clients (see Section “Invoking guix-daemon” in GNU Guix Reference Manual),
and more generally accessing /gnu/store, which contains all the package binaries built by
all the users (see Section “The Store” in GNU Guix Reference Manual). “Client” here
refers to all the Guix commands that users see, such as guix install. On a cluster, these
commands may be running on the compute nodes and we’ll want them to talk to the head
node’s guix-daemon instance.

To begin with, the head node can be installed following the usual binary installation
instructions (see Section “Binary Installation” in GNU Guix Reference Manual). Thanks
to the installation script, this should be quick. Once installation is complete, we need to
make some adjustments.

Since we want guix-daemon to be reachable not just from the head node but also from
the compute nodes, we need to arrange so that it listens for connections over TCP/IP. To
do that, we’ll edit the systemd startup file for guix-daemon, /etc/systemd/system/guix-
daemon.service, and add a --listen argument to the ExecStart line so that it looks
something like this:

ExecStart=/var/guix/profiles/per-user/root/current-guix/bin/guix-daemon --build-users-group=guixbuild --listen=/var/guix/daemon-socket/socket --listen=0.0.0.0

For these changes to take effect, the service needs to be restarted:

systemctl daemon-reload

systemctl restart guix-daemon

Note: The --listen=0.0.0.0 bit means that guix-daemon will process all
incoming TCP connections on port 44146 (see Section “Invoking guix-daemon”
in GNU Guix Reference Manual). This is usually fine in a cluster setup where
the head node is reachable exclusively from the cluster’s local area network—
you don’t want that to be exposed to the Internet!

The next step is to define our NFS exports in /etc/exports (https://linux.die.net/
man/5/exports) by adding something along these lines:

/gnu/store *(ro)

1 This chapter is adapted from a blog post published on the Guix-HPC web site in 2017 (https://hpc.
guix.info/blog/2017/11/installing-guix-on-a-cluster/).

https://linux.die.net/man/5/exports
https://linux.die.net/man/5/exports
https://hpc.guix.info/blog/2017/11/installing-guix-on-a-cluster/
https://hpc.guix.info/blog/2017/11/installing-guix-on-a-cluster/


Chapter 9: Installing Guix on a Cluster 81

/var/guix *(rw, async)

/var/log/guix *(ro)

The /gnu/store directory can be exported read-only since only guix-daemon on the
master node will ever modify it. /var/guix contains user profiles as managed by guix

package; thus, to allow users to install packages with guix package, this must be read-
write.

Users can create as many profiles as they like in addition to the default profile, ~/.guix-
profile. For instance, guix package -p ~/dev/python-dev -i python installs Python in
a profile reachable from the ~/dev/python-dev symlink. To make sure that this profile is
protected from garbage collection—i.e., that Python will not be removed from /gnu/store

while this profile exists—, home directories should be mounted on the head node as well so
that guix-daemon knows about these non-standard profiles and avoids collecting software
they refer to.

It may be a good idea to periodically remove unused bits from /gnu/store by running
guix gc (see Section “Invoking guix gc” in GNU Guix Reference Manual). This can be
done by adding a crontab entry on the head node:

root@master# crontab -e

... with something like this:

# Every day at 5AM, run the garbage collector to make sure

# at least 10 GB are free on /gnu/store.

0 5 * * 1 /usr/local/bin/guix gc -F10G

We’re done with the head node! Let’s look at compute nodes now.

9.2 Setting Up Compute Nodes

First of all, we need compute nodes to mount those NFS directories that the head node
exports. This can be done by adding the following lines to /etc/fstab (https://linux.
die.net/man/5/fstab):

head-node:/gnu/store /gnu/store nfs defaults,_netdev,vers=3 0 0

head-node:/var/guix /var/guix nfs defaults,_netdev,vers=3 0 0

head-node:/var/log/guix /var/log/guix nfs defaults,_netdev,vers=3 0 0

... where head-node is the name or IP address of your head node. From there on, assuming
the mount points exist, you should be able to mount each of these on the compute nodes.

Next, we need to provide a default guix command that users can run when they first
connect to the cluster (eventually they will invoke guix pull, which will provide them with
their “own” guix command). Similar to what the binary installation script did on the head
node, we’ll store that in /usr/local/bin:

mkdir -p /usr/local/bin

ln -s /var/guix/profiles/per-user/root/current-guix/bin/guix \

/usr/local/bin/guix

We then need to tell guix to talk to the daemon running on our master node, by adding
these lines to /etc/profile:

GUIX_DAEMON_SOCKET="guix://head-node"

export GUIX_DAEMON_SOCKET

https://linux.die.net/man/5/fstab
https://linux.die.net/man/5/fstab


Chapter 9: Installing Guix on a Cluster 82

To avoid warnings and make sure guix uses the right locale, we need to tell it to use
locale data provided by Guix (see Section “Application Setup” in GNU Guix Reference
Manual):

GUIX_LOCPATH=/var/guix/profiles/per-user/root/guix-profile/lib/locale

export GUIX_LOCPATH

# Here we must use a valid locale name. Try "ls $GUIX_LOCPATH/*"

# to see what names can be used.

LC_ALL=fr_FR.utf8

export LC_ALL

For convenience, guix package automatically generates ~/.guix-profile/etc/profile,
which defines all the environment variables necessary to use the packages—
PATH, C_INCLUDE_PATH, PYTHONPATH, etc. Likewise, guix pull does that under
~/.config/guix/current. Thus it’s a good idea to source both from /etc/profile:

for GUIX_PROFILE in "$HOME/.config/guix/current" "$HOME/.guix-profile"

do

if [ -f "$GUIX_PROFILE/etc/profile" ]; then

. "$GUIX_PROFILE/etc/profile"

fi

done

Last but not least, Guix provides command-line completion notably for Bash and zsh.
In /etc/bashrc, consider adding this line:

. /var/guix/profiles/per-user/root/current-guix/etc/bash_completion.d/guix

Voilà!

You can check that everything’s in place by logging in on a compute node and running:

guix install hello

The daemon on the head node should download pre-built binaries on your behalf and
unpack them in /gnu/store, and guix install should create ~/.guix-profile containing
the ~/.guix-profile/bin/hello command.

9.3 Network Access

Guix requires network access to download source code and pre-built binaries. The good
news is that only the head node needs that since compute nodes simply delegate to it.

It is customary for cluster nodes to have access at best to a white list of hosts. Our head
node needs at least ci.guix.gnu.org in this white list since this is where it gets pre-built
binaries from by default, for all the packages that are in Guix proper.

Incidentally, ci.guix.gnu.org also serves as a content-addressed mirror of the source
code of those packages. Consequently, it is sufficient to have only ci.guix.gnu.org in that
white list.

Software packages maintained in a separate repository such as one of the various
HPC channels (https://hpc.guix.info/channels) are of course unavailable from
ci.guix.gnu.org. For these packages, you may want to extend the white list such that
source and pre-built binaries (assuming this-party servers provide binaries for these

https://hpc.guix.info/channels


Chapter 9: Installing Guix on a Cluster 83

packages) can be downloaded. As a last resort, users can always download source on their
workstation and add it to the cluster’s /gnu/store, like this:

GUIX_DAEMON_SOCKET=ssh://compute-node.example.org \

guix download http://starpu.gforge.inria.fr/files/starpu-1.2.3/starpu-1.2.3.tar.gz

The above command downloads starpu-1.2.3.tar.gz and sends it to the cluster’s
guix-daemon instance over SSH.

Air-gapped clusters require more work. At the moment, our suggestion would be to
download all the necessary source code on a workstation running Guix. For instance, using
the --sources option of guix build (see Section “Invoking guix build” in GNU Guix
Reference Manual), the example below downloads all the source code the openmpi package
depends on:

$ guix build --sources=transitive openmpi

...

/gnu/store/xc17sm60fb8nxadc4qy0c7rqph499z8s-openmpi-1.10.7.tar.bz2

/gnu/store/s67jx92lpipy2nfj5cz818xv430n4b7w-gcc-5.4.0.tar.xz

/gnu/store/npw9qh8a46lrxiwh9xwk0wpi3jlzmjnh-gmp-6.0.0a.tar.xz

/gnu/store/hcz0f4wkdbsvsdky3c0vdvcawhdkyldb-mpfr-3.1.5.tar.xz

/gnu/store/y9akh452n3p4w2v631nj0injx7y0d68x-mpc-1.0.3.tar.gz

/gnu/store/6g5c35q8avfnzs3v14dzl54cmrvddjm2-glibc-2.25.tar.xz

/gnu/store/p9k48dk3dvvk7gads7fk30xc2pxsd66z-hwloc-1.11.8.tar.bz2

/gnu/store/cry9lqidwfrfmgl0x389cs3syr15p13q-gcc-5.4.0.tar.xz

/gnu/store/7ak0v3rzpqm2c5q1mp3v7cj0rxz0qakf-libfabric-1.4.1.tar.bz2

/gnu/store/vh8syjrsilnbfcf582qhmvpg1v3rampf-rdma-core-14.tar.gz

...

(In case you’re wondering, that’s more than 320 MiB of compressed source code.)

We can then make a big archive containing all of this (see Section “Invoking guix archive”
in GNU Guix Reference Manual):

$ guix archive --export \

`guix build --sources=transitive openmpi` \

> openmpi-source-code.nar

. . . and we can eventually transfer that archive to the cluster on removable storage and
unpack it there:

$ guix archive --import < openmpi-source-code.nar

This process has to be repeated every time new source code needs to be brought to the
cluster.

As we write this, the research institutes involved in Guix-HPC do not have air-gapped
clusters though. If you have experience with such setups, we would like to hear feedback
and suggestions.

9.4 Disk Usage

A common concern of sysadmins’ is whether this is all going to eat a lot of disk space. If
anything, if something is going to exhaust disk space, it’s going to be scientific data sets



Chapter 9: Installing Guix on a Cluster 84

rather than compiled software—that’s our experience with almost ten years of Guix usage
on HPC clusters. Nevertheless, it’s worth taking a look at how Guix contributes to disk
usage.

First, having several versions or variants of a given package in /gnu/store does not
necessarily cost much, because guix-daemon implements deduplication of identical files,
and package variants are likely to have a number of common files.

As mentioned above, we recommend having a cron job to run guix gc periodically, which
removes unused software from /gnu/store. However, there’s always a possibility that users
will keep lots of software in their profiles, or lots of old generations of their profiles, which
is “live” and cannot be deleted from the viewpoint of guix gc.

The solution to this is for users to regularly remove old generations of their profile. For
instance, the following command removes generations that are more than two-month old:

guix package --delete-generations=2m

Likewise, it’s a good idea to invite users to regularly upgrade their profile, which can
reduce the number of variants of a given piece of software stored in /gnu/store:

guix pull

guix upgrade

As a last resort, it is always possible for sysadmins to do some of this on behalf of their
users. Nevertheless, one of the strengths of Guix is the freedom and control users get on
their software environment, so we strongly recommend leaving users in control.

9.5 Security Considerations

On an HPC cluster, Guix is typically used to manage scientific software. Security-critical
software such as the operating system kernel and system services such as sshd and the
batch scheduler remain under control of sysadmins.

The Guix project has a good track record delivering security updates in a timely fashion
(see Section “Security Updates” in GNU Guix Reference Manual). To get security updates,
users have to run guix pull && guix upgrade.

Because Guix uniquely identifies software variants, it is easy to see if a vulnerable piece
of software is in use. For instance, to check whether the glibc 2.25 variant without the miti-
gation patch against “Stack Clash (https://www.qualys.com/2017/06/19/stack-clash/
stack-clash.txt)”, one can check whether user profiles refer to it at all:

guix gc --referrers /gnu/store/...-glibc-2.25

This will report whether profiles exist that refer to this specific glibc variant.

https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt


85

10 Acknowledgments

Guix is based on the Nix package manager (https://nixos.org/nix/), which was de-
signed and implemented by Eelco Dolstra, with contributions from other people (see the
nix/AUTHORS file in Guix.) Nix pioneered functional package management, and promoted
unprecedented features, such as transactional package upgrades and rollbacks, per-user
profiles, and referentially transparent build processes. Without this work, Guix would not
exist.

The Nix-based software distributions, Nixpkgs and NixOS, have also been an inspiration
for Guix.

GNU Guix itself is a collective work with contributions from a number of people. See the
AUTHORS file in Guix for more information on these fine people. The THANKS file lists people
who have helped by reporting bugs, taking care of the infrastructure, providing artwork
and themes, making suggestions, and more—thank you!

This document includes adapted sections from articles that have previously been pub-
lished on the Guix blog at https://guix.gnu.org/blog and on the Guix-HPC blog at
https://hpc.guix.info/blog.

https://nixos.org/nix/
https://guix.gnu.org/blog
https://hpc.guix.info/blog


86

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/


Appendix A: GNU Free Documentation License 87

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING



Appendix A: GNU Free Documentation License 88

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,



Appendix A: GNU Free Documentation License 89

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their



Appendix A: GNU Free Documentation License 90

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.



Appendix A: GNU Free Documentation License 91

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.



Appendix A: GNU Free Documentation License 92

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/


Appendix A: GNU Free Documentation License 93

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



94

Concept Index

2
2FA, two-factor authentication . . . . . . . . . . . . . . . . . 29

A
avoid ABI mismatch, container . . . . . . . . . . . . . . . . . 50

B
bluetooth, ALSA configuration . . . . . . . . . . . . . . . . . 45

C
channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
cluster installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
container networking . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
continuous integration (CI) . . . . . . . . . . . . . . . . . . . . . 72

D
development, with Guix . . . . . . . . . . . . . . . . . . . . . . . . 66
disabling yubikey OTP . . . . . . . . . . . . . . . . . . . . . . . . . 30
disk usage, on a cluster . . . . . . . . . . . . . . . . . . . . . . . . 83
dynamic DNS, DDNS . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E
exiting a container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
exposing directories, container . . . . . . . . . . . . . . . . . . 49

G
G-expressions, syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
gexps, syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

H
hide system libraries, container . . . . . . . . . . . . . . . . . 50
high-performance computing, HPC . . . . . . . . . . . . . 80
HPC, high-performance computing . . . . . . . . . . . . . 80

K
kimsufi, Kimsufi, OVH . . . . . . . . . . . . . . . . . . . . . . . . . 38

L
libvirt, virtual network bridge . . . . . . . . . . . . . . . . . . 57
license, GNU Free Documentation License . . . . . . 86
linode, Linode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

M
mapping locations, container . . . . . . . . . . . . . . . . . . . 49
mpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
music server, headless . . . . . . . . . . . . . . . . . . . . . . . . . . 45

N
Network bridge interface . . . . . . . . . . . . . . . . . . . . . . . 56
networking, bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
networking, virtual bridge . . . . . . . . . . . . . . . . . . . . . . 57
nginx, lua, openresty, resty . . . . . . . . . . . . . . . . . . . . . 44

P
packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Q
qemu, network bridge . . . . . . . . . . . . . . . . . . . . . . . . . . 56

S
S-expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Scheme, crash course . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
security key, configuration . . . . . . . . . . . . . . . . . . . . . . 29
security, on a cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
sessionlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
sharing directories, container . . . . . . . . . . . . . . . . . . . 49
software development, with Guix . . . . . . . . . . . . . . . 66
stumpwm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
stumpwm fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

U
U2F, Universal 2nd Factor . . . . . . . . . . . . . . . . . . . . . 29

V
Virtual network bridge interface . . . . . . . . . . . . . . . . 57

W
wm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Y
yubikey, keepassxc integration . . . . . . . . . . . . . . . . . . 31


	1 Scheme tutorials
	A Scheme Crash Course

	2 Packaging
	Packaging Tutorial
	A ``Hello World'' package
	Setup
	Local file
	Channels
	Direct checkout hacking

	Extended example
	git-fetch method
	Snippets
	Inputs
	Outputs
	Build system arguments
	Code staging
	Utility functions
	Module prefix

	Other build systems
	Programmable and automated package definition
	Recursive importers
	Automatic update
	Inheritance

	Getting help
	Conclusion
	References


	3 System Configuration
	Auto-Login to a Specific TTY
	Customizing the Kernel
	Guix System Image API
	Using security keys
	Configuration for use as a two-factor authenticator (2FA)
	Disabling OTP code generation for a Yubikey
	Requiring a Yubikey to open a KeePassXC database

	Dynamic DNS mcron job
	Connecting to Wireguard VPN
	Using Wireguard tools
	Using NetworkManager

	Customizing a Window Manager
	StumpWM
	Session lock
	Xorg


	Running Guix on a Linode Server
	Running Guix on a Kimsufi Server
	Setting up a bind mount
	Getting substitutes from Tor
	Setting up NGINX with Lua
	Music Server with Bluetooth Audio

	4 Containers
	Guix Containers
	Guix System Containers
	A Database Container
	Container Networking


	5 Virtual Machines
	Network bridge for QEMU
	Creating a network bridge interface
	Configuring the QEMU bridge helper script
	Invoking QEMU with the right command line options
	Networking issues caused by Docker

	Routed network for libvirt
	Creating a virtual network bridge
	Configuring the static routes for your virtual bridge


	6 Advanced package management
	Guix Profiles in Practice
	Basic setup with manifests
	Required packages
	Default profile
	The benefits of manifests
	Reproducible profiles


	7 Software Development
	Getting Started
	Level 1: Building with Guix
	Level 2: The Repository as a Channel
	Bonus: Package Variants
	Level 3: Setting Up Continuous Integration
	Bonus: Build manifest
	Wrapping Up

	8 Environment management
	Guix environment via direnv

	9 Installing Guix on a Cluster
	Setting Up a Head Node
	Setting Up Compute Nodes
	Network Access
	Disk Usage
	Security Considerations

	10 Acknowledgments
	A GNU Free Documentation License
	Concept Index

